1/*
2 * Interface for the 93C66/56/46/26/06 serial eeprom parts.
3 *
4 * Copyright (c) 1995, 1996 Daniel M. Eischen
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * $Id: aic7xxx_93cx6.c,v 1.1.1.1 2007/08/03 18:52:58 Exp $
32 */
33
34/*
35 *   The instruction set of the 93C66/56/46/26/06 chips are as follows:
36 *
37 *               Start  OP	    *
38 *     Function   Bit  Code  Address**  Data     Description
39 *     -------------------------------------------------------------------
40 *     READ        1    10   A5 - A0             Reads data stored in memory,
41 *                                               starting at specified address
42 *     EWEN        1    00   11XXXX              Write enable must precede
43 *                                               all programming modes
44 *     ERASE       1    11   A5 - A0             Erase register A5A4A3A2A1A0
45 *     WRITE       1    01   A5 - A0   D15 - D0  Writes register
46 *     ERAL        1    00   10XXXX              Erase all registers
47 *     WRAL        1    00   01XXXX    D15 - D0  Writes to all registers
48 *     EWDS        1    00   00XXXX              Disables all programming
49 *                                               instructions
50 *     *Note: A value of X for address is a don't care condition.
51 *    **Note: There are 8 address bits for the 93C56/66 chips unlike
52 *	      the 93C46/26/06 chips which have 6 address bits.
53 *
54 *   The 93C46 has a four wire interface: clock, chip select, data in, and
55 *   data out.  In order to perform one of the above functions, you need
56 *   to enable the chip select for a clock period (typically a minimum of
57 *   1 usec, with the clock high and low a minimum of 750 and 250 nsec
58 *   respectively).  While the chip select remains high, you can clock in
59 *   the instructions (above) starting with the start bit, followed by the
60 *   OP code, Address, and Data (if needed).  For the READ instruction, the
61 *   requested 16-bit register contents is read from the data out line but
62 *   is preceded by an initial zero (leading 0, followed by 16-bits, MSB
63 *   first).  The clock cycling from low to high initiates the next data
64 *   bit to be sent from the chip.
65 */
66
67#ifdef __linux__
68#include "aic7xxx_osm.h"
69#include "aic7xxx_inline.h"
70#include "aic7xxx_93cx6.h"
71#else
72#include <dev/aic7xxx/aic7xxx_osm.h>
73#include <dev/aic7xxx/aic7xxx_inline.h>
74#include <dev/aic7xxx/aic7xxx_93cx6.h>
75#endif
76
77/*
78 * Right now, we only have to read the SEEPROM.  But we make it easier to
79 * add other 93Cx6 functions.
80 */
81struct seeprom_cmd {
82  	uint8_t len;
83 	uint8_t bits[11];
84};
85
86/* Short opcodes for the c46 */
87static struct seeprom_cmd seeprom_ewen = {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
88static struct seeprom_cmd seeprom_ewds = {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
89
90/* Long opcodes for the C56/C66 */
91static struct seeprom_cmd seeprom_long_ewen = {11, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
92static struct seeprom_cmd seeprom_long_ewds = {11, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
93
94/* Common opcodes */
95static struct seeprom_cmd seeprom_write = {3, {1, 0, 1}};
96static struct seeprom_cmd seeprom_read  = {3, {1, 1, 0}};
97
98/*
99 * Wait for the SEERDY to go high; about 800 ns.
100 */
101#define CLOCK_PULSE(sd, rdy)				\
102	while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) {	\
103		;  /* Do nothing */			\
104	}						\
105	(void)SEEPROM_INB(sd);	/* Clear clock */
106
107/*
108 * Send a START condition and the given command
109 */
110static void
111send_seeprom_cmd(struct seeprom_descriptor *sd, struct seeprom_cmd *cmd)
112{
113	uint8_t temp;
114	int i = 0;
115
116	/* Send chip select for one clock cycle. */
117	temp = sd->sd_MS ^ sd->sd_CS;
118	SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
119	CLOCK_PULSE(sd, sd->sd_RDY);
120
121	for (i = 0; i < cmd->len; i++) {
122		if (cmd->bits[i] != 0)
123			temp ^= sd->sd_DO;
124		SEEPROM_OUTB(sd, temp);
125		CLOCK_PULSE(sd, sd->sd_RDY);
126		SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
127		CLOCK_PULSE(sd, sd->sd_RDY);
128		if (cmd->bits[i] != 0)
129			temp ^= sd->sd_DO;
130	}
131}
132
133/*
134 * Clear CS put the chip in the reset state, where it can wait for new commands.
135 */
136static void
137reset_seeprom(struct seeprom_descriptor *sd)
138{
139	uint8_t temp;
140
141	temp = sd->sd_MS;
142	SEEPROM_OUTB(sd, temp);
143	CLOCK_PULSE(sd, sd->sd_RDY);
144	SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
145	CLOCK_PULSE(sd, sd->sd_RDY);
146	SEEPROM_OUTB(sd, temp);
147	CLOCK_PULSE(sd, sd->sd_RDY);
148}
149
150/*
151 * Read the serial EEPROM and returns 1 if successful and 0 if
152 * not successful.
153 */
154int
155ahc_read_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
156		 u_int start_addr, u_int count)
157{
158	int i = 0;
159	u_int k = 0;
160	uint16_t v;
161	uint8_t temp;
162
163	/*
164	 * Read the requested registers of the seeprom.  The loop
165	 * will range from 0 to count-1.
166	 */
167	for (k = start_addr; k < count + start_addr; k++) {
168		/*
169		 * Now we're ready to send the read command followed by the
170		 * address of the 16-bit register we want to read.
171		 */
172		send_seeprom_cmd(sd, &seeprom_read);
173
174		/* Send the 6 or 8 bit address (MSB first, LSB last). */
175		temp = sd->sd_MS ^ sd->sd_CS;
176		for (i = (sd->sd_chip - 1); i >= 0; i--) {
177			if ((k & (1 << i)) != 0)
178				temp ^= sd->sd_DO;
179			SEEPROM_OUTB(sd, temp);
180			CLOCK_PULSE(sd, sd->sd_RDY);
181			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
182			CLOCK_PULSE(sd, sd->sd_RDY);
183			if ((k & (1 << i)) != 0)
184				temp ^= sd->sd_DO;
185		}
186
187		/*
188		 * Now read the 16 bit register.  An initial 0 precedes the
189		 * register contents which begins with bit 15 (MSB) and ends
190		 * with bit 0 (LSB).  The initial 0 will be shifted off the
191		 * top of our word as we let the loop run from 0 to 16.
192		 */
193		v = 0;
194		for (i = 16; i >= 0; i--) {
195			SEEPROM_OUTB(sd, temp);
196			CLOCK_PULSE(sd, sd->sd_RDY);
197			v <<= 1;
198			if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
199				v |= 1;
200			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
201			CLOCK_PULSE(sd, sd->sd_RDY);
202		}
203
204		buf[k - start_addr] = v;
205
206		/* Reset the chip select for the next command cycle. */
207		reset_seeprom(sd);
208	}
209#ifdef AHC_DUMP_EEPROM
210	printf("\nSerial EEPROM:\n\t");
211	for (k = 0; k < count; k = k + 1) {
212		if (((k % 8) == 0) && (k != 0)) {
213			printf ("\n\t");
214		}
215		printf (" 0x%x", buf[k]);
216	}
217	printf ("\n");
218#endif
219	return (1);
220}
221
222/*
223 * Write the serial EEPROM and return 1 if successful and 0 if
224 * not successful.
225 */
226int
227ahc_write_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
228		  u_int start_addr, u_int count)
229{
230	struct seeprom_cmd *ewen, *ewds;
231	uint16_t v;
232	uint8_t temp;
233	int i, k;
234
235	/* Place the chip into write-enable mode */
236	if (sd->sd_chip == C46) {
237		ewen = &seeprom_ewen;
238		ewds = &seeprom_ewds;
239	} else if (sd->sd_chip == C56_66) {
240		ewen = &seeprom_long_ewen;
241		ewds = &seeprom_long_ewds;
242	} else {
243		printf("ahc_write_seeprom: unsupported seeprom type %d\n",
244		       sd->sd_chip);
245		return (0);
246	}
247
248	send_seeprom_cmd(sd, ewen);
249	reset_seeprom(sd);
250
251	/* Write all requested data out to the seeprom. */
252	temp = sd->sd_MS ^ sd->sd_CS;
253	for (k = start_addr; k < count + start_addr; k++) {
254		/* Send the write command */
255		send_seeprom_cmd(sd, &seeprom_write);
256
257		/* Send the 6 or 8 bit address (MSB first). */
258		for (i = (sd->sd_chip - 1); i >= 0; i--) {
259			if ((k & (1 << i)) != 0)
260				temp ^= sd->sd_DO;
261			SEEPROM_OUTB(sd, temp);
262			CLOCK_PULSE(sd, sd->sd_RDY);
263			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
264			CLOCK_PULSE(sd, sd->sd_RDY);
265			if ((k & (1 << i)) != 0)
266				temp ^= sd->sd_DO;
267		}
268
269		/* Write the 16 bit value, MSB first */
270		v = buf[k - start_addr];
271		for (i = 15; i >= 0; i--) {
272			if ((v & (1 << i)) != 0)
273				temp ^= sd->sd_DO;
274			SEEPROM_OUTB(sd, temp);
275			CLOCK_PULSE(sd, sd->sd_RDY);
276			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
277			CLOCK_PULSE(sd, sd->sd_RDY);
278			if ((v & (1 << i)) != 0)
279				temp ^= sd->sd_DO;
280		}
281
282		/* Wait for the chip to complete the write */
283		temp = sd->sd_MS;
284		SEEPROM_OUTB(sd, temp);
285		CLOCK_PULSE(sd, sd->sd_RDY);
286		temp = sd->sd_MS ^ sd->sd_CS;
287		do {
288			SEEPROM_OUTB(sd, temp);
289			CLOCK_PULSE(sd, sd->sd_RDY);
290			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
291			CLOCK_PULSE(sd, sd->sd_RDY);
292		} while ((SEEPROM_DATA_INB(sd) & sd->sd_DI) == 0);
293
294		reset_seeprom(sd);
295	}
296
297	/* Put the chip back into write-protect mode */
298	send_seeprom_cmd(sd, ewds);
299	reset_seeprom(sd);
300
301	return (1);
302}
303
304int
305ahc_verify_cksum(struct seeprom_config *sc)
306{
307	int i;
308	int maxaddr;
309	uint32_t checksum;
310	uint16_t *scarray;
311
312	maxaddr = (sizeof(*sc)/2) - 1;
313	checksum = 0;
314	scarray = (uint16_t *)sc;
315
316	for (i = 0; i < maxaddr; i++)
317		checksum = checksum + scarray[i];
318	if (checksum == 0
319	 || (checksum & 0xFFFF) != sc->checksum) {
320		return (0);
321	} else {
322		return(1);
323	}
324}
325