1/*
2 * linux/fs/jbd/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * Revoke information on buffers is a tri-state value:
51 *
52 * RevokeValid clear:	no cached revoke status, need to look it up
53 * RevokeValid set, Revoked clear:
54 *			buffer has not been revoked, and cancel_revoke
55 *			need do nothing.
56 * RevokeValid set, Revoked set:
57 *			buffer has been revoked.
58 */
59
60#ifndef __KERNEL__
61#include "jfs_user.h"
62#else
63#include <linux/time.h>
64#include <linux/fs.h>
65#include <linux/jbd.h>
66#include <linux/errno.h>
67#include <linux/slab.h>
68#include <linux/list.h>
69#include <linux/init.h>
70#endif
71
72static struct kmem_cache *revoke_record_cache;
73static struct kmem_cache *revoke_table_cache;
74
75/* Each revoke record represents one single revoked block.  During
76   journal replay, this involves recording the transaction ID of the
77   last transaction to revoke this block. */
78
79struct jbd_revoke_record_s
80{
81	struct list_head  hash;
82	tid_t		  sequence;	/* Used for recovery only */
83	unsigned long	  blocknr;
84};
85
86
87/* The revoke table is just a simple hash table of revoke records. */
88struct jbd_revoke_table_s
89{
90	/* It is conceivable that we might want a larger hash table
91	 * for recovery.  Must be a power of two. */
92	int		  hash_size;
93	int		  hash_shift;
94	struct list_head *hash_table;
95};
96
97
98#ifdef __KERNEL__
99static void write_one_revoke_record(journal_t *, transaction_t *,
100				    struct journal_head **, int *,
101				    struct jbd_revoke_record_s *);
102static void flush_descriptor(journal_t *, struct journal_head *, int);
103#endif
104
105/* Utility functions to maintain the revoke table */
106
107/* Borrowed from buffer.c: this is a tried and tested block hash function */
108static inline int hash(journal_t *journal, unsigned long block)
109{
110	struct jbd_revoke_table_s *table = journal->j_revoke;
111	int hash_shift = table->hash_shift;
112
113	return ((block << (hash_shift - 6)) ^
114		(block >> 13) ^
115		(block << (hash_shift - 12))) & (table->hash_size - 1);
116}
117
118static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
119			      tid_t seq)
120{
121	struct list_head *hash_list;
122	struct jbd_revoke_record_s *record;
123
124repeat:
125	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
126	if (!record)
127		goto oom;
128
129	record->sequence = seq;
130	record->blocknr = blocknr;
131	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
132	spin_lock(&journal->j_revoke_lock);
133	list_add(&record->hash, hash_list);
134	spin_unlock(&journal->j_revoke_lock);
135	return 0;
136
137oom:
138	if (!journal_oom_retry)
139		return -ENOMEM;
140	jbd_debug(1, "ENOMEM in %s, retrying\n", __FUNCTION__);
141	yield();
142	goto repeat;
143}
144
145/* Find a revoke record in the journal's hash table. */
146
147static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
148						      unsigned long blocknr)
149{
150	struct list_head *hash_list;
151	struct jbd_revoke_record_s *record;
152
153	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
154
155	spin_lock(&journal->j_revoke_lock);
156	record = (struct jbd_revoke_record_s *) hash_list->next;
157	while (&(record->hash) != hash_list) {
158		if (record->blocknr == blocknr) {
159			spin_unlock(&journal->j_revoke_lock);
160			return record;
161		}
162		record = (struct jbd_revoke_record_s *) record->hash.next;
163	}
164	spin_unlock(&journal->j_revoke_lock);
165	return NULL;
166}
167
168int __init journal_init_revoke_caches(void)
169{
170	revoke_record_cache = kmem_cache_create("revoke_record",
171					   sizeof(struct jbd_revoke_record_s),
172					   0, SLAB_HWCACHE_ALIGN, NULL, NULL);
173	if (revoke_record_cache == 0)
174		return -ENOMEM;
175
176	revoke_table_cache = kmem_cache_create("revoke_table",
177					   sizeof(struct jbd_revoke_table_s),
178					   0, 0, NULL, NULL);
179	if (revoke_table_cache == 0) {
180		kmem_cache_destroy(revoke_record_cache);
181		revoke_record_cache = NULL;
182		return -ENOMEM;
183	}
184	return 0;
185}
186
187void journal_destroy_revoke_caches(void)
188{
189	kmem_cache_destroy(revoke_record_cache);
190	revoke_record_cache = NULL;
191	kmem_cache_destroy(revoke_table_cache);
192	revoke_table_cache = NULL;
193}
194
195/* Initialise the revoke table for a given journal to a given size. */
196
197int journal_init_revoke(journal_t *journal, int hash_size)
198{
199	int shift, tmp;
200
201	J_ASSERT (journal->j_revoke_table[0] == NULL);
202
203	shift = 0;
204	tmp = hash_size;
205	while((tmp >>= 1UL) != 0UL)
206		shift++;
207
208	journal->j_revoke_table[0] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
209	if (!journal->j_revoke_table[0])
210		return -ENOMEM;
211	journal->j_revoke = journal->j_revoke_table[0];
212
213	/* Check that the hash_size is a power of two */
214	J_ASSERT ((hash_size & (hash_size-1)) == 0);
215
216	journal->j_revoke->hash_size = hash_size;
217
218	journal->j_revoke->hash_shift = shift;
219
220	journal->j_revoke->hash_table =
221		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
222	if (!journal->j_revoke->hash_table) {
223		kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
224		journal->j_revoke = NULL;
225		return -ENOMEM;
226	}
227
228	for (tmp = 0; tmp < hash_size; tmp++)
229		INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
230
231	journal->j_revoke_table[1] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
232	if (!journal->j_revoke_table[1]) {
233		kfree(journal->j_revoke_table[0]->hash_table);
234		kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
235		return -ENOMEM;
236	}
237
238	journal->j_revoke = journal->j_revoke_table[1];
239
240	/* Check that the hash_size is a power of two */
241	J_ASSERT ((hash_size & (hash_size-1)) == 0);
242
243	journal->j_revoke->hash_size = hash_size;
244
245	journal->j_revoke->hash_shift = shift;
246
247	journal->j_revoke->hash_table =
248		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
249	if (!journal->j_revoke->hash_table) {
250		kfree(journal->j_revoke_table[0]->hash_table);
251		kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
252		kmem_cache_free(revoke_table_cache, journal->j_revoke_table[1]);
253		journal->j_revoke = NULL;
254		return -ENOMEM;
255	}
256
257	for (tmp = 0; tmp < hash_size; tmp++)
258		INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
259
260	spin_lock_init(&journal->j_revoke_lock);
261
262	return 0;
263}
264
265/* Destoy a journal's revoke table.  The table must already be empty! */
266
267void journal_destroy_revoke(journal_t *journal)
268{
269	struct jbd_revoke_table_s *table;
270	struct list_head *hash_list;
271	int i;
272
273	table = journal->j_revoke_table[0];
274	if (!table)
275		return;
276
277	for (i=0; i<table->hash_size; i++) {
278		hash_list = &table->hash_table[i];
279		J_ASSERT (list_empty(hash_list));
280	}
281
282	kfree(table->hash_table);
283	kmem_cache_free(revoke_table_cache, table);
284	journal->j_revoke = NULL;
285
286	table = journal->j_revoke_table[1];
287	if (!table)
288		return;
289
290	for (i=0; i<table->hash_size; i++) {
291		hash_list = &table->hash_table[i];
292		J_ASSERT (list_empty(hash_list));
293	}
294
295	kfree(table->hash_table);
296	kmem_cache_free(revoke_table_cache, table);
297	journal->j_revoke = NULL;
298}
299
300
301#ifdef __KERNEL__
302
303/*
304 * journal_revoke: revoke a given buffer_head from the journal.  This
305 * prevents the block from being replayed during recovery if we take a
306 * crash after this current transaction commits.  Any subsequent
307 * metadata writes of the buffer in this transaction cancel the
308 * revoke.
309 *
310 * Note that this call may block --- it is up to the caller to make
311 * sure that there are no further calls to journal_write_metadata
312 * before the revoke is complete.  In ext3, this implies calling the
313 * revoke before clearing the block bitmap when we are deleting
314 * metadata.
315 *
316 * Revoke performs a journal_forget on any buffer_head passed in as a
317 * parameter, but does _not_ forget the buffer_head if the bh was only
318 * found implicitly.
319 *
320 * bh_in may not be a journalled buffer - it may have come off
321 * the hash tables without an attached journal_head.
322 *
323 * If bh_in is non-zero, journal_revoke() will decrement its b_count
324 * by one.
325 */
326
327int journal_revoke(handle_t *handle, unsigned long blocknr,
328		   struct buffer_head *bh_in)
329{
330	struct buffer_head *bh = NULL;
331	journal_t *journal;
332	struct block_device *bdev;
333	int err;
334
335	might_sleep();
336	if (bh_in)
337		BUFFER_TRACE(bh_in, "enter");
338
339	journal = handle->h_transaction->t_journal;
340	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
341		J_ASSERT (!"Cannot set revoke feature!");
342		return -EINVAL;
343	}
344
345	bdev = journal->j_fs_dev;
346	bh = bh_in;
347
348	if (!bh) {
349		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
350		if (bh)
351			BUFFER_TRACE(bh, "found on hash");
352	}
353#ifdef JBD_EXPENSIVE_CHECKING
354	else {
355		struct buffer_head *bh2;
356
357		/* If there is a different buffer_head lying around in
358		 * memory anywhere... */
359		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
360		if (bh2) {
361			/* ... and it has RevokeValid status... */
362			if (bh2 != bh && buffer_revokevalid(bh2))
363				/* ...then it better be revoked too,
364				 * since it's illegal to create a revoke
365				 * record against a buffer_head which is
366				 * not marked revoked --- that would
367				 * risk missing a subsequent revoke
368				 * cancel. */
369				J_ASSERT_BH(bh2, buffer_revoked(bh2));
370			put_bh(bh2);
371		}
372	}
373#endif
374
375	/* We really ought not ever to revoke twice in a row without
376           first having the revoke cancelled: it's illegal to free a
377           block twice without allocating it in between! */
378	if (bh) {
379		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
380				 "inconsistent data on disk")) {
381			if (!bh_in)
382				brelse(bh);
383			return -EIO;
384		}
385		set_buffer_revoked(bh);
386		set_buffer_revokevalid(bh);
387		if (bh_in) {
388			BUFFER_TRACE(bh_in, "call journal_forget");
389			journal_forget(handle, bh_in);
390		} else {
391			BUFFER_TRACE(bh, "call brelse");
392			__brelse(bh);
393		}
394	}
395
396	jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
397	err = insert_revoke_hash(journal, blocknr,
398				handle->h_transaction->t_tid);
399	BUFFER_TRACE(bh_in, "exit");
400	return err;
401}
402
403/*
404 * Cancel an outstanding revoke.  For use only internally by the
405 * journaling code (called from journal_get_write_access).
406 *
407 * We trust buffer_revoked() on the buffer if the buffer is already
408 * being journaled: if there is no revoke pending on the buffer, then we
409 * don't do anything here.
410 *
411 * This would break if it were possible for a buffer to be revoked and
412 * discarded, and then reallocated within the same transaction.  In such
413 * a case we would have lost the revoked bit, but when we arrived here
414 * the second time we would still have a pending revoke to cancel.  So,
415 * do not trust the Revoked bit on buffers unless RevokeValid is also
416 * set.
417 *
418 * The caller must have the journal locked.
419 */
420int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
421{
422	struct jbd_revoke_record_s *record;
423	journal_t *journal = handle->h_transaction->t_journal;
424	int need_cancel;
425	int did_revoke = 0;	/* akpm: debug */
426	struct buffer_head *bh = jh2bh(jh);
427
428	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
429
430	/* Is the existing Revoke bit valid?  If so, we trust it, and
431	 * only perform the full cancel if the revoke bit is set.  If
432	 * not, we can't trust the revoke bit, and we need to do the
433	 * full search for a revoke record. */
434	if (test_set_buffer_revokevalid(bh)) {
435		need_cancel = test_clear_buffer_revoked(bh);
436	} else {
437		need_cancel = 1;
438		clear_buffer_revoked(bh);
439	}
440
441	if (need_cancel) {
442		record = find_revoke_record(journal, bh->b_blocknr);
443		if (record) {
444			jbd_debug(4, "cancelled existing revoke on "
445				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
446			spin_lock(&journal->j_revoke_lock);
447			list_del(&record->hash);
448			spin_unlock(&journal->j_revoke_lock);
449			kmem_cache_free(revoke_record_cache, record);
450			did_revoke = 1;
451		}
452	}
453
454#ifdef JBD_EXPENSIVE_CHECKING
455	/* There better not be one left behind by now! */
456	record = find_revoke_record(journal, bh->b_blocknr);
457	J_ASSERT_JH(jh, record == NULL);
458#endif
459
460	/* Finally, have we just cleared revoke on an unhashed
461	 * buffer_head?  If so, we'd better make sure we clear the
462	 * revoked status on any hashed alias too, otherwise the revoke
463	 * state machine will get very upset later on. */
464	if (need_cancel) {
465		struct buffer_head *bh2;
466		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
467		if (bh2) {
468			if (bh2 != bh)
469				clear_buffer_revoked(bh2);
470			__brelse(bh2);
471		}
472	}
473	return did_revoke;
474}
475
476/* journal_switch_revoke table select j_revoke for next transaction
477 * we do not want to suspend any processing until all revokes are
478 * written -bzzz
479 */
480void journal_switch_revoke_table(journal_t *journal)
481{
482	int i;
483
484	if (journal->j_revoke == journal->j_revoke_table[0])
485		journal->j_revoke = journal->j_revoke_table[1];
486	else
487		journal->j_revoke = journal->j_revoke_table[0];
488
489	for (i = 0; i < journal->j_revoke->hash_size; i++)
490		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
491}
492
493/*
494 * Write revoke records to the journal for all entries in the current
495 * revoke hash, deleting the entries as we go.
496 *
497 * Called with the journal lock held.
498 */
499
500void journal_write_revoke_records(journal_t *journal,
501				  transaction_t *transaction)
502{
503	struct journal_head *descriptor;
504	struct jbd_revoke_record_s *record;
505	struct jbd_revoke_table_s *revoke;
506	struct list_head *hash_list;
507	int i, offset, count;
508
509	descriptor = NULL;
510	offset = 0;
511	count = 0;
512
513	/* select revoke table for committing transaction */
514	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
515		journal->j_revoke_table[1] : journal->j_revoke_table[0];
516
517	for (i = 0; i < revoke->hash_size; i++) {
518		hash_list = &revoke->hash_table[i];
519
520		while (!list_empty(hash_list)) {
521			record = (struct jbd_revoke_record_s *)
522				hash_list->next;
523			write_one_revoke_record(journal, transaction,
524						&descriptor, &offset,
525						record);
526			count++;
527			list_del(&record->hash);
528			kmem_cache_free(revoke_record_cache, record);
529		}
530	}
531	if (descriptor)
532		flush_descriptor(journal, descriptor, offset);
533	jbd_debug(1, "Wrote %d revoke records\n", count);
534}
535
536/*
537 * Write out one revoke record.  We need to create a new descriptor
538 * block if the old one is full or if we have not already created one.
539 */
540
541static void write_one_revoke_record(journal_t *journal,
542				    transaction_t *transaction,
543				    struct journal_head **descriptorp,
544				    int *offsetp,
545				    struct jbd_revoke_record_s *record)
546{
547	struct journal_head *descriptor;
548	int offset;
549	journal_header_t *header;
550
551	/* If we are already aborting, this all becomes a noop.  We
552           still need to go round the loop in
553           journal_write_revoke_records in order to free all of the
554           revoke records: only the IO to the journal is omitted. */
555	if (is_journal_aborted(journal))
556		return;
557
558	descriptor = *descriptorp;
559	offset = *offsetp;
560
561	/* Make sure we have a descriptor with space left for the record */
562	if (descriptor) {
563		if (offset == journal->j_blocksize) {
564			flush_descriptor(journal, descriptor, offset);
565			descriptor = NULL;
566		}
567	}
568
569	if (!descriptor) {
570		descriptor = journal_get_descriptor_buffer(journal);
571		if (!descriptor)
572			return;
573		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
574		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
575		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
576		header->h_sequence  = cpu_to_be32(transaction->t_tid);
577
578		/* Record it so that we can wait for IO completion later */
579		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
580		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
581
582		offset = sizeof(journal_revoke_header_t);
583		*descriptorp = descriptor;
584	}
585
586	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
587		cpu_to_be32(record->blocknr);
588	offset += 4;
589	*offsetp = offset;
590}
591
592/*
593 * Flush a revoke descriptor out to the journal.  If we are aborting,
594 * this is a noop; otherwise we are generating a buffer which needs to
595 * be waited for during commit, so it has to go onto the appropriate
596 * journal buffer list.
597 */
598
599static void flush_descriptor(journal_t *journal,
600			     struct journal_head *descriptor,
601			     int offset)
602{
603	journal_revoke_header_t *header;
604	struct buffer_head *bh = jh2bh(descriptor);
605
606	if (is_journal_aborted(journal)) {
607		put_bh(bh);
608		return;
609	}
610
611	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
612	header->r_count = cpu_to_be32(offset);
613	set_buffer_jwrite(bh);
614	BUFFER_TRACE(bh, "write");
615	set_buffer_dirty(bh);
616	ll_rw_block(SWRITE, 1, &bh);
617}
618#endif
619
620/*
621 * Revoke support for recovery.
622 *
623 * Recovery needs to be able to:
624 *
625 *  record all revoke records, including the tid of the latest instance
626 *  of each revoke in the journal
627 *
628 *  check whether a given block in a given transaction should be replayed
629 *  (ie. has not been revoked by a revoke record in that or a subsequent
630 *  transaction)
631 *
632 *  empty the revoke table after recovery.
633 */
634
635/*
636 * First, setting revoke records.  We create a new revoke record for
637 * every block ever revoked in the log as we scan it for recovery, and
638 * we update the existing records if we find multiple revokes for a
639 * single block.
640 */
641
642int journal_set_revoke(journal_t *journal,
643		       unsigned long blocknr,
644		       tid_t sequence)
645{
646	struct jbd_revoke_record_s *record;
647
648	record = find_revoke_record(journal, blocknr);
649	if (record) {
650		/* If we have multiple occurrences, only record the
651		 * latest sequence number in the hashed record */
652		if (tid_gt(sequence, record->sequence))
653			record->sequence = sequence;
654		return 0;
655	}
656	return insert_revoke_hash(journal, blocknr, sequence);
657}
658
659/*
660 * Test revoke records.  For a given block referenced in the log, has
661 * that block been revoked?  A revoke record with a given transaction
662 * sequence number revokes all blocks in that transaction and earlier
663 * ones, but later transactions still need replayed.
664 */
665
666int journal_test_revoke(journal_t *journal,
667			unsigned long blocknr,
668			tid_t sequence)
669{
670	struct jbd_revoke_record_s *record;
671
672	record = find_revoke_record(journal, blocknr);
673	if (!record)
674		return 0;
675	if (tid_gt(sequence, record->sequence))
676		return 0;
677	return 1;
678}
679
680/*
681 * Finally, once recovery is over, we need to clear the revoke table so
682 * that it can be reused by the running filesystem.
683 */
684
685void journal_clear_revoke(journal_t *journal)
686{
687	int i;
688	struct list_head *hash_list;
689	struct jbd_revoke_record_s *record;
690	struct jbd_revoke_table_s *revoke;
691
692	revoke = journal->j_revoke;
693
694	for (i = 0; i < revoke->hash_size; i++) {
695		hash_list = &revoke->hash_table[i];
696		while (!list_empty(hash_list)) {
697			record = (struct jbd_revoke_record_s*) hash_list->next;
698			list_del(&record->hash);
699			kmem_cache_free(revoke_record_cache, record);
700		}
701	}
702}
703