1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000  Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 *         Wolfgang Stanglmeier        <wolf@cologne.de>
15 *         Stefan Esser                <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994  Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38 */
39
40#include <linux/gfp.h>
41
42#ifndef SYM_HIPD_H
43#define SYM_HIPD_H
44
45/*
46 *  Generic driver options.
47 *
48 *  They may be defined in platform specific headers, if they
49 *  are useful.
50 *
51 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
52 *        When this option is set, the driver will use a queue per
53 *        device and handle QUEUE FULL status requeuing internally.
54 *
55 *    SYM_OPT_LIMIT_COMMAND_REORDERING
56 *        When this option is set, the driver tries to limit tagged
57 *        command reordering to some reasonnable value.
58 *        (set for Linux)
59 */
60
61/*
62 *  Active debugging tags and verbosity.
63 *  Both DEBUG_FLAGS and sym_verbose can be redefined
64 *  by the platform specific code to something else.
65 */
66#define DEBUG_ALLOC	(0x0001)
67#define DEBUG_PHASE	(0x0002)
68#define DEBUG_POLL	(0x0004)
69#define DEBUG_QUEUE	(0x0008)
70#define DEBUG_RESULT	(0x0010)
71#define DEBUG_SCATTER	(0x0020)
72#define DEBUG_SCRIPT	(0x0040)
73#define DEBUG_TINY	(0x0080)
74#define DEBUG_TIMING	(0x0100)
75#define DEBUG_NEGO	(0x0200)
76#define DEBUG_TAGS	(0x0400)
77#define DEBUG_POINTER	(0x0800)
78
79#ifndef DEBUG_FLAGS
80#define DEBUG_FLAGS	(0x0000)
81#endif
82
83#ifndef sym_verbose
84#define sym_verbose	(np->verbose)
85#endif
86
87/*
88 *  These ones should have been already defined.
89 */
90#ifndef assert
91#define	assert(expression) { \
92	if (!(expression)) { \
93		(void)panic( \
94			"assertion \"%s\" failed: file \"%s\", line %d\n", \
95			#expression, \
96			__FILE__, __LINE__); \
97	} \
98}
99#endif
100
101/*
102 *  Number of tasks per device we want to handle.
103 */
104#if	SYM_CONF_MAX_TAG_ORDER > 8
105#error	"more than 256 tags per logical unit not allowed."
106#endif
107#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
108
109/*
110 *  Donnot use more tasks that we can handle.
111 */
112#ifndef	SYM_CONF_MAX_TAG
113#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
114#endif
115#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
116#undef	SYM_CONF_MAX_TAG
117#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
118#endif
119
120/*
121 *    This one means 'NO TAG for this job'
122 */
123#define NO_TAG	(256)
124
125/*
126 *  Number of SCSI targets.
127 */
128#if	SYM_CONF_MAX_TARGET > 16
129#error	"more than 16 targets not allowed."
130#endif
131
132/*
133 *  Number of logical units per target.
134 */
135#if	SYM_CONF_MAX_LUN > 64
136#error	"more than 64 logical units per target not allowed."
137#endif
138
139/*
140 *    Asynchronous pre-scaler (ns). Shall be 40 for
141 *    the SCSI timings to be compliant.
142 */
143#define	SYM_CONF_MIN_ASYNC (40)
144
145
146/*
147 * MEMORY ALLOCATOR.
148 */
149
150#define SYM_MEM_WARN	1	/* Warn on failed operations */
151
152#define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
153#define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
154#define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
155/*
156 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
157 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
158 *  (1 PAGE at a time is just fine).
159 */
160#define SYM_MEM_SHIFT	4
161#define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
162#define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
163
164/*
165 *  Number of entries in the START and DONE queues.
166 *
167 *  We limit to 1 PAGE in order to succeed allocation of
168 *  these queues. Each entry is 8 bytes long (2 DWORDS).
169 */
170#ifdef	SYM_CONF_MAX_START
171#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
172#else
173#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
174#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
175#endif
176
177#if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
178#undef	SYM_CONF_MAX_QUEUE
179#define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
180#undef	SYM_CONF_MAX_START
181#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
182#endif
183
184/*
185 *  For this one, we want a short name :-)
186 */
187#define MAX_QUEUE	SYM_CONF_MAX_QUEUE
188
189/*
190 *  Common definitions for both bus space based and legacy IO methods.
191 */
192
193#define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
194#define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
195#define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
196
197#define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
198#define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
199#define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
200
201#define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
202#define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
203#define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
204
205#define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
206#define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
207#define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
208
209#define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
210#define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
211#define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
212#define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
213#define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
214#define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
215
216/*
217 *  We normally want the chip to have a consistent view
218 *  of driver internal data structures when we restart it.
219 *  Thus these macros.
220 */
221#define OUTL_DSP(np, v)				\
222	do {					\
223		MEMORY_WRITE_BARRIER();		\
224		OUTL(np, nc_dsp, (v));		\
225	} while (0)
226
227#define OUTONB_STD()				\
228	do {					\
229		MEMORY_WRITE_BARRIER();		\
230		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
231	} while (0)
232
233/*
234 *  Command control block states.
235 */
236#define HS_IDLE		(0)
237#define HS_BUSY		(1)
238#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
239#define HS_DISCONNECT	(3)	/* Disconnected by target */
240#define HS_WAIT		(4)	/* waiting for resource	  */
241
242#define HS_DONEMASK	(0x80)
243#define HS_COMPLETE	(4|HS_DONEMASK)
244#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
245#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
246#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
247
248/*
249 *  Software Interrupt Codes
250 */
251#define	SIR_BAD_SCSI_STATUS	(1)
252#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
253#define	SIR_MSG_RECEIVED	(3)
254#define	SIR_MSG_WEIRD		(4)
255#define	SIR_NEGO_FAILED		(5)
256#define	SIR_NEGO_PROTO		(6)
257#define	SIR_SCRIPT_STOPPED	(7)
258#define	SIR_REJECT_TO_SEND	(8)
259#define	SIR_SWIDE_OVERRUN	(9)
260#define	SIR_SODL_UNDERRUN	(10)
261#define	SIR_RESEL_NO_MSG_IN	(11)
262#define	SIR_RESEL_NO_IDENTIFY	(12)
263#define	SIR_RESEL_BAD_LUN	(13)
264#define	SIR_TARGET_SELECTED	(14)
265#define	SIR_RESEL_BAD_I_T_L	(15)
266#define	SIR_RESEL_BAD_I_T_L_Q	(16)
267#define	SIR_ABORT_SENT		(17)
268#define	SIR_RESEL_ABORTED	(18)
269#define	SIR_MSG_OUT_DONE	(19)
270#define	SIR_COMPLETE_ERROR	(20)
271#define	SIR_DATA_OVERRUN	(21)
272#define	SIR_BAD_PHASE		(22)
273#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
274#define	SIR_DMAP_DIRTY		(23)
275#define	SIR_MAX			(23)
276#else
277#define	SIR_MAX			(22)
278#endif
279
280/*
281 *  Extended error bit codes.
282 *  xerr_status field of struct sym_ccb.
283 */
284#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
285#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
286#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
287#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
288#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
289
290/*
291 *  Negotiation status.
292 *  nego_status field of struct sym_ccb.
293 */
294#define NS_SYNC		(1)
295#define NS_WIDE		(2)
296#define NS_PPR		(3)
297
298/*
299 *  A CCB hashed table is used to retrieve CCB address
300 *  from DSA value.
301 */
302#define CCB_HASH_SHIFT		8
303#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
304#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
305#define CCB_HASH_CODE(dsa)	\
306	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
307
308#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
309/*
310 *  We may want to use segment registers for 64 bit DMA.
311 *  16 segments registers -> up to 64 GB addressable.
312 */
313#define SYM_DMAP_SHIFT	(4)
314#define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
315#define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
316#endif
317
318/*
319 *  Device flags.
320 */
321#define SYM_DISC_ENABLED	(1)
322#define SYM_TAGS_ENABLED	(1<<1)
323#define SYM_SCAN_BOOT_DISABLED	(1<<2)
324#define SYM_SCAN_LUNS_DISABLED	(1<<3)
325
326/*
327 *  Host adapter miscellaneous flags.
328 */
329#define SYM_AVOID_BUS_RESET	(1)
330
331/*
332 *  Misc.
333 */
334#define SYM_SNOOP_TIMEOUT (10000000)
335#define BUS_8_BIT	0
336#define BUS_16_BIT	1
337
338/*
339 *  Gather negotiable parameters value
340 */
341struct sym_trans {
342	u8 period;
343	u8 offset;
344	unsigned int width:1;
345	unsigned int iu:1;
346	unsigned int dt:1;
347	unsigned int qas:1;
348	unsigned int check_nego:1;
349};
350
351/*
352 *  Global TCB HEADER.
353 *
354 *  Due to lack of indirect addressing on earlier NCR chips,
355 *  this substructure is copied from the TCB to a global
356 *  address after selection.
357 *  For SYMBIOS chips that support LOAD/STORE this copy is
358 *  not needed and thus not performed.
359 */
360struct sym_tcbh {
361	/*
362	 *  Scripts bus addresses of LUN table accessed from scripts.
363	 *  LUN #0 is a special case, since multi-lun devices are rare,
364	 *  and we we want to speed-up the general case and not waste
365	 *  resources.
366	 */
367	u32	luntbl_sa;	/* bus address of this table	*/
368	u32	lun0_sa;	/* bus address of LCB #0	*/
369	/*
370	 *  Actual SYNC/WIDE IO registers value for this target.
371	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
372	 *  so have alignment constraints.
373	 */
374/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
375/*1*/	u_char	sval;		/* -> SXFER  io register	*/
376/*2*/	u_char	filler1;
377/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
378};
379
380/*
381 *  Target Control Block
382 */
383struct sym_tcb {
384	/*
385	 *  TCB header.
386	 *  Assumed at offset 0.
387	 */
388/*0*/	struct sym_tcbh head;
389
390	/*
391	 *  LUN table used by the SCRIPTS processor.
392	 *  An array of bus addresses is used on reselection.
393	 */
394	u32	*luntbl;	/* LCBs bus address table	*/
395
396	/*
397	 *  LUN table used by the C code.
398	 */
399	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
400#if SYM_CONF_MAX_LUN > 1
401	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
402#endif
403
404#ifdef	SYM_HAVE_STCB
405	/*
406	 *  O/S specific data structure.
407	 */
408	struct sym_stcb s;
409#endif
410
411	/* Transfer goal */
412	struct sym_trans tgoal;
413
414	/*
415	 * Keep track of the CCB used for the negotiation in order
416	 * to ensure that only 1 negotiation is queued at a time.
417	 */
418	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
419
420	/*
421	 *  Set when we want to reset the device.
422	 */
423	u_char	to_reset;
424
425	/*
426	 *  Other user settable limits and options.
427	 *  These limits are read from the NVRAM if present.
428	 */
429	unsigned char	usrflags;
430	unsigned char	usr_period;
431	unsigned char	usr_width;
432	unsigned short	usrtags;
433	struct scsi_target *starget;
434};
435
436/*
437 *  Global LCB HEADER.
438 *
439 *  Due to lack of indirect addressing on earlier NCR chips,
440 *  this substructure is copied from the LCB to a global
441 *  address after selection.
442 *  For SYMBIOS chips that support LOAD/STORE this copy is
443 *  not needed and thus not performed.
444 */
445struct sym_lcbh {
446	/*
447	 *  SCRIPTS address jumped by SCRIPTS on reselection.
448	 *  For not probed logical units, this address points to
449	 *  SCRIPTS that deal with bad LU handling (must be at
450	 *  offset zero of the LCB for that reason).
451	 */
452/*0*/	u32	resel_sa;
453
454	/*
455	 *  Task (bus address of a CCB) read from SCRIPTS that points
456	 *  to the unique ITL nexus allowed to be disconnected.
457	 */
458	u32	itl_task_sa;
459
460	/*
461	 *  Task table bus address (read from SCRIPTS).
462	 */
463	u32	itlq_tbl_sa;
464};
465
466/*
467 *  Logical Unit Control Block
468 */
469struct sym_lcb {
470	/*
471	 *  TCB header.
472	 *  Assumed at offset 0.
473	 */
474/*0*/	struct sym_lcbh head;
475
476	/*
477	 *  Task table read from SCRIPTS that contains pointers to
478	 *  ITLQ nexuses. The bus address read from SCRIPTS is
479	 *  inside the header.
480	 */
481	u32	*itlq_tbl;	/* Kernel virtual address	*/
482
483	/*
484	 *  Busy CCBs management.
485	 */
486	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
487	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
488
489	/*
490	 *  Circular tag allocation buffer.
491	 */
492	u_short	ia_tag;		/* Tag allocation index		*/
493	u_short	if_tag;		/* Tag release index		*/
494	u_char	*cb_tags;	/* Circular tags buffer		*/
495
496	/*
497	 *  O/S specific data structure.
498	 */
499#ifdef	SYM_HAVE_SLCB
500	struct sym_slcb s;
501#endif
502
503#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
504	/*
505	 *  Optionnaly the driver can handle device queueing,
506	 *  and requeues internally command to redo.
507	 */
508	SYM_QUEHEAD waiting_ccbq;
509	SYM_QUEHEAD started_ccbq;
510	int	num_sgood;
511	u_short	started_tags;
512	u_short	started_no_tag;
513	u_short	started_max;
514	u_short	started_limit;
515#endif
516
517#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
518	/*
519	 *  Optionally the driver can try to prevent SCSI
520	 *  IOs from being reordered too much.
521	 */
522	u_char		tags_si;	/* Current index to tags sum	*/
523	u_short		tags_sum[2];	/* Tags sum counters		*/
524	u_short		tags_since;	/* # of tags since last switch	*/
525#endif
526
527	/*
528	 *  Set when we want to clear all tasks.
529	 */
530	u_char to_clear;
531
532	/*
533	 *  Capabilities.
534	 */
535	u_char	user_flags;
536	u_char	curr_flags;
537};
538
539/*
540 *  Action from SCRIPTS on a task.
541 *  Is part of the CCB, but is also used separately to plug
542 *  error handling action to perform from SCRIPTS.
543 */
544struct sym_actscr {
545	u32	start;		/* Jumped by SCRIPTS after selection	*/
546	u32	restart;	/* Jumped by SCRIPTS on relection	*/
547};
548
549/*
550 *  Phase mismatch context.
551 *
552 *  It is part of the CCB and is used as parameters for the
553 *  DATA pointer. We need two contexts to handle correctly the
554 *  SAVED DATA POINTER.
555 */
556struct sym_pmc {
557	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
558	u32	ret;		/* SCRIPT return address	*/
559};
560
561/*
562 *  LUN control block lookup.
563 *  We use a direct pointer for LUN #0, and a table of
564 *  pointers which is only allocated for devices that support
565 *  LUN(s) > 0.
566 */
567#if SYM_CONF_MAX_LUN <= 1
568#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
569#else
570#define sym_lp(tp, lun) \
571	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
572#endif
573
574/*
575 *  Status are used by the host and the script processor.
576 *
577 *  The last four bytes (status[4]) are copied to the
578 *  scratchb register (declared as scr0..scr3) just after the
579 *  select/reselect, and copied back just after disconnecting.
580 *  Inside the script the XX_REG are used.
581 */
582
583/*
584 *  Last four bytes (script)
585 */
586#define  HX_REG	scr0
587#define  HX_PRT	nc_scr0
588#define  HS_REG	scr1
589#define  HS_PRT	nc_scr1
590#define  SS_REG	scr2
591#define  SS_PRT	nc_scr2
592#define  HF_REG	scr3
593#define  HF_PRT	nc_scr3
594
595/*
596 *  Last four bytes (host)
597 */
598#define  host_xflags   phys.head.status[0]
599#define  host_status   phys.head.status[1]
600#define  ssss_status   phys.head.status[2]
601#define  host_flags    phys.head.status[3]
602
603/*
604 *  Host flags
605 */
606#define HF_IN_PM0	1u
607#define HF_IN_PM1	(1u<<1)
608#define HF_ACT_PM	(1u<<2)
609#define HF_DP_SAVED	(1u<<3)
610#define HF_SENSE	(1u<<4)
611#define HF_EXT_ERR	(1u<<5)
612#define HF_DATA_IN	(1u<<6)
613#ifdef SYM_CONF_IARB_SUPPORT
614#define HF_HINT_IARB	(1u<<7)
615#endif
616
617/*
618 *  More host flags
619 */
620#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
621#define	HX_DMAP_DIRTY	(1u<<7)
622#endif
623
624/*
625 *  Global CCB HEADER.
626 *
627 *  Due to lack of indirect addressing on earlier NCR chips,
628 *  this substructure is copied from the ccb to a global
629 *  address after selection (or reselection) and copied back
630 *  before disconnect.
631 *  For SYMBIOS chips that support LOAD/STORE this copy is
632 *  not needed and thus not performed.
633 */
634
635struct sym_ccbh {
636	/*
637	 *  Start and restart SCRIPTS addresses (must be at 0).
638	 */
639/*0*/	struct sym_actscr go;
640
641	/*
642	 *  SCRIPTS jump address that deal with data pointers.
643	 *  'savep' points to the position in the script responsible
644	 *  for the actual transfer of data.
645	 *  It's written on reception of a SAVE_DATA_POINTER message.
646	 */
647	u32	savep;		/* Jump address to saved data pointer	*/
648	u32	lastp;		/* SCRIPTS address at end of data	*/
649
650	/*
651	 *  Status fields.
652	 */
653	u8	status[4];
654};
655
656/*
657 *  GET/SET the value of the data pointer used by SCRIPTS.
658 *
659 *  We must distinguish between the LOAD/STORE-based SCRIPTS
660 *  that use directly the header in the CCB, and the NCR-GENERIC
661 *  SCRIPTS that use the copy of the header in the HCB.
662 */
663#if	SYM_CONF_GENERIC_SUPPORT
664#define sym_set_script_dp(np, cp, dp)				\
665	do {							\
666		if (np->features & FE_LDSTR)			\
667			cp->phys.head.lastp = cpu_to_scr(dp);	\
668		else						\
669			np->ccb_head.lastp = cpu_to_scr(dp);	\
670	} while (0)
671#define sym_get_script_dp(np, cp) 				\
672	scr_to_cpu((np->features & FE_LDSTR) ?			\
673		cp->phys.head.lastp : np->ccb_head.lastp)
674#else
675#define sym_set_script_dp(np, cp, dp)				\
676	do {							\
677		cp->phys.head.lastp = cpu_to_scr(dp);		\
678	} while (0)
679
680#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
681#endif
682
683/*
684 *  Data Structure Block
685 *
686 *  During execution of a ccb by the script processor, the
687 *  DSA (data structure address) register points to this
688 *  substructure of the ccb.
689 */
690struct sym_dsb {
691	/*
692	 *  CCB header.
693	 *  Also assumed at offset 0 of the sym_ccb structure.
694	 */
695/*0*/	struct sym_ccbh head;
696
697	/*
698	 *  Phase mismatch contexts.
699	 *  We need two to handle correctly the SAVED DATA POINTER.
700	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
701	 *  for address calculation from SCRIPTS.
702	 */
703	struct sym_pmc pm0;
704	struct sym_pmc pm1;
705
706	/*
707	 *  Table data for Script
708	 */
709	struct sym_tblsel  select;
710	struct sym_tblmove smsg;
711	struct sym_tblmove smsg_ext;
712	struct sym_tblmove cmd;
713	struct sym_tblmove sense;
714	struct sym_tblmove wresid;
715	struct sym_tblmove data [SYM_CONF_MAX_SG];
716};
717
718/*
719 *  Our Command Control Block
720 */
721struct sym_ccb {
722	/*
723	 *  This is the data structure which is pointed by the DSA
724	 *  register when it is executed by the script processor.
725	 *  It must be the first entry.
726	 */
727	struct sym_dsb phys;
728
729	/*
730	 *  Pointer to CAM ccb and related stuff.
731	 */
732	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
733	u8	cdb_buf[16];	/* Copy of CDB			*/
734#define	SYM_SNS_BBUF_LEN 32
735	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
736	int	data_len;	/* Total data length		*/
737	int	segments;	/* Number of SG segments	*/
738
739	u8	order;		/* Tag type (if tagged command)	*/
740	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
741
742	u_char	nego_status;	/* Negotiation status		*/
743	u_char	xerr_status;	/* Extended error flags		*/
744	u32	extra_bytes;	/* Extraneous bytes transferred	*/
745
746	/*
747	 *  Message areas.
748	 *  We prepare a message to be sent after selection.
749	 *  We may use a second one if the command is rescheduled
750	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
751	 *  Contents are IDENTIFY and SIMPLE_TAG.
752	 *  While negotiating sync or wide transfer,
753	 *  a SDTR or WDTR message is appended.
754	 */
755	u_char	scsi_smsg [12];
756	u_char	scsi_smsg2[12];
757
758	/*
759	 *  Auto request sense related fields.
760	 */
761	u_char	sensecmd[6];	/* Request Sense command	*/
762	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
763	u_char	sv_xerr_status;	/* Saved extended status	*/
764	int	sv_resid;	/* Saved residual		*/
765
766	/*
767	 *  Other fields.
768	 */
769	u32	ccb_ba;		/* BUS address of this CCB	*/
770	u_short	tag;		/* Tag for this transfer	*/
771				/*  NO_TAG means no tag		*/
772	u_char	target;
773	u_char	lun;
774	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
775	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
776	u32	startp;		/* Initial data pointer		*/
777	u32	goalp;		/* Expected last data pointer	*/
778	int	ext_sg;		/* Extreme data pointer, used	*/
779	int	ext_ofs;	/*  to calculate the residual.	*/
780#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
781	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
782	u_char	started;	/* CCB queued to the squeue	*/
783#endif
784	u_char	to_abort;	/* Want this IO to be aborted	*/
785#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
786	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
787#endif
788};
789
790#define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
791
792typedef struct device *m_pool_ident_t;
793
794/*
795 *  Host Control Block
796 */
797struct sym_hcb {
798	/*
799	 *  Global headers.
800	 *  Due to poorness of addressing capabilities, earlier
801	 *  chips (810, 815, 825) copy part of the data structures
802	 *  (CCB, TCB and LCB) in fixed areas.
803	 */
804#if	SYM_CONF_GENERIC_SUPPORT
805	struct sym_ccbh	ccb_head;
806	struct sym_tcbh	tcb_head;
807	struct sym_lcbh	lcb_head;
808#endif
809	/*
810	 *  Idle task and invalid task actions and
811	 *  their bus addresses.
812	 */
813	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
814	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
815
816	/*
817	 *  Dummy lun table to protect us against target
818	 *  returning bad lun number on reselection.
819	 */
820	u32	*badluntbl;	/* Table physical address	*/
821	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
822
823	/*
824	 *  Bus address of this host control block.
825	 */
826	u32	hcb_ba;
827
828	/*
829	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
830	 *  The START_RAM64 script loads the MMRS and MMWS from this
831	 *  field.
832	 */
833	u32	scr_ram_seg;
834
835	/*
836	 *  Initial value of some IO register bits.
837	 *  These values are assumed to have been set by BIOS, and may
838	 *  be used to probe adapter implementation differences.
839	 */
840	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
841		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
842		sv_stest1;
843
844	/*
845	 *  Actual initial value of IO register bits used by the
846	 *  driver. They are loaded at initialisation according to
847	 *  features that are to be enabled/disabled.
848	 */
849	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
850		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
851
852	/*
853	 *  Target data.
854	 */
855	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
856
857	/*
858	 *  Target control block bus address array used by the SCRIPT
859	 *  on reselection.
860	 */
861	u32		*targtbl;
862	u32		targtbl_ba;
863
864	/*
865	 *  DMA pool handle for this HBA.
866	 */
867	m_pool_ident_t	bus_dmat;
868
869	/*
870	 *  O/S specific data structure
871	 */
872	struct sym_shcb s;
873
874	/*
875	 *  Physical bus addresses of the chip.
876	 */
877	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
878	int		mmio_ws;	/* MMIO Window size		*/
879
880	u32		ram_ba;		/* RAM 32 bit BUS address	*/
881	int		ram_ws;		/* RAM window size		*/
882
883	/*
884	 *  SCRIPTS virtual and physical bus addresses.
885	 *  'script'  is loaded in the on-chip RAM if present.
886	 *  'scripth' stays in main memory for all chips except the
887	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
888	 */
889	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
890	u_char		*scriptb0;
891	u_char		*scriptz0;
892	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
893	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
894	u32		scriptz_ba;
895	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
896	u_short		scriptb_sz;
897	u_short		scriptz_sz;
898
899	/*
900	 *  Bus addresses, setup and patch methods for
901	 *  the selected firmware.
902	 */
903	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
904	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
905	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
906	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
907	void		(*fw_patch)(struct sym_hcb *np);
908	char		*fw_name;
909
910	/*
911	 *  General controller parameters and configuration.
912	 */
913	u_short	device_id;	/* PCI device id		*/
914	u_char	revision_id;	/* PCI device revision id	*/
915	u_int	features;	/* Chip features map		*/
916	u_char	myaddr;		/* SCSI id of the adapter	*/
917	u_char	maxburst;	/* log base 2 of dwords burst	*/
918	u_char	maxwide;	/* Maximum transfer width	*/
919	u_char	minsync;	/* Min sync period factor (ST)	*/
920	u_char	maxsync;	/* Max sync period factor (ST)	*/
921	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
922	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
923	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
924	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
925	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
926	u_char	clock_divn;	/* Number of clock divisors	*/
927	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
928	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
929	/*
930	 *  Start queue management.
931	 *  It is filled up by the host processor and accessed by the
932	 *  SCRIPTS processor in order to start SCSI commands.
933	 */
934	volatile		/* Prevent code optimizations	*/
935	u32	*squeue;	/* Start queue virtual address	*/
936	u32	squeue_ba;	/* Start queue BUS address	*/
937	u_short	squeueput;	/* Next free slot of the queue	*/
938	u_short	actccbs;	/* Number of allocated CCBs	*/
939
940	/*
941	 *  Command completion queue.
942	 *  It is the same size as the start queue to avoid overflow.
943	 */
944	u_short	dqueueget;	/* Next position to scan	*/
945	volatile		/* Prevent code optimizations	*/
946	u32	*dqueue;	/* Completion (done) queue	*/
947	u32	dqueue_ba;	/* Done queue BUS address	*/
948
949	/*
950	 *  Miscellaneous buffers accessed by the scripts-processor.
951	 *  They shall be DWORD aligned, because they may be read or
952	 *  written with a script command.
953	 */
954	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
955	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
956	u32		lastmsg;	/* Last SCSI message sent	*/
957	u32		scratch;	/* Scratch for SCSI receive	*/
958					/* Also used for cache test 	*/
959	/*
960	 *  Miscellaneous configuration and status parameters.
961	 */
962	u_char		usrflags;	/* Miscellaneous user flags	*/
963	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
964	u_char		verbose;	/* Verbosity for this controller*/
965
966	/*
967	 *  CCB lists and queue.
968	 */
969	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
970					/* CCB_HASH_SIZE lists of CCBs	*/
971	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
972	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
973
974	/*
975	 *  During error handling and/or recovery,
976	 *  active CCBs that are to be completed with
977	 *  error or requeued are moved from the busy_ccbq
978	 *  to the comp_ccbq prior to completion.
979	 */
980	SYM_QUEHEAD	comp_ccbq;
981
982#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
983	SYM_QUEHEAD	dummy_ccbq;
984#endif
985
986	/*
987	 *  IMMEDIATE ARBITRATION (IARB) control.
988	 *
989	 *  We keep track in 'last_cp' of the last CCB that has been
990	 *  queued to the SCRIPTS processor and clear 'last_cp' when
991	 *  this CCB completes. If last_cp is not zero at the moment
992	 *  we queue a new CCB, we set a flag in 'last_cp' that is
993	 *  used by the SCRIPTS as a hint for setting IARB.
994	 *  We donnot set more than 'iarb_max' consecutive hints for
995	 *  IARB in order to leave devices a chance to reselect.
996	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
997	 */
998#ifdef SYM_CONF_IARB_SUPPORT
999	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1000	u_short		iarb_count;	/* Actual # of these hints	*/
1001	struct sym_ccb *	last_cp;
1002#endif
1003
1004	/*
1005	 *  Command abort handling.
1006	 *  We need to synchronize tightly with the SCRIPTS
1007	 *  processor in order to handle things correctly.
1008	 */
1009	u_char		abrt_msg[4];	/* Message to send buffer	*/
1010	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1011	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1012	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1013
1014	/*
1015	 *  64 bit DMA handling.
1016	 */
1017#if	SYM_CONF_DMA_ADDRESSING_MODE != 0
1018	u_char	use_dac;		/* Use PCI DAC cycles		*/
1019#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1020	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
1021	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
1022#endif
1023#endif
1024};
1025
1026#define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
1027
1028
1029/*
1030 *  FIRMWARES (sym_fw.c)
1031 */
1032struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1033void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1034
1035/*
1036 *  Driver methods called from O/S specific code.
1037 */
1038char *sym_driver_name(void);
1039void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1040int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1041struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1042#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1043void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1044#else
1045void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1046#endif
1047void sym_start_up(struct sym_hcb *np, int reason);
1048void sym_interrupt(struct sym_hcb *np);
1049int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1050struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1051void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1052struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1053int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1054int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1055int sym_reset_scsi_target(struct sym_hcb *np, int target);
1056void sym_hcb_free(struct sym_hcb *np);
1057int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1058
1059/*
1060 *  Build a scatter/gather entry.
1061 *
1062 *  For 64 bit systems, we use the 8 upper bits of the size field
1063 *  to provide bus address bits 32-39 to the SCRIPTS processor.
1064 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1065 */
1066
1067#if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1068#define sym_build_sge(np, data, badd, len)	\
1069do {						\
1070	(data)->addr = cpu_to_scr(badd);	\
1071	(data)->size = cpu_to_scr(len);		\
1072} while (0)
1073#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1074#define sym_build_sge(np, data, badd, len)				\
1075do {									\
1076	(data)->addr = cpu_to_scr(badd);				\
1077	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
1078} while (0)
1079#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1080int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1081static __inline void
1082sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1083{
1084	u32 h = (badd>>32);
1085	int s = (h&SYM_DMAP_MASK);
1086
1087	if (h != np->dmap_bah[s])
1088		goto bad;
1089good:
1090	(data)->addr = cpu_to_scr(badd);
1091	(data)->size = cpu_to_scr((s<<24) + len);
1092	return;
1093bad:
1094	s = sym_lookup_dmap(np, h, s);
1095	goto good;
1096}
1097#else
1098#error "Unsupported DMA addressing mode"
1099#endif
1100
1101/*
1102 *  MEMORY ALLOCATOR.
1103 */
1104
1105#define sym_get_mem_cluster()	\
1106	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1107#define sym_free_mem_cluster(p)	\
1108	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1109
1110/*
1111 *  Link between free memory chunks of a given size.
1112 */
1113typedef struct sym_m_link {
1114	struct sym_m_link *next;
1115} *m_link_p;
1116
1117/*
1118 *  Virtual to bus physical translation for a given cluster.
1119 *  Such a structure is only useful with DMA abstraction.
1120 */
1121typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
1122	struct sym_m_vtob *next;
1123	void *vaddr;		/* Virtual address */
1124	dma_addr_t baddr;	/* Bus physical address */
1125} *m_vtob_p;
1126
1127/* Hash this stuff a bit to speed up translations */
1128#define VTOB_HASH_SHIFT		5
1129#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
1130#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
1131#define VTOB_HASH_CODE(m)	\
1132	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1133
1134/*
1135 *  Memory pool of a given kind.
1136 *  Ideally, we want to use:
1137 *  1) 1 pool for memory we donnot need to involve in DMA.
1138 *  2) The same pool for controllers that require same DMA
1139 *     constraints and features.
1140 *     The OS specific m_pool_id_t thing and the sym_m_pool_match()
1141 *     method are expected to tell the driver about.
1142 */
1143typedef struct sym_m_pool {
1144	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
1145	void * (*get_mem_cluster)(struct sym_m_pool *);
1146#ifdef	SYM_MEM_FREE_UNUSED
1147	void (*free_mem_cluster)(struct sym_m_pool *, void *);
1148#endif
1149#define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
1150#define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
1151	int nump;
1152	m_vtob_p vtob[VTOB_HASH_SIZE];
1153	struct sym_m_pool *next;
1154	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1155} *m_pool_p;
1156
1157/*
1158 *  Alloc, free and translate addresses to bus physical
1159 *  for DMAable memory.
1160 */
1161void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1162void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1163dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1164
1165/*
1166 * Verbs used by the driver code for DMAable memory handling.
1167 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1168 * being discarded.
1169 */
1170#define _uvptv_(p) ((void *)((u_long)(p)))
1171
1172#define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
1173#define _sym_mfree_dma(np, p, l, n)	\
1174			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1175#define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
1176#define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
1177#define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
1178
1179/*
1180 *  We have to provide the driver memory allocator with methods for
1181 *  it to maintain virtual to bus physical address translations.
1182 */
1183
1184#define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
1185
1186static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1187{
1188	void *vaddr = NULL;
1189	dma_addr_t baddr = 0;
1190
1191	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1192			GFP_ATOMIC);
1193	if (vaddr) {
1194		vbp->vaddr = vaddr;
1195		vbp->baddr = baddr;
1196	}
1197	return vaddr;
1198}
1199
1200static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1201{
1202	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1203			vbp->baddr);
1204}
1205
1206#endif /* SYM_HIPD_H */
1207