1/*
2 *  linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  from
10 *
11 *  linux/fs/minix/inode.c
12 *
13 *  Copyright (C) 1991, 1992  Linus Torvalds
14 *
15 *  Goal-directed block allocation by Stephen Tweedie
16 *	(sct@redhat.com), 1993, 1998
17 *  Big-endian to little-endian byte-swapping/bitmaps by
18 *        David S. Miller (davem@caip.rutgers.edu), 1995
19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
20 *	(jj@sunsite.ms.mff.cuni.cz)
21 *
22 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext4_jbd2.h>
29#include <linux/jbd2.h>
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
39#include "xattr.h"
40#include "acl.h"
41
42/*
43 * Test whether an inode is a fast symlink.
44 */
45static int ext4_inode_is_fast_symlink(struct inode *inode)
46{
47	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48		(inode->i_sb->s_blocksize >> 9) : 0;
49
50	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51}
52
53/*
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled.  Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
62int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63			struct buffer_head *bh, ext4_fsblk_t blocknr)
64{
65	int err;
66
67	might_sleep();
68
69	BUFFER_TRACE(bh, "enter");
70
71	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72		  "data mode %lx\n",
73		  bh, is_metadata, inode->i_mode,
74		  test_opt(inode->i_sb, DATA_FLAGS));
75
76	/* Never use the revoke function if we are doing full data
77	 * journaling: there is no need to, and a V1 superblock won't
78	 * support it.  Otherwise, only skip the revoke on un-journaled
79	 * data blocks. */
80
81	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82	    (!is_metadata && !ext4_should_journal_data(inode))) {
83		if (bh) {
84			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85			return ext4_journal_forget(handle, bh);
86		}
87		return 0;
88	}
89
90	/*
91	 * data!=journal && (is_metadata || should_journal_data(inode))
92	 */
93	BUFFER_TRACE(bh, "call ext4_journal_revoke");
94	err = ext4_journal_revoke(handle, blocknr, bh);
95	if (err)
96		ext4_abort(inode->i_sb, __FUNCTION__,
97			   "error %d when attempting revoke", err);
98	BUFFER_TRACE(bh, "exit");
99	return err;
100}
101
102/*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106static unsigned long blocks_for_truncate(struct inode *inode)
107{
108	unsigned long needed;
109
110	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112	/* Give ourselves just enough room to cope with inodes in which
113	 * i_blocks is corrupt: we've seen disk corruptions in the past
114	 * which resulted in random data in an inode which looked enough
115	 * like a regular file for ext4 to try to delete it.  Things
116	 * will go a bit crazy if that happens, but at least we should
117	 * try not to panic the whole kernel. */
118	if (needed < 2)
119		needed = 2;
120
121	/* But we need to bound the transaction so we don't overflow the
122	 * journal. */
123	if (needed > EXT4_MAX_TRANS_DATA)
124		needed = EXT4_MAX_TRANS_DATA;
125
126	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127}
128
129/*
130 * Truncate transactions can be complex and absolutely huge.  So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit.  If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139static handle_t *start_transaction(struct inode *inode)
140{
141	handle_t *result;
142
143	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144	if (!IS_ERR(result))
145		return result;
146
147	ext4_std_error(inode->i_sb, PTR_ERR(result));
148	return result;
149}
150
151/*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room.  If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158{
159	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160		return 0;
161	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162		return 0;
163	return 1;
164}
165
166/*
167 * Restart the transaction associated with *handle.  This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172{
173	jbd_debug(2, "restarting handle %p\n", handle);
174	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175}
176
177/*
178 * Called at the last iput() if i_nlink is zero.
179 */
180void ext4_delete_inode (struct inode * inode)
181{
182	handle_t *handle;
183
184	truncate_inode_pages(&inode->i_data, 0);
185
186	if (is_bad_inode(inode))
187		goto no_delete;
188
189	handle = start_transaction(inode);
190	if (IS_ERR(handle)) {
191		/*
192		 * If we're going to skip the normal cleanup, we still need to
193		 * make sure that the in-core orphan linked list is properly
194		 * cleaned up.
195		 */
196		ext4_orphan_del(NULL, inode);
197		goto no_delete;
198	}
199
200	if (IS_SYNC(inode))
201		handle->h_sync = 1;
202	inode->i_size = 0;
203	if (inode->i_blocks)
204		ext4_truncate(inode);
205	/*
206	 * Kill off the orphan record which ext4_truncate created.
207	 * AKPM: I think this can be inside the above `if'.
208	 * Note that ext4_orphan_del() has to be able to cope with the
209	 * deletion of a non-existent orphan - this is because we don't
210	 * know if ext4_truncate() actually created an orphan record.
211	 * (Well, we could do this if we need to, but heck - it works)
212	 */
213	ext4_orphan_del(handle, inode);
214	EXT4_I(inode)->i_dtime	= get_seconds();
215
216	/*
217	 * One subtle ordering requirement: if anything has gone wrong
218	 * (transaction abort, IO errors, whatever), then we can still
219	 * do these next steps (the fs will already have been marked as
220	 * having errors), but we can't free the inode if the mark_dirty
221	 * fails.
222	 */
223	if (ext4_mark_inode_dirty(handle, inode))
224		/* If that failed, just do the required in-core inode clear. */
225		clear_inode(inode);
226	else
227		ext4_free_inode(handle, inode);
228	ext4_journal_stop(handle);
229	return;
230no_delete:
231	clear_inode(inode);	/* We must guarantee clearing of inode... */
232}
233
234typedef struct {
235	__le32	*p;
236	__le32	key;
237	struct buffer_head *bh;
238} Indirect;
239
240static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241{
242	p->key = *(p->p = v);
243	p->bh = bh;
244}
245
246static int verify_chain(Indirect *from, Indirect *to)
247{
248	while (from <= to && from->key == *from->p)
249		from++;
250	return (from > to);
251}
252
253/**
254 *	ext4_block_to_path - parse the block number into array of offsets
255 *	@inode: inode in question (we are only interested in its superblock)
256 *	@i_block: block number to be parsed
257 *	@offsets: array to store the offsets in
258 *	@boundary: set this non-zero if the referred-to block is likely to be
259 *	       followed (on disk) by an indirect block.
260 *
261 *	To store the locations of file's data ext4 uses a data structure common
262 *	for UNIX filesystems - tree of pointers anchored in the inode, with
263 *	data blocks at leaves and indirect blocks in intermediate nodes.
264 *	This function translates the block number into path in that tree -
265 *	return value is the path length and @offsets[n] is the offset of
266 *	pointer to (n+1)th node in the nth one. If @block is out of range
267 *	(negative or too large) warning is printed and zero returned.
268 *
269 *	Note: function doesn't find node addresses, so no IO is needed. All
270 *	we need to know is the capacity of indirect blocks (taken from the
271 *	inode->i_sb).
272 */
273
274/*
275 * Portability note: the last comparison (check that we fit into triple
276 * indirect block) is spelled differently, because otherwise on an
277 * architecture with 32-bit longs and 8Kb pages we might get into trouble
278 * if our filesystem had 8Kb blocks. We might use long long, but that would
279 * kill us on x86. Oh, well, at least the sign propagation does not matter -
280 * i_block would have to be negative in the very beginning, so we would not
281 * get there at all.
282 */
283
284static int ext4_block_to_path(struct inode *inode,
285			long i_block, int offsets[4], int *boundary)
286{
287	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
288	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
289	const long direct_blocks = EXT4_NDIR_BLOCKS,
290		indirect_blocks = ptrs,
291		double_blocks = (1 << (ptrs_bits * 2));
292	int n = 0;
293	int final = 0;
294
295	if (i_block < 0) {
296		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
297	} else if (i_block < direct_blocks) {
298		offsets[n++] = i_block;
299		final = direct_blocks;
300	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
301		offsets[n++] = EXT4_IND_BLOCK;
302		offsets[n++] = i_block;
303		final = ptrs;
304	} else if ((i_block -= indirect_blocks) < double_blocks) {
305		offsets[n++] = EXT4_DIND_BLOCK;
306		offsets[n++] = i_block >> ptrs_bits;
307		offsets[n++] = i_block & (ptrs - 1);
308		final = ptrs;
309	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
310		offsets[n++] = EXT4_TIND_BLOCK;
311		offsets[n++] = i_block >> (ptrs_bits * 2);
312		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
313		offsets[n++] = i_block & (ptrs - 1);
314		final = ptrs;
315	} else {
316		ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
317	}
318	if (boundary)
319		*boundary = final - 1 - (i_block & (ptrs - 1));
320	return n;
321}
322
323/**
324 *	ext4_get_branch - read the chain of indirect blocks leading to data
325 *	@inode: inode in question
326 *	@depth: depth of the chain (1 - direct pointer, etc.)
327 *	@offsets: offsets of pointers in inode/indirect blocks
328 *	@chain: place to store the result
329 *	@err: here we store the error value
330 *
331 *	Function fills the array of triples <key, p, bh> and returns %NULL
332 *	if everything went OK or the pointer to the last filled triple
333 *	(incomplete one) otherwise. Upon the return chain[i].key contains
334 *	the number of (i+1)-th block in the chain (as it is stored in memory,
335 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
336 *	number (it points into struct inode for i==0 and into the bh->b_data
337 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
338 *	block for i>0 and NULL for i==0. In other words, it holds the block
339 *	numbers of the chain, addresses they were taken from (and where we can
340 *	verify that chain did not change) and buffer_heads hosting these
341 *	numbers.
342 *
343 *	Function stops when it stumbles upon zero pointer (absent block)
344 *		(pointer to last triple returned, *@err == 0)
345 *	or when it gets an IO error reading an indirect block
346 *		(ditto, *@err == -EIO)
347 *	or when it notices that chain had been changed while it was reading
348 *		(ditto, *@err == -EAGAIN)
349 *	or when it reads all @depth-1 indirect blocks successfully and finds
350 *	the whole chain, all way to the data (returns %NULL, *err == 0).
351 */
352static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
353				 Indirect chain[4], int *err)
354{
355	struct super_block *sb = inode->i_sb;
356	Indirect *p = chain;
357	struct buffer_head *bh;
358
359	*err = 0;
360	/* i_data is not going away, no lock needed */
361	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
362	if (!p->key)
363		goto no_block;
364	while (--depth) {
365		bh = sb_bread(sb, le32_to_cpu(p->key));
366		if (!bh)
367			goto failure;
368		/* Reader: pointers */
369		if (!verify_chain(chain, p))
370			goto changed;
371		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
372		/* Reader: end */
373		if (!p->key)
374			goto no_block;
375	}
376	return NULL;
377
378changed:
379	brelse(bh);
380	*err = -EAGAIN;
381	goto no_block;
382failure:
383	*err = -EIO;
384no_block:
385	return p;
386}
387
388/**
389 *	ext4_find_near - find a place for allocation with sufficient locality
390 *	@inode: owner
391 *	@ind: descriptor of indirect block.
392 *
393 *	This function returns the prefered place for block allocation.
394 *	It is used when heuristic for sequential allocation fails.
395 *	Rules are:
396 *	  + if there is a block to the left of our position - allocate near it.
397 *	  + if pointer will live in indirect block - allocate near that block.
398 *	  + if pointer will live in inode - allocate in the same
399 *	    cylinder group.
400 *
401 * In the latter case we colour the starting block by the callers PID to
402 * prevent it from clashing with concurrent allocations for a different inode
403 * in the same block group.   The PID is used here so that functionally related
404 * files will be close-by on-disk.
405 *
406 *	Caller must make sure that @ind is valid and will stay that way.
407 */
408static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
409{
410	struct ext4_inode_info *ei = EXT4_I(inode);
411	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
412	__le32 *p;
413	ext4_fsblk_t bg_start;
414	ext4_grpblk_t colour;
415
416	/* Try to find previous block */
417	for (p = ind->p - 1; p >= start; p--) {
418		if (*p)
419			return le32_to_cpu(*p);
420	}
421
422	/* No such thing, so let's try location of indirect block */
423	if (ind->bh)
424		return ind->bh->b_blocknr;
425
426	/*
427	 * It is going to be referred to from the inode itself? OK, just put it
428	 * into the same cylinder group then.
429	 */
430	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
431	colour = (current->pid % 16) *
432			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
433	return bg_start + colour;
434}
435
436/**
437 *	ext4_find_goal - find a prefered place for allocation.
438 *	@inode: owner
439 *	@block:  block we want
440 *	@chain:  chain of indirect blocks
441 *	@partial: pointer to the last triple within a chain
442 *	@goal:	place to store the result.
443 *
444 *	Normally this function find the prefered place for block allocation,
445 *	stores it in *@goal and returns zero.
446 */
447
448static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
449		Indirect chain[4], Indirect *partial)
450{
451	struct ext4_block_alloc_info *block_i;
452
453	block_i =  EXT4_I(inode)->i_block_alloc_info;
454
455	/*
456	 * try the heuristic for sequential allocation,
457	 * failing that at least try to get decent locality.
458	 */
459	if (block_i && (block == block_i->last_alloc_logical_block + 1)
460		&& (block_i->last_alloc_physical_block != 0)) {
461		return block_i->last_alloc_physical_block + 1;
462	}
463
464	return ext4_find_near(inode, partial);
465}
466
467/**
468 *	ext4_blks_to_allocate: Look up the block map and count the number
469 *	of direct blocks need to be allocated for the given branch.
470 *
471 *	@branch: chain of indirect blocks
472 *	@k: number of blocks need for indirect blocks
473 *	@blks: number of data blocks to be mapped.
474 *	@blocks_to_boundary:  the offset in the indirect block
475 *
476 *	return the total number of blocks to be allocate, including the
477 *	direct and indirect blocks.
478 */
479static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
480		int blocks_to_boundary)
481{
482	unsigned long count = 0;
483
484	/*
485	 * Simple case, [t,d]Indirect block(s) has not allocated yet
486	 * then it's clear blocks on that path have not allocated
487	 */
488	if (k > 0) {
489		/* right now we don't handle cross boundary allocation */
490		if (blks < blocks_to_boundary + 1)
491			count += blks;
492		else
493			count += blocks_to_boundary + 1;
494		return count;
495	}
496
497	count++;
498	while (count < blks && count <= blocks_to_boundary &&
499		le32_to_cpu(*(branch[0].p + count)) == 0) {
500		count++;
501	}
502	return count;
503}
504
505/**
506 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
507 *	@indirect_blks: the number of blocks need to allocate for indirect
508 *			blocks
509 *
510 *	@new_blocks: on return it will store the new block numbers for
511 *	the indirect blocks(if needed) and the first direct block,
512 *	@blks:	on return it will store the total number of allocated
513 *		direct blocks
514 */
515static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
516			ext4_fsblk_t goal, int indirect_blks, int blks,
517			ext4_fsblk_t new_blocks[4], int *err)
518{
519	int target, i;
520	unsigned long count = 0;
521	int index = 0;
522	ext4_fsblk_t current_block = 0;
523	int ret = 0;
524
525	/*
526	 * Here we try to allocate the requested multiple blocks at once,
527	 * on a best-effort basis.
528	 * To build a branch, we should allocate blocks for
529	 * the indirect blocks(if not allocated yet), and at least
530	 * the first direct block of this branch.  That's the
531	 * minimum number of blocks need to allocate(required)
532	 */
533	target = blks + indirect_blks;
534
535	while (1) {
536		count = target;
537		/* allocating blocks for indirect blocks and direct blocks */
538		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
539		if (*err)
540			goto failed_out;
541
542		target -= count;
543		/* allocate blocks for indirect blocks */
544		while (index < indirect_blks && count) {
545			new_blocks[index++] = current_block++;
546			count--;
547		}
548
549		if (count > 0)
550			break;
551	}
552
553	/* save the new block number for the first direct block */
554	new_blocks[index] = current_block;
555
556	/* total number of blocks allocated for direct blocks */
557	ret = count;
558	*err = 0;
559	return ret;
560failed_out:
561	for (i = 0; i <index; i++)
562		ext4_free_blocks(handle, inode, new_blocks[i], 1);
563	return ret;
564}
565
566/**
567 *	ext4_alloc_branch - allocate and set up a chain of blocks.
568 *	@inode: owner
569 *	@indirect_blks: number of allocated indirect blocks
570 *	@blks: number of allocated direct blocks
571 *	@offsets: offsets (in the blocks) to store the pointers to next.
572 *	@branch: place to store the chain in.
573 *
574 *	This function allocates blocks, zeroes out all but the last one,
575 *	links them into chain and (if we are synchronous) writes them to disk.
576 *	In other words, it prepares a branch that can be spliced onto the
577 *	inode. It stores the information about that chain in the branch[], in
578 *	the same format as ext4_get_branch() would do. We are calling it after
579 *	we had read the existing part of chain and partial points to the last
580 *	triple of that (one with zero ->key). Upon the exit we have the same
581 *	picture as after the successful ext4_get_block(), except that in one
582 *	place chain is disconnected - *branch->p is still zero (we did not
583 *	set the last link), but branch->key contains the number that should
584 *	be placed into *branch->p to fill that gap.
585 *
586 *	If allocation fails we free all blocks we've allocated (and forget
587 *	their buffer_heads) and return the error value the from failed
588 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 *	as described above and return 0.
590 */
591static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
592			int indirect_blks, int *blks, ext4_fsblk_t goal,
593			int *offsets, Indirect *branch)
594{
595	int blocksize = inode->i_sb->s_blocksize;
596	int i, n = 0;
597	int err = 0;
598	struct buffer_head *bh;
599	int num;
600	ext4_fsblk_t new_blocks[4];
601	ext4_fsblk_t current_block;
602
603	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
604				*blks, new_blocks, &err);
605	if (err)
606		return err;
607
608	branch[0].key = cpu_to_le32(new_blocks[0]);
609	/*
610	 * metadata blocks and data blocks are allocated.
611	 */
612	for (n = 1; n <= indirect_blks;  n++) {
613		/*
614		 * Get buffer_head for parent block, zero it out
615		 * and set the pointer to new one, then send
616		 * parent to disk.
617		 */
618		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
619		branch[n].bh = bh;
620		lock_buffer(bh);
621		BUFFER_TRACE(bh, "call get_create_access");
622		err = ext4_journal_get_create_access(handle, bh);
623		if (err) {
624			unlock_buffer(bh);
625			brelse(bh);
626			goto failed;
627		}
628
629		memset(bh->b_data, 0, blocksize);
630		branch[n].p = (__le32 *) bh->b_data + offsets[n];
631		branch[n].key = cpu_to_le32(new_blocks[n]);
632		*branch[n].p = branch[n].key;
633		if ( n == indirect_blks) {
634			current_block = new_blocks[n];
635			/*
636			 * End of chain, update the last new metablock of
637			 * the chain to point to the new allocated
638			 * data blocks numbers
639			 */
640			for (i=1; i < num; i++)
641				*(branch[n].p + i) = cpu_to_le32(++current_block);
642		}
643		BUFFER_TRACE(bh, "marking uptodate");
644		set_buffer_uptodate(bh);
645		unlock_buffer(bh);
646
647		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
648		err = ext4_journal_dirty_metadata(handle, bh);
649		if (err)
650			goto failed;
651	}
652	*blks = num;
653	return err;
654failed:
655	/* Allocation failed, free what we already allocated */
656	for (i = 1; i <= n ; i++) {
657		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
658		ext4_journal_forget(handle, branch[i].bh);
659	}
660	for (i = 0; i <indirect_blks; i++)
661		ext4_free_blocks(handle, inode, new_blocks[i], 1);
662
663	ext4_free_blocks(handle, inode, new_blocks[i], num);
664
665	return err;
666}
667
668/**
669 * ext4_splice_branch - splice the allocated branch onto inode.
670 * @inode: owner
671 * @block: (logical) number of block we are adding
672 * @chain: chain of indirect blocks (with a missing link - see
673 *	ext4_alloc_branch)
674 * @where: location of missing link
675 * @num:   number of indirect blocks we are adding
676 * @blks:  number of direct blocks we are adding
677 *
678 * This function fills the missing link and does all housekeeping needed in
679 * inode (->i_blocks, etc.). In case of success we end up with the full
680 * chain to new block and return 0.
681 */
682static int ext4_splice_branch(handle_t *handle, struct inode *inode,
683			long block, Indirect *where, int num, int blks)
684{
685	int i;
686	int err = 0;
687	struct ext4_block_alloc_info *block_i;
688	ext4_fsblk_t current_block;
689
690	block_i = EXT4_I(inode)->i_block_alloc_info;
691	/*
692	 * If we're splicing into a [td]indirect block (as opposed to the
693	 * inode) then we need to get write access to the [td]indirect block
694	 * before the splice.
695	 */
696	if (where->bh) {
697		BUFFER_TRACE(where->bh, "get_write_access");
698		err = ext4_journal_get_write_access(handle, where->bh);
699		if (err)
700			goto err_out;
701	}
702	/* That's it */
703
704	*where->p = where->key;
705
706	/*
707	 * Update the host buffer_head or inode to point to more just allocated
708	 * direct blocks blocks
709	 */
710	if (num == 0 && blks > 1) {
711		current_block = le32_to_cpu(where->key) + 1;
712		for (i = 1; i < blks; i++)
713			*(where->p + i ) = cpu_to_le32(current_block++);
714	}
715
716	/*
717	 * update the most recently allocated logical & physical block
718	 * in i_block_alloc_info, to assist find the proper goal block for next
719	 * allocation
720	 */
721	if (block_i) {
722		block_i->last_alloc_logical_block = block + blks - 1;
723		block_i->last_alloc_physical_block =
724				le32_to_cpu(where[num].key) + blks - 1;
725	}
726
727	/* We are done with atomic stuff, now do the rest of housekeeping */
728
729	inode->i_ctime = CURRENT_TIME_SEC;
730	ext4_mark_inode_dirty(handle, inode);
731
732	/* had we spliced it onto indirect block? */
733	if (where->bh) {
734		/*
735		 * If we spliced it onto an indirect block, we haven't
736		 * altered the inode.  Note however that if it is being spliced
737		 * onto an indirect block at the very end of the file (the
738		 * file is growing) then we *will* alter the inode to reflect
739		 * the new i_size.  But that is not done here - it is done in
740		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
741		 */
742		jbd_debug(5, "splicing indirect only\n");
743		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
744		err = ext4_journal_dirty_metadata(handle, where->bh);
745		if (err)
746			goto err_out;
747	} else {
748		/*
749		 * OK, we spliced it into the inode itself on a direct block.
750		 * Inode was dirtied above.
751		 */
752		jbd_debug(5, "splicing direct\n");
753	}
754	return err;
755
756err_out:
757	for (i = 1; i <= num; i++) {
758		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
759		ext4_journal_forget(handle, where[i].bh);
760		ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
761	}
762	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
763
764	return err;
765}
766
767/*
768 * Allocation strategy is simple: if we have to allocate something, we will
769 * have to go the whole way to leaf. So let's do it before attaching anything
770 * to tree, set linkage between the newborn blocks, write them if sync is
771 * required, recheck the path, free and repeat if check fails, otherwise
772 * set the last missing link (that will protect us from any truncate-generated
773 * removals - all blocks on the path are immune now) and possibly force the
774 * write on the parent block.
775 * That has a nice additional property: no special recovery from the failed
776 * allocations is needed - we simply release blocks and do not touch anything
777 * reachable from inode.
778 *
779 * `handle' can be NULL if create == 0.
780 *
781 * The BKL may not be held on entry here.  Be sure to take it early.
782 * return > 0, # of blocks mapped or allocated.
783 * return = 0, if plain lookup failed.
784 * return < 0, error case.
785 */
786int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787		sector_t iblock, unsigned long maxblocks,
788		struct buffer_head *bh_result,
789		int create, int extend_disksize)
790{
791	int err = -EIO;
792	int offsets[4];
793	Indirect chain[4];
794	Indirect *partial;
795	ext4_fsblk_t goal;
796	int indirect_blks;
797	int blocks_to_boundary = 0;
798	int depth;
799	struct ext4_inode_info *ei = EXT4_I(inode);
800	int count = 0;
801	ext4_fsblk_t first_block = 0;
802
803
804	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805	J_ASSERT(handle != NULL || create == 0);
806	depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
807
808	if (depth == 0)
809		goto out;
810
811	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
812
813	/* Simplest case - block found, no allocation needed */
814	if (!partial) {
815		first_block = le32_to_cpu(chain[depth - 1].key);
816		clear_buffer_new(bh_result);
817		count++;
818		/*map more blocks*/
819		while (count < maxblocks && count <= blocks_to_boundary) {
820			ext4_fsblk_t blk;
821
822			if (!verify_chain(chain, partial)) {
823				/*
824				 * Indirect block might be removed by
825				 * truncate while we were reading it.
826				 * Handling of that case: forget what we've
827				 * got now. Flag the err as EAGAIN, so it
828				 * will reread.
829				 */
830				err = -EAGAIN;
831				count = 0;
832				break;
833			}
834			blk = le32_to_cpu(*(chain[depth-1].p + count));
835
836			if (blk == first_block + count)
837				count++;
838			else
839				break;
840		}
841		if (err != -EAGAIN)
842			goto got_it;
843	}
844
845	/* Next simple case - plain lookup or failed read of indirect block */
846	if (!create || err == -EIO)
847		goto cleanup;
848
849	mutex_lock(&ei->truncate_mutex);
850
851	/*
852	 * If the indirect block is missing while we are reading
853	 * the chain(ext4_get_branch() returns -EAGAIN err), or
854	 * if the chain has been changed after we grab the semaphore,
855	 * (either because another process truncated this branch, or
856	 * another get_block allocated this branch) re-grab the chain to see if
857	 * the request block has been allocated or not.
858	 *
859	 * Since we already block the truncate/other get_block
860	 * at this point, we will have the current copy of the chain when we
861	 * splice the branch into the tree.
862	 */
863	if (err == -EAGAIN || !verify_chain(chain, partial)) {
864		while (partial > chain) {
865			brelse(partial->bh);
866			partial--;
867		}
868		partial = ext4_get_branch(inode, depth, offsets, chain, &err);
869		if (!partial) {
870			count++;
871			mutex_unlock(&ei->truncate_mutex);
872			if (err)
873				goto cleanup;
874			clear_buffer_new(bh_result);
875			goto got_it;
876		}
877	}
878
879	/*
880	 * Okay, we need to do block allocation.  Lazily initialize the block
881	 * allocation info here if necessary
882	*/
883	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
884		ext4_init_block_alloc_info(inode);
885
886	goal = ext4_find_goal(inode, iblock, chain, partial);
887
888	/* the number of blocks need to allocate for [d,t]indirect blocks */
889	indirect_blks = (chain + depth) - partial - 1;
890
891	/*
892	 * Next look up the indirect map to count the totoal number of
893	 * direct blocks to allocate for this branch.
894	 */
895	count = ext4_blks_to_allocate(partial, indirect_blks,
896					maxblocks, blocks_to_boundary);
897	/*
898	 * Block out ext4_truncate while we alter the tree
899	 */
900	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
901				offsets + (partial - chain), partial);
902
903	/*
904	 * The ext4_splice_branch call will free and forget any buffers
905	 * on the new chain if there is a failure, but that risks using
906	 * up transaction credits, especially for bitmaps where the
907	 * credits cannot be returned.  Can we handle this somehow?  We
908	 * may need to return -EAGAIN upwards in the worst case.  --sct
909	 */
910	if (!err)
911		err = ext4_splice_branch(handle, inode, iblock,
912					partial, indirect_blks, count);
913	/*
914	 * i_disksize growing is protected by truncate_mutex.  Don't forget to
915	 * protect it if you're about to implement concurrent
916	 * ext4_get_block() -bzzz
917	*/
918	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
919		ei->i_disksize = inode->i_size;
920	mutex_unlock(&ei->truncate_mutex);
921	if (err)
922		goto cleanup;
923
924	set_buffer_new(bh_result);
925got_it:
926	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
927	if (count > blocks_to_boundary)
928		set_buffer_boundary(bh_result);
929	err = count;
930	/* Clean up and exit */
931	partial = chain + depth - 1;	/* the whole chain */
932cleanup:
933	while (partial > chain) {
934		BUFFER_TRACE(partial->bh, "call brelse");
935		brelse(partial->bh);
936		partial--;
937	}
938	BUFFER_TRACE(bh_result, "returned");
939out:
940	return err;
941}
942
943#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
944
945static int ext4_get_block(struct inode *inode, sector_t iblock,
946			struct buffer_head *bh_result, int create)
947{
948	handle_t *handle = ext4_journal_current_handle();
949	int ret = 0;
950	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
951
952	if (!create)
953		goto get_block;		/* A read */
954
955	if (max_blocks == 1)
956		goto get_block;		/* A single block get */
957
958	if (handle->h_transaction->t_state == T_LOCKED) {
959		/*
960		 * Huge direct-io writes can hold off commits for long
961		 * periods of time.  Let this commit run.
962		 */
963		ext4_journal_stop(handle);
964		handle = ext4_journal_start(inode, DIO_CREDITS);
965		if (IS_ERR(handle))
966			ret = PTR_ERR(handle);
967		goto get_block;
968	}
969
970	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
971		/*
972		 * Getting low on buffer credits...
973		 */
974		ret = ext4_journal_extend(handle, DIO_CREDITS);
975		if (ret > 0) {
976			/*
977			 * Couldn't extend the transaction.  Start a new one.
978			 */
979			ret = ext4_journal_restart(handle, DIO_CREDITS);
980		}
981	}
982
983get_block:
984	if (ret == 0) {
985		ret = ext4_get_blocks_wrap(handle, inode, iblock,
986					max_blocks, bh_result, create, 0);
987		if (ret > 0) {
988			bh_result->b_size = (ret << inode->i_blkbits);
989			ret = 0;
990		}
991	}
992	return ret;
993}
994
995/*
996 * `handle' can be NULL if create is zero
997 */
998struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
999				long block, int create, int *errp)
1000{
1001	struct buffer_head dummy;
1002	int fatal = 0, err;
1003
1004	J_ASSERT(handle != NULL || create == 0);
1005
1006	dummy.b_state = 0;
1007	dummy.b_blocknr = -1000;
1008	buffer_trace_init(&dummy.b_history);
1009	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1010					&dummy, create, 1);
1011	/*
1012	 * ext4_get_blocks_handle() returns number of blocks
1013	 * mapped. 0 in case of a HOLE.
1014	 */
1015	if (err > 0) {
1016		if (err > 1)
1017			WARN_ON(1);
1018		err = 0;
1019	}
1020	*errp = err;
1021	if (!err && buffer_mapped(&dummy)) {
1022		struct buffer_head *bh;
1023		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1024		if (!bh) {
1025			*errp = -EIO;
1026			goto err;
1027		}
1028		if (buffer_new(&dummy)) {
1029			J_ASSERT(create != 0);
1030			J_ASSERT(handle != 0);
1031
1032			/*
1033			 * Now that we do not always journal data, we should
1034			 * keep in mind whether this should always journal the
1035			 * new buffer as metadata.  For now, regular file
1036			 * writes use ext4_get_block instead, so it's not a
1037			 * problem.
1038			 */
1039			lock_buffer(bh);
1040			BUFFER_TRACE(bh, "call get_create_access");
1041			fatal = ext4_journal_get_create_access(handle, bh);
1042			if (!fatal && !buffer_uptodate(bh)) {
1043				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1044				set_buffer_uptodate(bh);
1045			}
1046			unlock_buffer(bh);
1047			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1048			err = ext4_journal_dirty_metadata(handle, bh);
1049			if (!fatal)
1050				fatal = err;
1051		} else {
1052			BUFFER_TRACE(bh, "not a new buffer");
1053		}
1054		if (fatal) {
1055			*errp = fatal;
1056			brelse(bh);
1057			bh = NULL;
1058		}
1059		return bh;
1060	}
1061err:
1062	return NULL;
1063}
1064
1065struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1066			       int block, int create, int *err)
1067{
1068	struct buffer_head * bh;
1069
1070	bh = ext4_getblk(handle, inode, block, create, err);
1071	if (!bh)
1072		return bh;
1073	if (buffer_uptodate(bh))
1074		return bh;
1075	ll_rw_block(READ_META, 1, &bh);
1076	wait_on_buffer(bh);
1077	if (buffer_uptodate(bh))
1078		return bh;
1079	put_bh(bh);
1080	*err = -EIO;
1081	return NULL;
1082}
1083
1084static int walk_page_buffers(	handle_t *handle,
1085				struct buffer_head *head,
1086				unsigned from,
1087				unsigned to,
1088				int *partial,
1089				int (*fn)(	handle_t *handle,
1090						struct buffer_head *bh))
1091{
1092	struct buffer_head *bh;
1093	unsigned block_start, block_end;
1094	unsigned blocksize = head->b_size;
1095	int err, ret = 0;
1096	struct buffer_head *next;
1097
1098	for (	bh = head, block_start = 0;
1099		ret == 0 && (bh != head || !block_start);
1100		block_start = block_end, bh = next)
1101	{
1102		next = bh->b_this_page;
1103		block_end = block_start + blocksize;
1104		if (block_end <= from || block_start >= to) {
1105			if (partial && !buffer_uptodate(bh))
1106				*partial = 1;
1107			continue;
1108		}
1109		err = (*fn)(handle, bh);
1110		if (!ret)
1111			ret = err;
1112	}
1113	return ret;
1114}
1115
1116/*
1117 * To preserve ordering, it is essential that the hole instantiation and
1118 * the data write be encapsulated in a single transaction.  We cannot
1119 * close off a transaction and start a new one between the ext4_get_block()
1120 * and the commit_write().  So doing the jbd2_journal_start at the start of
1121 * prepare_write() is the right place.
1122 *
1123 * Also, this function can nest inside ext4_writepage() ->
1124 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1125 * has generated enough buffer credits to do the whole page.  So we won't
1126 * block on the journal in that case, which is good, because the caller may
1127 * be PF_MEMALLOC.
1128 *
1129 * By accident, ext4 can be reentered when a transaction is open via
1130 * quota file writes.  If we were to commit the transaction while thus
1131 * reentered, there can be a deadlock - we would be holding a quota
1132 * lock, and the commit would never complete if another thread had a
1133 * transaction open and was blocking on the quota lock - a ranking
1134 * violation.
1135 *
1136 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1137 * will _not_ run commit under these circumstances because handle->h_ref
1138 * is elevated.  We'll still have enough credits for the tiny quotafile
1139 * write.
1140 */
1141static int do_journal_get_write_access(handle_t *handle,
1142					struct buffer_head *bh)
1143{
1144	if (!buffer_mapped(bh) || buffer_freed(bh))
1145		return 0;
1146	return ext4_journal_get_write_access(handle, bh);
1147}
1148
1149static int ext4_prepare_write(struct file *file, struct page *page,
1150			      unsigned from, unsigned to)
1151{
1152	struct inode *inode = page->mapping->host;
1153	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1154	handle_t *handle;
1155	int retries = 0;
1156
1157retry:
1158	handle = ext4_journal_start(inode, needed_blocks);
1159	if (IS_ERR(handle)) {
1160		ret = PTR_ERR(handle);
1161		goto out;
1162	}
1163	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1164		ret = nobh_prepare_write(page, from, to, ext4_get_block);
1165	else
1166		ret = block_prepare_write(page, from, to, ext4_get_block);
1167	if (ret)
1168		goto prepare_write_failed;
1169
1170	if (ext4_should_journal_data(inode)) {
1171		ret = walk_page_buffers(handle, page_buffers(page),
1172				from, to, NULL, do_journal_get_write_access);
1173	}
1174prepare_write_failed:
1175	if (ret)
1176		ext4_journal_stop(handle);
1177	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1178		goto retry;
1179out:
1180	return ret;
1181}
1182
1183int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1184{
1185	int err = jbd2_journal_dirty_data(handle, bh);
1186	if (err)
1187		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1188						bh, handle,err);
1189	return err;
1190}
1191
1192/* For commit_write() in data=journal mode */
1193static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1194{
1195	if (!buffer_mapped(bh) || buffer_freed(bh))
1196		return 0;
1197	set_buffer_uptodate(bh);
1198	return ext4_journal_dirty_metadata(handle, bh);
1199}
1200
1201/*
1202 * We need to pick up the new inode size which generic_commit_write gave us
1203 * `file' can be NULL - eg, when called from page_symlink().
1204 *
1205 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1206 * buffers are managed internally.
1207 */
1208static int ext4_ordered_commit_write(struct file *file, struct page *page,
1209			     unsigned from, unsigned to)
1210{
1211	handle_t *handle = ext4_journal_current_handle();
1212	struct inode *inode = page->mapping->host;
1213	int ret = 0, ret2;
1214
1215	ret = walk_page_buffers(handle, page_buffers(page),
1216		from, to, NULL, ext4_journal_dirty_data);
1217
1218	if (ret == 0) {
1219		/*
1220		 * generic_commit_write() will run mark_inode_dirty() if i_size
1221		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1222		 * into that.
1223		 */
1224		loff_t new_i_size;
1225
1226		new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1227		if (new_i_size > EXT4_I(inode)->i_disksize)
1228			EXT4_I(inode)->i_disksize = new_i_size;
1229		ret = generic_commit_write(file, page, from, to);
1230	}
1231	ret2 = ext4_journal_stop(handle);
1232	if (!ret)
1233		ret = ret2;
1234	return ret;
1235}
1236
1237static int ext4_writeback_commit_write(struct file *file, struct page *page,
1238			     unsigned from, unsigned to)
1239{
1240	handle_t *handle = ext4_journal_current_handle();
1241	struct inode *inode = page->mapping->host;
1242	int ret = 0, ret2;
1243	loff_t new_i_size;
1244
1245	new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1246	if (new_i_size > EXT4_I(inode)->i_disksize)
1247		EXT4_I(inode)->i_disksize = new_i_size;
1248
1249	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1250		ret = nobh_commit_write(file, page, from, to);
1251	else
1252		ret = generic_commit_write(file, page, from, to);
1253
1254	ret2 = ext4_journal_stop(handle);
1255	if (!ret)
1256		ret = ret2;
1257	return ret;
1258}
1259
1260static int ext4_journalled_commit_write(struct file *file,
1261			struct page *page, unsigned from, unsigned to)
1262{
1263	handle_t *handle = ext4_journal_current_handle();
1264	struct inode *inode = page->mapping->host;
1265	int ret = 0, ret2;
1266	int partial = 0;
1267	loff_t pos;
1268
1269	/*
1270	 * Here we duplicate the generic_commit_write() functionality
1271	 */
1272	pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1273
1274	ret = walk_page_buffers(handle, page_buffers(page), from,
1275				to, &partial, commit_write_fn);
1276	if (!partial)
1277		SetPageUptodate(page);
1278	if (pos > inode->i_size)
1279		i_size_write(inode, pos);
1280	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1281	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1282		EXT4_I(inode)->i_disksize = inode->i_size;
1283		ret2 = ext4_mark_inode_dirty(handle, inode);
1284		if (!ret)
1285			ret = ret2;
1286	}
1287	ret2 = ext4_journal_stop(handle);
1288	if (!ret)
1289		ret = ret2;
1290	return ret;
1291}
1292
1293/*
1294 * bmap() is special.  It gets used by applications such as lilo and by
1295 * the swapper to find the on-disk block of a specific piece of data.
1296 *
1297 * Naturally, this is dangerous if the block concerned is still in the
1298 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1299 * filesystem and enables swap, then they may get a nasty shock when the
1300 * data getting swapped to that swapfile suddenly gets overwritten by
1301 * the original zero's written out previously to the journal and
1302 * awaiting writeback in the kernel's buffer cache.
1303 *
1304 * So, if we see any bmap calls here on a modified, data-journaled file,
1305 * take extra steps to flush any blocks which might be in the cache.
1306 */
1307static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1308{
1309	struct inode *inode = mapping->host;
1310	journal_t *journal;
1311	int err;
1312
1313	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1314		/*
1315		 * This is a REALLY heavyweight approach, but the use of
1316		 * bmap on dirty files is expected to be extremely rare:
1317		 * only if we run lilo or swapon on a freshly made file
1318		 * do we expect this to happen.
1319		 *
1320		 * (bmap requires CAP_SYS_RAWIO so this does not
1321		 * represent an unprivileged user DOS attack --- we'd be
1322		 * in trouble if mortal users could trigger this path at
1323		 * will.)
1324		 *
1325		 * NB. EXT4_STATE_JDATA is not set on files other than
1326		 * regular files.  If somebody wants to bmap a directory
1327		 * or symlink and gets confused because the buffer
1328		 * hasn't yet been flushed to disk, they deserve
1329		 * everything they get.
1330		 */
1331
1332		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1333		journal = EXT4_JOURNAL(inode);
1334		jbd2_journal_lock_updates(journal);
1335		err = jbd2_journal_flush(journal);
1336		jbd2_journal_unlock_updates(journal);
1337
1338		if (err)
1339			return 0;
1340	}
1341
1342	return generic_block_bmap(mapping,block,ext4_get_block);
1343}
1344
1345static int bget_one(handle_t *handle, struct buffer_head *bh)
1346{
1347	get_bh(bh);
1348	return 0;
1349}
1350
1351static int bput_one(handle_t *handle, struct buffer_head *bh)
1352{
1353	put_bh(bh);
1354	return 0;
1355}
1356
1357static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1358{
1359	if (buffer_mapped(bh))
1360		return ext4_journal_dirty_data(handle, bh);
1361	return 0;
1362}
1363
1364static int ext4_ordered_writepage(struct page *page,
1365				struct writeback_control *wbc)
1366{
1367	struct inode *inode = page->mapping->host;
1368	struct buffer_head *page_bufs;
1369	handle_t *handle = NULL;
1370	int ret = 0;
1371	int err;
1372
1373	J_ASSERT(PageLocked(page));
1374
1375	/*
1376	 * We give up here if we're reentered, because it might be for a
1377	 * different filesystem.
1378	 */
1379	if (ext4_journal_current_handle())
1380		goto out_fail;
1381
1382	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1383
1384	if (IS_ERR(handle)) {
1385		ret = PTR_ERR(handle);
1386		goto out_fail;
1387	}
1388
1389	if (!page_has_buffers(page)) {
1390		create_empty_buffers(page, inode->i_sb->s_blocksize,
1391				(1 << BH_Dirty)|(1 << BH_Uptodate));
1392	}
1393	page_bufs = page_buffers(page);
1394	walk_page_buffers(handle, page_bufs, 0,
1395			PAGE_CACHE_SIZE, NULL, bget_one);
1396
1397	ret = block_write_full_page(page, ext4_get_block, wbc);
1398
1399	/*
1400	 * The page can become unlocked at any point now, and
1401	 * truncate can then come in and change things.  So we
1402	 * can't touch *page from now on.  But *page_bufs is
1403	 * safe due to elevated refcount.
1404	 */
1405
1406	/*
1407	 * And attach them to the current transaction.  But only if
1408	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1409	 * and generally junk.
1410	 */
1411	if (ret == 0) {
1412		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1413					NULL, jbd2_journal_dirty_data_fn);
1414		if (!ret)
1415			ret = err;
1416	}
1417	walk_page_buffers(handle, page_bufs, 0,
1418			PAGE_CACHE_SIZE, NULL, bput_one);
1419	err = ext4_journal_stop(handle);
1420	if (!ret)
1421		ret = err;
1422	return ret;
1423
1424out_fail:
1425	redirty_page_for_writepage(wbc, page);
1426	unlock_page(page);
1427	return ret;
1428}
1429
1430static int ext4_writeback_writepage(struct page *page,
1431				struct writeback_control *wbc)
1432{
1433	struct inode *inode = page->mapping->host;
1434	handle_t *handle = NULL;
1435	int ret = 0;
1436	int err;
1437
1438	if (ext4_journal_current_handle())
1439		goto out_fail;
1440
1441	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1442	if (IS_ERR(handle)) {
1443		ret = PTR_ERR(handle);
1444		goto out_fail;
1445	}
1446
1447	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1448		ret = nobh_writepage(page, ext4_get_block, wbc);
1449	else
1450		ret = block_write_full_page(page, ext4_get_block, wbc);
1451
1452	err = ext4_journal_stop(handle);
1453	if (!ret)
1454		ret = err;
1455	return ret;
1456
1457out_fail:
1458	redirty_page_for_writepage(wbc, page);
1459	unlock_page(page);
1460	return ret;
1461}
1462
1463static int ext4_journalled_writepage(struct page *page,
1464				struct writeback_control *wbc)
1465{
1466	struct inode *inode = page->mapping->host;
1467	handle_t *handle = NULL;
1468	int ret = 0;
1469	int err;
1470
1471	if (ext4_journal_current_handle())
1472		goto no_write;
1473
1474	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1475	if (IS_ERR(handle)) {
1476		ret = PTR_ERR(handle);
1477		goto no_write;
1478	}
1479
1480	if (!page_has_buffers(page) || PageChecked(page)) {
1481		/*
1482		 * It's mmapped pagecache.  Add buffers and journal it.  There
1483		 * doesn't seem much point in redirtying the page here.
1484		 */
1485		ClearPageChecked(page);
1486		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1487					ext4_get_block);
1488		if (ret != 0) {
1489			ext4_journal_stop(handle);
1490			goto out_unlock;
1491		}
1492		ret = walk_page_buffers(handle, page_buffers(page), 0,
1493			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1494
1495		err = walk_page_buffers(handle, page_buffers(page), 0,
1496				PAGE_CACHE_SIZE, NULL, commit_write_fn);
1497		if (ret == 0)
1498			ret = err;
1499		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1500		unlock_page(page);
1501	} else {
1502		/*
1503		 * It may be a page full of checkpoint-mode buffers.  We don't
1504		 * really know unless we go poke around in the buffer_heads.
1505		 * But block_write_full_page will do the right thing.
1506		 */
1507		ret = block_write_full_page(page, ext4_get_block, wbc);
1508	}
1509	err = ext4_journal_stop(handle);
1510	if (!ret)
1511		ret = err;
1512out:
1513	return ret;
1514
1515no_write:
1516	redirty_page_for_writepage(wbc, page);
1517out_unlock:
1518	unlock_page(page);
1519	goto out;
1520}
1521
1522static int ext4_readpage(struct file *file, struct page *page)
1523{
1524	return mpage_readpage(page, ext4_get_block);
1525}
1526
1527static int
1528ext4_readpages(struct file *file, struct address_space *mapping,
1529		struct list_head *pages, unsigned nr_pages)
1530{
1531	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1532}
1533
1534static void ext4_invalidatepage(struct page *page, unsigned long offset)
1535{
1536	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1537
1538	/*
1539	 * If it's a full truncate we just forget about the pending dirtying
1540	 */
1541	if (offset == 0)
1542		ClearPageChecked(page);
1543
1544	jbd2_journal_invalidatepage(journal, page, offset);
1545}
1546
1547static int ext4_releasepage(struct page *page, gfp_t wait)
1548{
1549	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1550
1551	WARN_ON(PageChecked(page));
1552	if (!page_has_buffers(page))
1553		return 0;
1554	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1555}
1556
1557/*
1558 * If the O_DIRECT write will extend the file then add this inode to the
1559 * orphan list.  So recovery will truncate it back to the original size
1560 * if the machine crashes during the write.
1561 *
1562 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1563 * crashes then stale disk data _may_ be exposed inside the file.
1564 */
1565static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1566			const struct iovec *iov, loff_t offset,
1567			unsigned long nr_segs)
1568{
1569	struct file *file = iocb->ki_filp;
1570	struct inode *inode = file->f_mapping->host;
1571	struct ext4_inode_info *ei = EXT4_I(inode);
1572	handle_t *handle = NULL;
1573	ssize_t ret;
1574	int orphan = 0;
1575	size_t count = iov_length(iov, nr_segs);
1576
1577	if (rw == WRITE) {
1578		loff_t final_size = offset + count;
1579
1580		handle = ext4_journal_start(inode, DIO_CREDITS);
1581		if (IS_ERR(handle)) {
1582			ret = PTR_ERR(handle);
1583			goto out;
1584		}
1585		if (final_size > inode->i_size) {
1586			ret = ext4_orphan_add(handle, inode);
1587			if (ret)
1588				goto out_stop;
1589			orphan = 1;
1590			ei->i_disksize = inode->i_size;
1591		}
1592	}
1593
1594	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1595				 offset, nr_segs,
1596				 ext4_get_block, NULL);
1597
1598	/*
1599	 * Reacquire the handle: ext4_get_block() can restart the transaction
1600	 */
1601	handle = ext4_journal_current_handle();
1602
1603out_stop:
1604	if (handle) {
1605		int err;
1606
1607		if (orphan && inode->i_nlink)
1608			ext4_orphan_del(handle, inode);
1609		if (orphan && ret > 0) {
1610			loff_t end = offset + ret;
1611			if (end > inode->i_size) {
1612				ei->i_disksize = end;
1613				i_size_write(inode, end);
1614				/*
1615				 * We're going to return a positive `ret'
1616				 * here due to non-zero-length I/O, so there's
1617				 * no way of reporting error returns from
1618				 * ext4_mark_inode_dirty() to userspace.  So
1619				 * ignore it.
1620				 */
1621				ext4_mark_inode_dirty(handle, inode);
1622			}
1623		}
1624		err = ext4_journal_stop(handle);
1625		if (ret == 0)
1626			ret = err;
1627	}
1628out:
1629	return ret;
1630}
1631
1632/*
1633 * Pages can be marked dirty completely asynchronously from ext4's journalling
1634 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1635 * much here because ->set_page_dirty is called under VFS locks.  The page is
1636 * not necessarily locked.
1637 *
1638 * We cannot just dirty the page and leave attached buffers clean, because the
1639 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1640 * or jbddirty because all the journalling code will explode.
1641 *
1642 * So what we do is to mark the page "pending dirty" and next time writepage
1643 * is called, propagate that into the buffers appropriately.
1644 */
1645static int ext4_journalled_set_page_dirty(struct page *page)
1646{
1647	SetPageChecked(page);
1648	return __set_page_dirty_nobuffers(page);
1649}
1650
1651static const struct address_space_operations ext4_ordered_aops = {
1652	.readpage	= ext4_readpage,
1653	.readpages	= ext4_readpages,
1654	.writepage	= ext4_ordered_writepage,
1655	.sync_page	= block_sync_page,
1656	.prepare_write	= ext4_prepare_write,
1657	.commit_write	= ext4_ordered_commit_write,
1658	.bmap		= ext4_bmap,
1659	.invalidatepage	= ext4_invalidatepage,
1660	.releasepage	= ext4_releasepage,
1661	.direct_IO	= ext4_direct_IO,
1662	.migratepage	= buffer_migrate_page,
1663};
1664
1665static const struct address_space_operations ext4_writeback_aops = {
1666	.readpage	= ext4_readpage,
1667	.readpages	= ext4_readpages,
1668	.writepage	= ext4_writeback_writepage,
1669	.sync_page	= block_sync_page,
1670	.prepare_write	= ext4_prepare_write,
1671	.commit_write	= ext4_writeback_commit_write,
1672	.bmap		= ext4_bmap,
1673	.invalidatepage	= ext4_invalidatepage,
1674	.releasepage	= ext4_releasepage,
1675	.direct_IO	= ext4_direct_IO,
1676	.migratepage	= buffer_migrate_page,
1677};
1678
1679static const struct address_space_operations ext4_journalled_aops = {
1680	.readpage	= ext4_readpage,
1681	.readpages	= ext4_readpages,
1682	.writepage	= ext4_journalled_writepage,
1683	.sync_page	= block_sync_page,
1684	.prepare_write	= ext4_prepare_write,
1685	.commit_write	= ext4_journalled_commit_write,
1686	.set_page_dirty	= ext4_journalled_set_page_dirty,
1687	.bmap		= ext4_bmap,
1688	.invalidatepage	= ext4_invalidatepage,
1689	.releasepage	= ext4_releasepage,
1690};
1691
1692void ext4_set_aops(struct inode *inode)
1693{
1694	if (ext4_should_order_data(inode))
1695		inode->i_mapping->a_ops = &ext4_ordered_aops;
1696	else if (ext4_should_writeback_data(inode))
1697		inode->i_mapping->a_ops = &ext4_writeback_aops;
1698	else
1699		inode->i_mapping->a_ops = &ext4_journalled_aops;
1700}
1701
1702/*
1703 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1704 * up to the end of the block which corresponds to `from'.
1705 * This required during truncate. We need to physically zero the tail end
1706 * of that block so it doesn't yield old data if the file is later grown.
1707 */
1708int ext4_block_truncate_page(handle_t *handle, struct page *page,
1709		struct address_space *mapping, loff_t from)
1710{
1711	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1712	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1713	unsigned blocksize, iblock, length, pos;
1714	struct inode *inode = mapping->host;
1715	struct buffer_head *bh;
1716	int err = 0;
1717	void *kaddr;
1718
1719	blocksize = inode->i_sb->s_blocksize;
1720	length = blocksize - (offset & (blocksize - 1));
1721	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1722
1723	/*
1724	 * For "nobh" option,  we can only work if we don't need to
1725	 * read-in the page - otherwise we create buffers to do the IO.
1726	 */
1727	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1728	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1729		kaddr = kmap_atomic(page, KM_USER0);
1730		memset(kaddr + offset, 0, length);
1731		flush_dcache_page(page);
1732		kunmap_atomic(kaddr, KM_USER0);
1733		set_page_dirty(page);
1734		goto unlock;
1735	}
1736
1737	if (!page_has_buffers(page))
1738		create_empty_buffers(page, blocksize, 0);
1739
1740	/* Find the buffer that contains "offset" */
1741	bh = page_buffers(page);
1742	pos = blocksize;
1743	while (offset >= pos) {
1744		bh = bh->b_this_page;
1745		iblock++;
1746		pos += blocksize;
1747	}
1748
1749	err = 0;
1750	if (buffer_freed(bh)) {
1751		BUFFER_TRACE(bh, "freed: skip");
1752		goto unlock;
1753	}
1754
1755	if (!buffer_mapped(bh)) {
1756		BUFFER_TRACE(bh, "unmapped");
1757		ext4_get_block(inode, iblock, bh, 0);
1758		/* unmapped? It's a hole - nothing to do */
1759		if (!buffer_mapped(bh)) {
1760			BUFFER_TRACE(bh, "still unmapped");
1761			goto unlock;
1762		}
1763	}
1764
1765	/* Ok, it's mapped. Make sure it's up-to-date */
1766	if (PageUptodate(page))
1767		set_buffer_uptodate(bh);
1768
1769	if (!buffer_uptodate(bh)) {
1770		err = -EIO;
1771		ll_rw_block(READ, 1, &bh);
1772		wait_on_buffer(bh);
1773		/* Uhhuh. Read error. Complain and punt. */
1774		if (!buffer_uptodate(bh))
1775			goto unlock;
1776	}
1777
1778	if (ext4_should_journal_data(inode)) {
1779		BUFFER_TRACE(bh, "get write access");
1780		err = ext4_journal_get_write_access(handle, bh);
1781		if (err)
1782			goto unlock;
1783	}
1784
1785	kaddr = kmap_atomic(page, KM_USER0);
1786	memset(kaddr + offset, 0, length);
1787	flush_dcache_page(page);
1788	kunmap_atomic(kaddr, KM_USER0);
1789
1790	BUFFER_TRACE(bh, "zeroed end of block");
1791
1792	err = 0;
1793	if (ext4_should_journal_data(inode)) {
1794		err = ext4_journal_dirty_metadata(handle, bh);
1795	} else {
1796		if (ext4_should_order_data(inode))
1797			err = ext4_journal_dirty_data(handle, bh);
1798		mark_buffer_dirty(bh);
1799	}
1800
1801unlock:
1802	unlock_page(page);
1803	page_cache_release(page);
1804	return err;
1805}
1806
1807/*
1808 * Probably it should be a library function... search for first non-zero word
1809 * or memcmp with zero_page, whatever is better for particular architecture.
1810 * Linus?
1811 */
1812static inline int all_zeroes(__le32 *p, __le32 *q)
1813{
1814	while (p < q)
1815		if (*p++)
1816			return 0;
1817	return 1;
1818}
1819
1820/**
1821 *	ext4_find_shared - find the indirect blocks for partial truncation.
1822 *	@inode:	  inode in question
1823 *	@depth:	  depth of the affected branch
1824 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1825 *	@chain:	  place to store the pointers to partial indirect blocks
1826 *	@top:	  place to the (detached) top of branch
1827 *
1828 *	This is a helper function used by ext4_truncate().
1829 *
1830 *	When we do truncate() we may have to clean the ends of several
1831 *	indirect blocks but leave the blocks themselves alive. Block is
1832 *	partially truncated if some data below the new i_size is refered
1833 *	from it (and it is on the path to the first completely truncated
1834 *	data block, indeed).  We have to free the top of that path along
1835 *	with everything to the right of the path. Since no allocation
1836 *	past the truncation point is possible until ext4_truncate()
1837 *	finishes, we may safely do the latter, but top of branch may
1838 *	require special attention - pageout below the truncation point
1839 *	might try to populate it.
1840 *
1841 *	We atomically detach the top of branch from the tree, store the
1842 *	block number of its root in *@top, pointers to buffer_heads of
1843 *	partially truncated blocks - in @chain[].bh and pointers to
1844 *	their last elements that should not be removed - in
1845 *	@chain[].p. Return value is the pointer to last filled element
1846 *	of @chain.
1847 *
1848 *	The work left to caller to do the actual freeing of subtrees:
1849 *		a) free the subtree starting from *@top
1850 *		b) free the subtrees whose roots are stored in
1851 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1852 *		c) free the subtrees growing from the inode past the @chain[0].
1853 *			(no partially truncated stuff there).  */
1854
1855static Indirect *ext4_find_shared(struct inode *inode, int depth,
1856			int offsets[4], Indirect chain[4], __le32 *top)
1857{
1858	Indirect *partial, *p;
1859	int k, err;
1860
1861	*top = 0;
1862	/* Make k index the deepest non-null offest + 1 */
1863	for (k = depth; k > 1 && !offsets[k-1]; k--)
1864		;
1865	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1866	/* Writer: pointers */
1867	if (!partial)
1868		partial = chain + k-1;
1869	/*
1870	 * If the branch acquired continuation since we've looked at it -
1871	 * fine, it should all survive and (new) top doesn't belong to us.
1872	 */
1873	if (!partial->key && *partial->p)
1874		/* Writer: end */
1875		goto no_top;
1876	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1877		;
1878	/*
1879	 * OK, we've found the last block that must survive. The rest of our
1880	 * branch should be detached before unlocking. However, if that rest
1881	 * of branch is all ours and does not grow immediately from the inode
1882	 * it's easier to cheat and just decrement partial->p.
1883	 */
1884	if (p == chain + k - 1 && p > chain) {
1885		p->p--;
1886	} else {
1887		*top = *p->p;
1888		/* Nope, don't do this in ext4.  Must leave the tree intact */
1889	}
1890	/* Writer: end */
1891
1892	while(partial > p) {
1893		brelse(partial->bh);
1894		partial--;
1895	}
1896no_top:
1897	return partial;
1898}
1899
1900/*
1901 * Zero a number of block pointers in either an inode or an indirect block.
1902 * If we restart the transaction we must again get write access to the
1903 * indirect block for further modification.
1904 *
1905 * We release `count' blocks on disk, but (last - first) may be greater
1906 * than `count' because there can be holes in there.
1907 */
1908static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
1909		struct buffer_head *bh, ext4_fsblk_t block_to_free,
1910		unsigned long count, __le32 *first, __le32 *last)
1911{
1912	__le32 *p;
1913	if (try_to_extend_transaction(handle, inode)) {
1914		if (bh) {
1915			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1916			ext4_journal_dirty_metadata(handle, bh);
1917		}
1918		ext4_mark_inode_dirty(handle, inode);
1919		ext4_journal_test_restart(handle, inode);
1920		if (bh) {
1921			BUFFER_TRACE(bh, "retaking write access");
1922			ext4_journal_get_write_access(handle, bh);
1923		}
1924	}
1925
1926	/*
1927	 * Any buffers which are on the journal will be in memory. We find
1928	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
1929	 * on them.  We've already detached each block from the file, so
1930	 * bforget() in jbd2_journal_forget() should be safe.
1931	 *
1932	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
1933	 */
1934	for (p = first; p < last; p++) {
1935		u32 nr = le32_to_cpu(*p);
1936		if (nr) {
1937			struct buffer_head *bh;
1938
1939			*p = 0;
1940			bh = sb_find_get_block(inode->i_sb, nr);
1941			ext4_forget(handle, 0, inode, bh, nr);
1942		}
1943	}
1944
1945	ext4_free_blocks(handle, inode, block_to_free, count);
1946}
1947
1948/**
1949 * ext4_free_data - free a list of data blocks
1950 * @handle:	handle for this transaction
1951 * @inode:	inode we are dealing with
1952 * @this_bh:	indirect buffer_head which contains *@first and *@last
1953 * @first:	array of block numbers
1954 * @last:	points immediately past the end of array
1955 *
1956 * We are freeing all blocks refered from that array (numbers are stored as
1957 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1958 *
1959 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1960 * blocks are contiguous then releasing them at one time will only affect one
1961 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1962 * actually use a lot of journal space.
1963 *
1964 * @this_bh will be %NULL if @first and @last point into the inode's direct
1965 * block pointers.
1966 */
1967static void ext4_free_data(handle_t *handle, struct inode *inode,
1968			   struct buffer_head *this_bh,
1969			   __le32 *first, __le32 *last)
1970{
1971	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1972	unsigned long count = 0;	    /* Number of blocks in the run */
1973	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1974					       corresponding to
1975					       block_to_free */
1976	ext4_fsblk_t nr;		    /* Current block # */
1977	__le32 *p;			    /* Pointer into inode/ind
1978					       for current block */
1979	int err;
1980
1981	if (this_bh) {				/* For indirect block */
1982		BUFFER_TRACE(this_bh, "get_write_access");
1983		err = ext4_journal_get_write_access(handle, this_bh);
1984		/* Important: if we can't update the indirect pointers
1985		 * to the blocks, we can't free them. */
1986		if (err)
1987			return;
1988	}
1989
1990	for (p = first; p < last; p++) {
1991		nr = le32_to_cpu(*p);
1992		if (nr) {
1993			/* accumulate blocks to free if they're contiguous */
1994			if (count == 0) {
1995				block_to_free = nr;
1996				block_to_free_p = p;
1997				count = 1;
1998			} else if (nr == block_to_free + count) {
1999				count++;
2000			} else {
2001				ext4_clear_blocks(handle, inode, this_bh,
2002						  block_to_free,
2003						  count, block_to_free_p, p);
2004				block_to_free = nr;
2005				block_to_free_p = p;
2006				count = 1;
2007			}
2008		}
2009	}
2010
2011	if (count > 0)
2012		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2013				  count, block_to_free_p, p);
2014
2015	if (this_bh) {
2016		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2017		ext4_journal_dirty_metadata(handle, this_bh);
2018	}
2019}
2020
2021/**
2022 *	ext4_free_branches - free an array of branches
2023 *	@handle: JBD handle for this transaction
2024 *	@inode:	inode we are dealing with
2025 *	@parent_bh: the buffer_head which contains *@first and *@last
2026 *	@first:	array of block numbers
2027 *	@last:	pointer immediately past the end of array
2028 *	@depth:	depth of the branches to free
2029 *
2030 *	We are freeing all blocks refered from these branches (numbers are
2031 *	stored as little-endian 32-bit) and updating @inode->i_blocks
2032 *	appropriately.
2033 */
2034static void ext4_free_branches(handle_t *handle, struct inode *inode,
2035			       struct buffer_head *parent_bh,
2036			       __le32 *first, __le32 *last, int depth)
2037{
2038	ext4_fsblk_t nr;
2039	__le32 *p;
2040
2041	if (is_handle_aborted(handle))
2042		return;
2043
2044	if (depth--) {
2045		struct buffer_head *bh;
2046		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2047		p = last;
2048		while (--p >= first) {
2049			nr = le32_to_cpu(*p);
2050			if (!nr)
2051				continue;		/* A hole */
2052
2053			/* Go read the buffer for the next level down */
2054			bh = sb_bread(inode->i_sb, nr);
2055
2056			/*
2057			 * A read failure? Report error and clear slot
2058			 * (should be rare).
2059			 */
2060			if (!bh) {
2061				ext4_error(inode->i_sb, "ext4_free_branches",
2062					   "Read failure, inode=%lu, block=%llu",
2063					   inode->i_ino, nr);
2064				continue;
2065			}
2066
2067			/* This zaps the entire block.  Bottom up. */
2068			BUFFER_TRACE(bh, "free child branches");
2069			ext4_free_branches(handle, inode, bh,
2070					   (__le32*)bh->b_data,
2071					   (__le32*)bh->b_data + addr_per_block,
2072					   depth);
2073
2074			/*
2075			 * We've probably journalled the indirect block several
2076			 * times during the truncate.  But it's no longer
2077			 * needed and we now drop it from the transaction via
2078			 * jbd2_journal_revoke().
2079			 *
2080			 * That's easy if it's exclusively part of this
2081			 * transaction.  But if it's part of the committing
2082			 * transaction then jbd2_journal_forget() will simply
2083			 * brelse() it.  That means that if the underlying
2084			 * block is reallocated in ext4_get_block(),
2085			 * unmap_underlying_metadata() will find this block
2086			 * and will try to get rid of it.  damn, damn.
2087			 *
2088			 * If this block has already been committed to the
2089			 * journal, a revoke record will be written.  And
2090			 * revoke records must be emitted *before* clearing
2091			 * this block's bit in the bitmaps.
2092			 */
2093			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2094
2095			/*
2096			 * Everything below this this pointer has been
2097			 * released.  Now let this top-of-subtree go.
2098			 *
2099			 * We want the freeing of this indirect block to be
2100			 * atomic in the journal with the updating of the
2101			 * bitmap block which owns it.  So make some room in
2102			 * the journal.
2103			 *
2104			 * We zero the parent pointer *after* freeing its
2105			 * pointee in the bitmaps, so if extend_transaction()
2106			 * for some reason fails to put the bitmap changes and
2107			 * the release into the same transaction, recovery
2108			 * will merely complain about releasing a free block,
2109			 * rather than leaking blocks.
2110			 */
2111			if (is_handle_aborted(handle))
2112				return;
2113			if (try_to_extend_transaction(handle, inode)) {
2114				ext4_mark_inode_dirty(handle, inode);
2115				ext4_journal_test_restart(handle, inode);
2116			}
2117
2118			ext4_free_blocks(handle, inode, nr, 1);
2119
2120			if (parent_bh) {
2121				/*
2122				 * The block which we have just freed is
2123				 * pointed to by an indirect block: journal it
2124				 */
2125				BUFFER_TRACE(parent_bh, "get_write_access");
2126				if (!ext4_journal_get_write_access(handle,
2127								   parent_bh)){
2128					*p = 0;
2129					BUFFER_TRACE(parent_bh,
2130					"call ext4_journal_dirty_metadata");
2131					ext4_journal_dirty_metadata(handle,
2132								    parent_bh);
2133				}
2134			}
2135		}
2136	} else {
2137		/* We have reached the bottom of the tree. */
2138		BUFFER_TRACE(parent_bh, "free data blocks");
2139		ext4_free_data(handle, inode, parent_bh, first, last);
2140	}
2141}
2142
2143/*
2144 * ext4_truncate()
2145 *
2146 * We block out ext4_get_block() block instantiations across the entire
2147 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2148 * simultaneously on behalf of the same inode.
2149 *
2150 * As we work through the truncate and commmit bits of it to the journal there
2151 * is one core, guiding principle: the file's tree must always be consistent on
2152 * disk.  We must be able to restart the truncate after a crash.
2153 *
2154 * The file's tree may be transiently inconsistent in memory (although it
2155 * probably isn't), but whenever we close off and commit a journal transaction,
2156 * the contents of (the filesystem + the journal) must be consistent and
2157 * restartable.  It's pretty simple, really: bottom up, right to left (although
2158 * left-to-right works OK too).
2159 *
2160 * Note that at recovery time, journal replay occurs *before* the restart of
2161 * truncate against the orphan inode list.
2162 *
2163 * The committed inode has the new, desired i_size (which is the same as
2164 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2165 * that this inode's truncate did not complete and it will again call
2166 * ext4_truncate() to have another go.  So there will be instantiated blocks
2167 * to the right of the truncation point in a crashed ext4 filesystem.  But
2168 * that's fine - as long as they are linked from the inode, the post-crash
2169 * ext4_truncate() run will find them and release them.
2170 */
2171void ext4_truncate(struct inode *inode)
2172{
2173	handle_t *handle;
2174	struct ext4_inode_info *ei = EXT4_I(inode);
2175	__le32 *i_data = ei->i_data;
2176	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2177	struct address_space *mapping = inode->i_mapping;
2178	int offsets[4];
2179	Indirect chain[4];
2180	Indirect *partial;
2181	__le32 nr = 0;
2182	int n;
2183	long last_block;
2184	unsigned blocksize = inode->i_sb->s_blocksize;
2185	struct page *page;
2186
2187	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2188	    S_ISLNK(inode->i_mode)))
2189		return;
2190	if (ext4_inode_is_fast_symlink(inode))
2191		return;
2192	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2193		return;
2194
2195	/*
2196	 * We have to lock the EOF page here, because lock_page() nests
2197	 * outside jbd2_journal_start().
2198	 */
2199	if ((inode->i_size & (blocksize - 1)) == 0) {
2200		/* Block boundary? Nothing to do */
2201		page = NULL;
2202	} else {
2203		page = grab_cache_page(mapping,
2204				inode->i_size >> PAGE_CACHE_SHIFT);
2205		if (!page)
2206			return;
2207	}
2208
2209	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
2210		return ext4_ext_truncate(inode, page);
2211
2212	handle = start_transaction(inode);
2213	if (IS_ERR(handle)) {
2214		if (page) {
2215			clear_highpage(page);
2216			flush_dcache_page(page);
2217			unlock_page(page);
2218			page_cache_release(page);
2219		}
2220		return;		/* AKPM: return what? */
2221	}
2222
2223	last_block = (inode->i_size + blocksize-1)
2224					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2225
2226	if (page)
2227		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2228
2229	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2230	if (n == 0)
2231		goto out_stop;	/* error */
2232
2233	/*
2234	 * OK.  This truncate is going to happen.  We add the inode to the
2235	 * orphan list, so that if this truncate spans multiple transactions,
2236	 * and we crash, we will resume the truncate when the filesystem
2237	 * recovers.  It also marks the inode dirty, to catch the new size.
2238	 *
2239	 * Implication: the file must always be in a sane, consistent
2240	 * truncatable state while each transaction commits.
2241	 */
2242	if (ext4_orphan_add(handle, inode))
2243		goto out_stop;
2244
2245	/*
2246	 * The orphan list entry will now protect us from any crash which
2247	 * occurs before the truncate completes, so it is now safe to propagate
2248	 * the new, shorter inode size (held for now in i_size) into the
2249	 * on-disk inode. We do this via i_disksize, which is the value which
2250	 * ext4 *really* writes onto the disk inode.
2251	 */
2252	ei->i_disksize = inode->i_size;
2253
2254	/*
2255	 * From here we block out all ext4_get_block() callers who want to
2256	 * modify the block allocation tree.
2257	 */
2258	mutex_lock(&ei->truncate_mutex);
2259
2260	if (n == 1) {		/* direct blocks */
2261		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2262			       i_data + EXT4_NDIR_BLOCKS);
2263		goto do_indirects;
2264	}
2265
2266	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2267	/* Kill the top of shared branch (not detached) */
2268	if (nr) {
2269		if (partial == chain) {
2270			/* Shared branch grows from the inode */
2271			ext4_free_branches(handle, inode, NULL,
2272					   &nr, &nr+1, (chain+n-1) - partial);
2273			*partial->p = 0;
2274			/*
2275			 * We mark the inode dirty prior to restart,
2276			 * and prior to stop.  No need for it here.
2277			 */
2278		} else {
2279			/* Shared branch grows from an indirect block */
2280			BUFFER_TRACE(partial->bh, "get_write_access");
2281			ext4_free_branches(handle, inode, partial->bh,
2282					partial->p,
2283					partial->p+1, (chain+n-1) - partial);
2284		}
2285	}
2286	/* Clear the ends of indirect blocks on the shared branch */
2287	while (partial > chain) {
2288		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2289				   (__le32*)partial->bh->b_data+addr_per_block,
2290				   (chain+n-1) - partial);
2291		BUFFER_TRACE(partial->bh, "call brelse");
2292		brelse (partial->bh);
2293		partial--;
2294	}
2295do_indirects:
2296	/* Kill the remaining (whole) subtrees */
2297	switch (offsets[0]) {
2298	default:
2299		nr = i_data[EXT4_IND_BLOCK];
2300		if (nr) {
2301			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2302			i_data[EXT4_IND_BLOCK] = 0;
2303		}
2304	case EXT4_IND_BLOCK:
2305		nr = i_data[EXT4_DIND_BLOCK];
2306		if (nr) {
2307			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2308			i_data[EXT4_DIND_BLOCK] = 0;
2309		}
2310	case EXT4_DIND_BLOCK:
2311		nr = i_data[EXT4_TIND_BLOCK];
2312		if (nr) {
2313			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2314			i_data[EXT4_TIND_BLOCK] = 0;
2315		}
2316	case EXT4_TIND_BLOCK:
2317		;
2318	}
2319
2320	ext4_discard_reservation(inode);
2321
2322	mutex_unlock(&ei->truncate_mutex);
2323	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2324	ext4_mark_inode_dirty(handle, inode);
2325
2326	/*
2327	 * In a multi-transaction truncate, we only make the final transaction
2328	 * synchronous
2329	 */
2330	if (IS_SYNC(inode))
2331		handle->h_sync = 1;
2332out_stop:
2333	/*
2334	 * If this was a simple ftruncate(), and the file will remain alive
2335	 * then we need to clear up the orphan record which we created above.
2336	 * However, if this was a real unlink then we were called by
2337	 * ext4_delete_inode(), and we allow that function to clean up the
2338	 * orphan info for us.
2339	 */
2340	if (inode->i_nlink)
2341		ext4_orphan_del(handle, inode);
2342
2343	ext4_journal_stop(handle);
2344}
2345
2346static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2347		unsigned long ino, struct ext4_iloc *iloc)
2348{
2349	unsigned long desc, group_desc, block_group;
2350	unsigned long offset;
2351	ext4_fsblk_t block;
2352	struct buffer_head *bh;
2353	struct ext4_group_desc * gdp;
2354
2355	if (!ext4_valid_inum(sb, ino)) {
2356		/*
2357		 * This error is already checked for in namei.c unless we are
2358		 * looking at an NFS filehandle, in which case no error
2359		 * report is needed
2360		 */
2361		return 0;
2362	}
2363
2364	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2365	if (block_group >= EXT4_SB(sb)->s_groups_count) {
2366		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2367		return 0;
2368	}
2369	smp_rmb();
2370	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2371	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2372	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2373	if (!bh) {
2374		ext4_error (sb, "ext4_get_inode_block",
2375			    "Descriptor not loaded");
2376		return 0;
2377	}
2378
2379	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2380		desc * EXT4_DESC_SIZE(sb));
2381	/*
2382	 * Figure out the offset within the block group inode table
2383	 */
2384	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2385		EXT4_INODE_SIZE(sb);
2386	block = ext4_inode_table(sb, gdp) +
2387		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2388
2389	iloc->block_group = block_group;
2390	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2391	return block;
2392}
2393
2394/*
2395 * ext4_get_inode_loc returns with an extra refcount against the inode's
2396 * underlying buffer_head on success. If 'in_mem' is true, we have all
2397 * data in memory that is needed to recreate the on-disk version of this
2398 * inode.
2399 */
2400static int __ext4_get_inode_loc(struct inode *inode,
2401				struct ext4_iloc *iloc, int in_mem)
2402{
2403	ext4_fsblk_t block;
2404	struct buffer_head *bh;
2405
2406	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2407	if (!block)
2408		return -EIO;
2409
2410	bh = sb_getblk(inode->i_sb, block);
2411	if (!bh) {
2412		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2413				"unable to read inode block - "
2414				"inode=%lu, block=%llu",
2415				 inode->i_ino, block);
2416		return -EIO;
2417	}
2418	if (!buffer_uptodate(bh)) {
2419		lock_buffer(bh);
2420		if (buffer_uptodate(bh)) {
2421			/* someone brought it uptodate while we waited */
2422			unlock_buffer(bh);
2423			goto has_buffer;
2424		}
2425
2426		/*
2427		 * If we have all information of the inode in memory and this
2428		 * is the only valid inode in the block, we need not read the
2429		 * block.
2430		 */
2431		if (in_mem) {
2432			struct buffer_head *bitmap_bh;
2433			struct ext4_group_desc *desc;
2434			int inodes_per_buffer;
2435			int inode_offset, i;
2436			int block_group;
2437			int start;
2438
2439			block_group = (inode->i_ino - 1) /
2440					EXT4_INODES_PER_GROUP(inode->i_sb);
2441			inodes_per_buffer = bh->b_size /
2442				EXT4_INODE_SIZE(inode->i_sb);
2443			inode_offset = ((inode->i_ino - 1) %
2444					EXT4_INODES_PER_GROUP(inode->i_sb));
2445			start = inode_offset & ~(inodes_per_buffer - 1);
2446
2447			/* Is the inode bitmap in cache? */
2448			desc = ext4_get_group_desc(inode->i_sb,
2449						block_group, NULL);
2450			if (!desc)
2451				goto make_io;
2452
2453			bitmap_bh = sb_getblk(inode->i_sb,
2454				ext4_inode_bitmap(inode->i_sb, desc));
2455			if (!bitmap_bh)
2456				goto make_io;
2457
2458			/*
2459			 * If the inode bitmap isn't in cache then the
2460			 * optimisation may end up performing two reads instead
2461			 * of one, so skip it.
2462			 */
2463			if (!buffer_uptodate(bitmap_bh)) {
2464				brelse(bitmap_bh);
2465				goto make_io;
2466			}
2467			for (i = start; i < start + inodes_per_buffer; i++) {
2468				if (i == inode_offset)
2469					continue;
2470				if (ext4_test_bit(i, bitmap_bh->b_data))
2471					break;
2472			}
2473			brelse(bitmap_bh);
2474			if (i == start + inodes_per_buffer) {
2475				/* all other inodes are free, so skip I/O */
2476				memset(bh->b_data, 0, bh->b_size);
2477				set_buffer_uptodate(bh);
2478				unlock_buffer(bh);
2479				goto has_buffer;
2480			}
2481		}
2482
2483make_io:
2484		/*
2485		 * There are other valid inodes in the buffer, this inode
2486		 * has in-inode xattrs, or we don't have this inode in memory.
2487		 * Read the block from disk.
2488		 */
2489		get_bh(bh);
2490		bh->b_end_io = end_buffer_read_sync;
2491		submit_bh(READ_META, bh);
2492		wait_on_buffer(bh);
2493		if (!buffer_uptodate(bh)) {
2494			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2495					"unable to read inode block - "
2496					"inode=%lu, block=%llu",
2497					inode->i_ino, block);
2498			brelse(bh);
2499			return -EIO;
2500		}
2501	}
2502has_buffer:
2503	iloc->bh = bh;
2504	return 0;
2505}
2506
2507int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2508{
2509	/* We have all inode data except xattrs in memory here. */
2510	return __ext4_get_inode_loc(inode, iloc,
2511		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2512}
2513
2514void ext4_set_inode_flags(struct inode *inode)
2515{
2516	unsigned int flags = EXT4_I(inode)->i_flags;
2517
2518	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2519	if (flags & EXT4_SYNC_FL)
2520		inode->i_flags |= S_SYNC;
2521	if (flags & EXT4_APPEND_FL)
2522		inode->i_flags |= S_APPEND;
2523	if (flags & EXT4_IMMUTABLE_FL)
2524		inode->i_flags |= S_IMMUTABLE;
2525	if (flags & EXT4_NOATIME_FL)
2526		inode->i_flags |= S_NOATIME;
2527	if (flags & EXT4_DIRSYNC_FL)
2528		inode->i_flags |= S_DIRSYNC;
2529}
2530
2531void ext4_read_inode(struct inode * inode)
2532{
2533	struct ext4_iloc iloc;
2534	struct ext4_inode *raw_inode;
2535	struct ext4_inode_info *ei = EXT4_I(inode);
2536	struct buffer_head *bh;
2537	int block;
2538
2539#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2540	ei->i_acl = EXT4_ACL_NOT_CACHED;
2541	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2542#endif
2543	ei->i_block_alloc_info = NULL;
2544
2545	if (__ext4_get_inode_loc(inode, &iloc, 0))
2546		goto bad_inode;
2547	bh = iloc.bh;
2548	raw_inode = ext4_raw_inode(&iloc);
2549	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2550	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2551	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2552	if(!(test_opt (inode->i_sb, NO_UID32))) {
2553		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2554		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2555	}
2556	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2557	inode->i_size = le32_to_cpu(raw_inode->i_size);
2558	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2559	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2560	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2561	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2562
2563	ei->i_state = 0;
2564	ei->i_dir_start_lookup = 0;
2565	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2566	/* We now have enough fields to check if the inode was active or not.
2567	 * This is needed because nfsd might try to access dead inodes
2568	 * the test is that same one that e2fsck uses
2569	 * NeilBrown 1999oct15
2570	 */
2571	if (inode->i_nlink == 0) {
2572		if (inode->i_mode == 0 ||
2573		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2574			/* this inode is deleted */
2575			brelse (bh);
2576			goto bad_inode;
2577		}
2578		/* The only unlinked inodes we let through here have
2579		 * valid i_mode and are being read by the orphan
2580		 * recovery code: that's fine, we're about to complete
2581		 * the process of deleting those. */
2582	}
2583	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2584	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2585#ifdef EXT4_FRAGMENTS
2586	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2587	ei->i_frag_no = raw_inode->i_frag;
2588	ei->i_frag_size = raw_inode->i_fsize;
2589#endif
2590	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2591	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2592	    cpu_to_le32(EXT4_OS_HURD))
2593		ei->i_file_acl |=
2594			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2595	if (!S_ISREG(inode->i_mode)) {
2596		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2597	} else {
2598		inode->i_size |=
2599			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2600	}
2601	ei->i_disksize = inode->i_size;
2602	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2603	ei->i_block_group = iloc.block_group;
2604	/*
2605	 * NOTE! The in-memory inode i_data array is in little-endian order
2606	 * even on big-endian machines: we do NOT byteswap the block numbers!
2607	 */
2608	for (block = 0; block < EXT4_N_BLOCKS; block++)
2609		ei->i_data[block] = raw_inode->i_block[block];
2610	INIT_LIST_HEAD(&ei->i_orphan);
2611
2612	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2613	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2614		/*
2615		 * When mke2fs creates big inodes it does not zero out
2616		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2617		 * so ignore those first few inodes.
2618		 */
2619		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2620		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2621		    EXT4_INODE_SIZE(inode->i_sb)) {
2622			brelse (bh);
2623			goto bad_inode;
2624		}
2625		if (ei->i_extra_isize == 0) {
2626			/* The extra space is currently unused. Use it. */
2627			ei->i_extra_isize = sizeof(struct ext4_inode) -
2628					    EXT4_GOOD_OLD_INODE_SIZE;
2629		} else {
2630			__le32 *magic = (void *)raw_inode +
2631					EXT4_GOOD_OLD_INODE_SIZE +
2632					ei->i_extra_isize;
2633			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2634				 ei->i_state |= EXT4_STATE_XATTR;
2635		}
2636	} else
2637		ei->i_extra_isize = 0;
2638
2639	if (S_ISREG(inode->i_mode)) {
2640		inode->i_op = &ext4_file_inode_operations;
2641		inode->i_fop = &ext4_file_operations;
2642		ext4_set_aops(inode);
2643	} else if (S_ISDIR(inode->i_mode)) {
2644		inode->i_op = &ext4_dir_inode_operations;
2645		inode->i_fop = &ext4_dir_operations;
2646	} else if (S_ISLNK(inode->i_mode)) {
2647		if (ext4_inode_is_fast_symlink(inode))
2648			inode->i_op = &ext4_fast_symlink_inode_operations;
2649		else {
2650			inode->i_op = &ext4_symlink_inode_operations;
2651			ext4_set_aops(inode);
2652		}
2653	} else {
2654		inode->i_op = &ext4_special_inode_operations;
2655		if (raw_inode->i_block[0])
2656			init_special_inode(inode, inode->i_mode,
2657			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2658		else
2659			init_special_inode(inode, inode->i_mode,
2660			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2661	}
2662	brelse (iloc.bh);
2663	ext4_set_inode_flags(inode);
2664	return;
2665
2666bad_inode:
2667	make_bad_inode(inode);
2668	return;
2669}
2670
2671/*
2672 * Post the struct inode info into an on-disk inode location in the
2673 * buffer-cache.  This gobbles the caller's reference to the
2674 * buffer_head in the inode location struct.
2675 *
2676 * The caller must have write access to iloc->bh.
2677 */
2678static int ext4_do_update_inode(handle_t *handle,
2679				struct inode *inode,
2680				struct ext4_iloc *iloc)
2681{
2682	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2683	struct ext4_inode_info *ei = EXT4_I(inode);
2684	struct buffer_head *bh = iloc->bh;
2685	int err = 0, rc, block;
2686
2687	/* For fields not not tracking in the in-memory inode,
2688	 * initialise them to zero for new inodes. */
2689	if (ei->i_state & EXT4_STATE_NEW)
2690		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2691
2692	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2693	if(!(test_opt(inode->i_sb, NO_UID32))) {
2694		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2695		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2696/*
2697 * Fix up interoperability with old kernels. Otherwise, old inodes get
2698 * re-used with the upper 16 bits of the uid/gid intact
2699 */
2700		if(!ei->i_dtime) {
2701			raw_inode->i_uid_high =
2702				cpu_to_le16(high_16_bits(inode->i_uid));
2703			raw_inode->i_gid_high =
2704				cpu_to_le16(high_16_bits(inode->i_gid));
2705		} else {
2706			raw_inode->i_uid_high = 0;
2707			raw_inode->i_gid_high = 0;
2708		}
2709	} else {
2710		raw_inode->i_uid_low =
2711			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2712		raw_inode->i_gid_low =
2713			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2714		raw_inode->i_uid_high = 0;
2715		raw_inode->i_gid_high = 0;
2716	}
2717	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2718	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2719	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2720	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2721	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2722	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2723	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2724	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2725#ifdef EXT4_FRAGMENTS
2726	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2727	raw_inode->i_frag = ei->i_frag_no;
2728	raw_inode->i_fsize = ei->i_frag_size;
2729#endif
2730	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2731	    cpu_to_le32(EXT4_OS_HURD))
2732		raw_inode->i_file_acl_high =
2733			cpu_to_le16(ei->i_file_acl >> 32);
2734	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2735	if (!S_ISREG(inode->i_mode)) {
2736		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2737	} else {
2738		raw_inode->i_size_high =
2739			cpu_to_le32(ei->i_disksize >> 32);
2740		if (ei->i_disksize > 0x7fffffffULL) {
2741			struct super_block *sb = inode->i_sb;
2742			if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2743					EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2744			    EXT4_SB(sb)->s_es->s_rev_level ==
2745					cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2746			       /* If this is the first large file
2747				* created, add a flag to the superblock.
2748				*/
2749				err = ext4_journal_get_write_access(handle,
2750						EXT4_SB(sb)->s_sbh);
2751				if (err)
2752					goto out_brelse;
2753				ext4_update_dynamic_rev(sb);
2754				EXT4_SET_RO_COMPAT_FEATURE(sb,
2755					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2756				sb->s_dirt = 1;
2757				handle->h_sync = 1;
2758				err = ext4_journal_dirty_metadata(handle,
2759						EXT4_SB(sb)->s_sbh);
2760			}
2761		}
2762	}
2763	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2764	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2765		if (old_valid_dev(inode->i_rdev)) {
2766			raw_inode->i_block[0] =
2767				cpu_to_le32(old_encode_dev(inode->i_rdev));
2768			raw_inode->i_block[1] = 0;
2769		} else {
2770			raw_inode->i_block[0] = 0;
2771			raw_inode->i_block[1] =
2772				cpu_to_le32(new_encode_dev(inode->i_rdev));
2773			raw_inode->i_block[2] = 0;
2774		}
2775	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2776		raw_inode->i_block[block] = ei->i_data[block];
2777
2778	if (ei->i_extra_isize)
2779		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2780
2781	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2782	rc = ext4_journal_dirty_metadata(handle, bh);
2783	if (!err)
2784		err = rc;
2785	ei->i_state &= ~EXT4_STATE_NEW;
2786
2787out_brelse:
2788	brelse (bh);
2789	ext4_std_error(inode->i_sb, err);
2790	return err;
2791}
2792
2793/*
2794 * ext4_write_inode()
2795 *
2796 * We are called from a few places:
2797 *
2798 * - Within generic_file_write() for O_SYNC files.
2799 *   Here, there will be no transaction running. We wait for any running
2800 *   trasnaction to commit.
2801 *
2802 * - Within sys_sync(), kupdate and such.
2803 *   We wait on commit, if tol to.
2804 *
2805 * - Within prune_icache() (PF_MEMALLOC == true)
2806 *   Here we simply return.  We can't afford to block kswapd on the
2807 *   journal commit.
2808 *
2809 * In all cases it is actually safe for us to return without doing anything,
2810 * because the inode has been copied into a raw inode buffer in
2811 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2812 * knfsd.
2813 *
2814 * Note that we are absolutely dependent upon all inode dirtiers doing the
2815 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2816 * which we are interested.
2817 *
2818 * It would be a bug for them to not do this.  The code:
2819 *
2820 *	mark_inode_dirty(inode)
2821 *	stuff();
2822 *	inode->i_size = expr;
2823 *
2824 * is in error because a kswapd-driven write_inode() could occur while
2825 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2826 * will no longer be on the superblock's dirty inode list.
2827 */
2828int ext4_write_inode(struct inode *inode, int wait)
2829{
2830	if (current->flags & PF_MEMALLOC)
2831		return 0;
2832
2833	if (ext4_journal_current_handle()) {
2834		jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2835		dump_stack();
2836		return -EIO;
2837	}
2838
2839	if (!wait)
2840		return 0;
2841
2842	return ext4_force_commit(inode->i_sb);
2843}
2844
2845/*
2846 * ext4_setattr()
2847 *
2848 * Called from notify_change.
2849 *
2850 * We want to trap VFS attempts to truncate the file as soon as
2851 * possible.  In particular, we want to make sure that when the VFS
2852 * shrinks i_size, we put the inode on the orphan list and modify
2853 * i_disksize immediately, so that during the subsequent flushing of
2854 * dirty pages and freeing of disk blocks, we can guarantee that any
2855 * commit will leave the blocks being flushed in an unused state on
2856 * disk.  (On recovery, the inode will get truncated and the blocks will
2857 * be freed, so we have a strong guarantee that no future commit will
2858 * leave these blocks visible to the user.)
2859 *
2860 * Called with inode->sem down.
2861 */
2862int ext4_setattr(struct dentry *dentry, struct iattr *attr)
2863{
2864	struct inode *inode = dentry->d_inode;
2865	int error, rc = 0;
2866	const unsigned int ia_valid = attr->ia_valid;
2867
2868	error = inode_change_ok(inode, attr);
2869	if (error)
2870		return error;
2871
2872	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2873		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2874		handle_t *handle;
2875
2876		/* (user+group)*(old+new) structure, inode write (sb,
2877		 * inode block, ? - but truncate inode update has it) */
2878		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
2879					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
2880		if (IS_ERR(handle)) {
2881			error = PTR_ERR(handle);
2882			goto err_out;
2883		}
2884		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2885		if (error) {
2886			ext4_journal_stop(handle);
2887			return error;
2888		}
2889		/* Update corresponding info in inode so that everything is in
2890		 * one transaction */
2891		if (attr->ia_valid & ATTR_UID)
2892			inode->i_uid = attr->ia_uid;
2893		if (attr->ia_valid & ATTR_GID)
2894			inode->i_gid = attr->ia_gid;
2895		error = ext4_mark_inode_dirty(handle, inode);
2896		ext4_journal_stop(handle);
2897	}
2898
2899	if (S_ISREG(inode->i_mode) &&
2900	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2901		handle_t *handle;
2902
2903		handle = ext4_journal_start(inode, 3);
2904		if (IS_ERR(handle)) {
2905			error = PTR_ERR(handle);
2906			goto err_out;
2907		}
2908
2909		error = ext4_orphan_add(handle, inode);
2910		EXT4_I(inode)->i_disksize = attr->ia_size;
2911		rc = ext4_mark_inode_dirty(handle, inode);
2912		if (!error)
2913			error = rc;
2914		ext4_journal_stop(handle);
2915	}
2916
2917	rc = inode_setattr(inode, attr);
2918
2919	/* If inode_setattr's call to ext4_truncate failed to get a
2920	 * transaction handle at all, we need to clean up the in-core
2921	 * orphan list manually. */
2922	if (inode->i_nlink)
2923		ext4_orphan_del(NULL, inode);
2924
2925	if (!rc && (ia_valid & ATTR_MODE))
2926		rc = ext4_acl_chmod(inode);
2927
2928err_out:
2929	ext4_std_error(inode->i_sb, error);
2930	if (!error)
2931		error = rc;
2932	return error;
2933}
2934
2935
2936/*
2937 * How many blocks doth make a writepage()?
2938 *
2939 * With N blocks per page, it may be:
2940 * N data blocks
2941 * 2 indirect block
2942 * 2 dindirect
2943 * 1 tindirect
2944 * N+5 bitmap blocks (from the above)
2945 * N+5 group descriptor summary blocks
2946 * 1 inode block
2947 * 1 superblock.
2948 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
2949 *
2950 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
2951 *
2952 * With ordered or writeback data it's the same, less the N data blocks.
2953 *
2954 * If the inode's direct blocks can hold an integral number of pages then a
2955 * page cannot straddle two indirect blocks, and we can only touch one indirect
2956 * and dindirect block, and the "5" above becomes "3".
2957 *
2958 * This still overestimates under most circumstances.  If we were to pass the
2959 * start and end offsets in here as well we could do block_to_path() on each
2960 * block and work out the exact number of indirects which are touched.  Pah.
2961 */
2962
2963int ext4_writepage_trans_blocks(struct inode *inode)
2964{
2965	int bpp = ext4_journal_blocks_per_page(inode);
2966	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
2967	int ret;
2968
2969	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
2970		return ext4_ext_writepage_trans_blocks(inode, bpp);
2971
2972	if (ext4_should_journal_data(inode))
2973		ret = 3 * (bpp + indirects) + 2;
2974	else
2975		ret = 2 * (bpp + indirects) + 2;
2976
2977#ifdef CONFIG_QUOTA
2978	/* We know that structure was already allocated during DQUOT_INIT so
2979	 * we will be updating only the data blocks + inodes */
2980	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2981#endif
2982
2983	return ret;
2984}
2985
2986/*
2987 * The caller must have previously called ext4_reserve_inode_write().
2988 * Give this, we know that the caller already has write access to iloc->bh.
2989 */
2990int ext4_mark_iloc_dirty(handle_t *handle,
2991		struct inode *inode, struct ext4_iloc *iloc)
2992{
2993	int err = 0;
2994
2995	/* the do_update_inode consumes one bh->b_count */
2996	get_bh(iloc->bh);
2997
2998	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
2999	err = ext4_do_update_inode(handle, inode, iloc);
3000	put_bh(iloc->bh);
3001	return err;
3002}
3003
3004/*
3005 * On success, We end up with an outstanding reference count against
3006 * iloc->bh.  This _must_ be cleaned up later.
3007 */
3008
3009int
3010ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3011			 struct ext4_iloc *iloc)
3012{
3013	int err = 0;
3014	if (handle) {
3015		err = ext4_get_inode_loc(inode, iloc);
3016		if (!err) {
3017			BUFFER_TRACE(iloc->bh, "get_write_access");
3018			err = ext4_journal_get_write_access(handle, iloc->bh);
3019			if (err) {
3020				brelse(iloc->bh);
3021				iloc->bh = NULL;
3022			}
3023		}
3024	}
3025	ext4_std_error(inode->i_sb, err);
3026	return err;
3027}
3028
3029/*
3030 * What we do here is to mark the in-core inode as clean with respect to inode
3031 * dirtiness (it may still be data-dirty).
3032 * This means that the in-core inode may be reaped by prune_icache
3033 * without having to perform any I/O.  This is a very good thing,
3034 * because *any* task may call prune_icache - even ones which
3035 * have a transaction open against a different journal.
3036 *
3037 * Is this cheating?  Not really.  Sure, we haven't written the
3038 * inode out, but prune_icache isn't a user-visible syncing function.
3039 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3040 * we start and wait on commits.
3041 *
3042 * Is this efficient/effective?  Well, we're being nice to the system
3043 * by cleaning up our inodes proactively so they can be reaped
3044 * without I/O.  But we are potentially leaving up to five seconds'
3045 * worth of inodes floating about which prune_icache wants us to
3046 * write out.  One way to fix that would be to get prune_icache()
3047 * to do a write_super() to free up some memory.  It has the desired
3048 * effect.
3049 */
3050int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3051{
3052	struct ext4_iloc iloc;
3053	int err;
3054
3055	might_sleep();
3056	err = ext4_reserve_inode_write(handle, inode, &iloc);
3057	if (!err)
3058		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3059	return err;
3060}
3061
3062/*
3063 * ext4_dirty_inode() is called from __mark_inode_dirty()
3064 *
3065 * We're really interested in the case where a file is being extended.
3066 * i_size has been changed by generic_commit_write() and we thus need
3067 * to include the updated inode in the current transaction.
3068 *
3069 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3070 * are allocated to the file.
3071 *
3072 * If the inode is marked synchronous, we don't honour that here - doing
3073 * so would cause a commit on atime updates, which we don't bother doing.
3074 * We handle synchronous inodes at the highest possible level.
3075 */
3076void ext4_dirty_inode(struct inode *inode)
3077{
3078	handle_t *current_handle = ext4_journal_current_handle();
3079	handle_t *handle;
3080
3081	handle = ext4_journal_start(inode, 2);
3082	if (IS_ERR(handle))
3083		goto out;
3084	if (current_handle &&
3085		current_handle->h_transaction != handle->h_transaction) {
3086		/* This task has a transaction open against a different fs */
3087		printk(KERN_EMERG "%s: transactions do not match!\n",
3088		       __FUNCTION__);
3089	} else {
3090		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3091				current_handle);
3092		ext4_mark_inode_dirty(handle, inode);
3093	}
3094	ext4_journal_stop(handle);
3095out:
3096	return;
3097}
3098
3099
3100int ext4_change_inode_journal_flag(struct inode *inode, int val)
3101{
3102	journal_t *journal;
3103	handle_t *handle;
3104	int err;
3105
3106	/*
3107	 * We have to be very careful here: changing a data block's
3108	 * journaling status dynamically is dangerous.  If we write a
3109	 * data block to the journal, change the status and then delete
3110	 * that block, we risk forgetting to revoke the old log record
3111	 * from the journal and so a subsequent replay can corrupt data.
3112	 * So, first we make sure that the journal is empty and that
3113	 * nobody is changing anything.
3114	 */
3115
3116	journal = EXT4_JOURNAL(inode);
3117	if (is_journal_aborted(journal) || IS_RDONLY(inode))
3118		return -EROFS;
3119
3120	jbd2_journal_lock_updates(journal);
3121	jbd2_journal_flush(journal);
3122
3123	/*
3124	 * OK, there are no updates running now, and all cached data is
3125	 * synced to disk.  We are now in a completely consistent state
3126	 * which doesn't have anything in the journal, and we know that
3127	 * no filesystem updates are running, so it is safe to modify
3128	 * the inode's in-core data-journaling state flag now.
3129	 */
3130
3131	if (val)
3132		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3133	else
3134		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3135	ext4_set_aops(inode);
3136
3137	jbd2_journal_unlock_updates(journal);
3138
3139	/* Finally we can mark the inode as dirty. */
3140
3141	handle = ext4_journal_start(inode, 1);
3142	if (IS_ERR(handle))
3143		return PTR_ERR(handle);
3144
3145	err = ext4_mark_inode_dirty(handle, inode);
3146	handle->h_sync = 1;
3147	ext4_journal_stop(handle);
3148	ext4_std_error(inode->i_sb, err);
3149
3150	return err;
3151}
3152