1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (���������������� ����������)
20 */
21
22/*
23 * UBI input/output unit.
24 *
25 * This unit provides a uniform way to work with all kinds of the underlying
26 * MTD devices. It also implements handy functions for reading and writing UBI
27 * headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this unit
31 * validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O unit does the following trick in order to avoid this extra copy.
83 * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84 * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85 * VID header is being written out, it shifts the VID header pointer back and
86 * writes the whole sub-page.
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
91#include "ubi.h"
92
93#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97				 const struct ubi_ec_hdr *ec_hdr);
98static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100				  const struct ubi_vid_hdr *vid_hdr);
101static int paranoid_check_all_ff(const struct ubi_device *ubi, int pnum,
102				 int offset, int len);
103#else
104#define paranoid_check_not_bad(ubi, pnum) 0
105#define paranoid_check_peb_ec_hdr(ubi, pnum)  0
106#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
107#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109#define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110#endif
111
112/**
113 * ubi_io_read - read data from a physical eraseblock.
114 * @ubi: UBI device description object
115 * @buf: buffer where to store the read data
116 * @pnum: physical eraseblock number to read from
117 * @offset: offset within the physical eraseblock from where to read
118 * @len: how many bytes to read
119 *
120 * This function reads data from offset @offset of physical eraseblock @pnum
121 * and stores the read data in the @buf buffer. The following return codes are
122 * possible:
123 *
124 * o %0 if all the requested data were successfully read;
125 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126 *   correctable bit-flips were detected; this is harmless but may indicate
127 *   that this eraseblock may become bad soon (but do not have to);
128 * o %-EBADMSG if the MTD subsystem reported about data data integrity
129 *   problems, for example it can me an ECC error in case of NAND; this most
130 *   probably means that the data is corrupted;
131 * o %-EIO if some I/O error occurred;
132 * o other negative error codes in case of other errors.
133 */
134int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135		int len)
136{
137	int err, retries = 0;
138	size_t read;
139	loff_t addr;
140
141	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
142
143	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145	ubi_assert(len > 0);
146
147	err = paranoid_check_not_bad(ubi, pnum);
148	if (err)
149		return err > 0 ? -EINVAL : err;
150
151	addr = (loff_t)pnum * ubi->peb_size + offset;
152retry:
153	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154	if (err) {
155		if (err == -EUCLEAN) {
156			/*
157			 * -EUCLEAN is reported if there was a bit-flip which
158			 * was corrected, so this is harmless.
159			 */
160			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
161			ubi_assert(len == read);
162			return UBI_IO_BITFLIPS;
163		}
164
165		if (read != len && retries++ < UBI_IO_RETRIES) {
166			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
167			       "read only %zd bytes, retry",
168			       err, len, pnum, offset, read);
169			yield();
170			goto retry;
171		}
172
173		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
174			"read %zd bytes", err, len, pnum, offset, read);
175		ubi_dbg_dump_stack();
176	} else {
177		ubi_assert(len == read);
178
179		if (ubi_dbg_is_bitflip()) {
180			dbg_msg("bit-flip (emulated)");
181			err = UBI_IO_BITFLIPS;
182		}
183	}
184
185	return err;
186}
187
188/**
189 * ubi_io_write - write data to a physical eraseblock.
190 * @ubi: UBI device description object
191 * @buf: buffer with the data to write
192 * @pnum: physical eraseblock number to write to
193 * @offset: offset within the physical eraseblock where to write
194 * @len: how many bytes to write
195 *
196 * This function writes @len bytes of data from buffer @buf to offset @offset
197 * of physical eraseblock @pnum. If all the data were successfully written,
198 * zero is returned. If an error occurred, this function returns a negative
199 * error code. If %-EIO is returned, the physical eraseblock most probably went
200 * bad.
201 *
202 * Note, in case of an error, it is possible that something was still written
203 * to the flash media, but may be some garbage.
204 */
205int ubi_io_write(const struct ubi_device *ubi, const void *buf, int pnum,
206		 int offset, int len)
207{
208	int err;
209	size_t written;
210	loff_t addr;
211
212	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
213
214	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
215	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
216	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
217	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
218
219	if (ubi->ro_mode) {
220		ubi_err("read-only mode");
221		return -EROFS;
222	}
223
224	/* The below has to be compiled out if paranoid checks are disabled */
225
226	err = paranoid_check_not_bad(ubi, pnum);
227	if (err)
228		return err > 0 ? -EINVAL : err;
229
230	/* The area we are writing to has to contain all 0xFF bytes */
231	err = paranoid_check_all_ff(ubi, pnum, offset, len);
232	if (err)
233		return err > 0 ? -EINVAL : err;
234
235	if (offset >= ubi->leb_start) {
236		/*
237		 * We write to the data area of the physical eraseblock. Make
238		 * sure it has valid EC and VID headers.
239		 */
240		err = paranoid_check_peb_ec_hdr(ubi, pnum);
241		if (err)
242			return err > 0 ? -EINVAL : err;
243		err = paranoid_check_peb_vid_hdr(ubi, pnum);
244		if (err)
245			return err > 0 ? -EINVAL : err;
246	}
247
248	if (ubi_dbg_is_write_failure()) {
249		dbg_err("cannot write %d bytes to PEB %d:%d "
250			"(emulated)", len, pnum, offset);
251		ubi_dbg_dump_stack();
252		return -EIO;
253	}
254
255	addr = (loff_t)pnum * ubi->peb_size + offset;
256	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
257	if (err) {
258		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
259			" %zd bytes", err, len, pnum, offset, written);
260		ubi_dbg_dump_stack();
261	} else
262		ubi_assert(written == len);
263
264	return err;
265}
266
267/**
268 * erase_callback - MTD erasure call-back.
269 * @ei: MTD erase information object.
270 *
271 * Note, even though MTD erase interface is asynchronous, all the current
272 * implementations are synchronous anyway.
273 */
274static void erase_callback(struct erase_info *ei)
275{
276	wake_up_interruptible((wait_queue_head_t *)ei->priv);
277}
278
279/**
280 * do_sync_erase - synchronously erase a physical eraseblock.
281 * @ubi: UBI device description object
282 * @pnum: the physical eraseblock number to erase
283 *
284 * This function synchronously erases physical eraseblock @pnum and returns
285 * zero in case of success and a negative error code in case of failure. If
286 * %-EIO is returned, the physical eraseblock most probably went bad.
287 */
288static int do_sync_erase(const struct ubi_device *ubi, int pnum)
289{
290	int err, retries = 0;
291	struct erase_info ei;
292	wait_queue_head_t wq;
293
294	dbg_io("erase PEB %d", pnum);
295
296retry:
297	init_waitqueue_head(&wq);
298	memset(&ei, 0, sizeof(struct erase_info));
299
300	ei.mtd      = ubi->mtd;
301	ei.addr     = pnum * ubi->peb_size;
302	ei.len      = ubi->peb_size;
303	ei.callback = erase_callback;
304	ei.priv     = (unsigned long)&wq;
305
306	err = ubi->mtd->erase(ubi->mtd, &ei);
307	if (err) {
308		if (retries++ < UBI_IO_RETRIES) {
309			dbg_io("error %d while erasing PEB %d, retry",
310			       err, pnum);
311			yield();
312			goto retry;
313		}
314		ubi_err("cannot erase PEB %d, error %d", pnum, err);
315		ubi_dbg_dump_stack();
316		return err;
317	}
318
319	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
320					   ei.state == MTD_ERASE_FAILED);
321	if (err) {
322		ubi_err("interrupted PEB %d erasure", pnum);
323		return -EINTR;
324	}
325
326	if (ei.state == MTD_ERASE_FAILED) {
327		if (retries++ < UBI_IO_RETRIES) {
328			dbg_io("error while erasing PEB %d, retry", pnum);
329			yield();
330			goto retry;
331		}
332		ubi_err("cannot erase PEB %d", pnum);
333		ubi_dbg_dump_stack();
334		return -EIO;
335	}
336
337	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
338	if (err)
339		return err > 0 ? -EINVAL : err;
340
341	if (ubi_dbg_is_erase_failure() && !err) {
342		dbg_err("cannot erase PEB %d (emulated)", pnum);
343		return -EIO;
344	}
345
346	return 0;
347}
348
349/**
350 * check_pattern - check if buffer contains only a certain byte pattern.
351 * @buf: buffer to check
352 * @patt: the pattern to check
353 * @size: buffer size in bytes
354 *
355 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
356 * something else was also found.
357 */
358static int check_pattern(const void *buf, uint8_t patt, int size)
359{
360	int i;
361
362	for (i = 0; i < size; i++)
363		if (((const uint8_t *)buf)[i] != patt)
364			return 0;
365	return 1;
366}
367
368/* Patterns to write to a physical eraseblock when torturing it */
369static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
370
371/**
372 * torture_peb - test a supposedly bad physical eraseblock.
373 * @ubi: UBI device description object
374 * @pnum: the physical eraseblock number to test
375 *
376 * This function returns %-EIO if the physical eraseblock did not pass the
377 * test, a positive number of erase operations done if the test was
378 * successfully passed, and other negative error codes in case of other errors.
379 */
380static int torture_peb(const struct ubi_device *ubi, int pnum)
381{
382	void *buf;
383	int err, i, patt_count;
384
385	buf = kmalloc(ubi->peb_size, GFP_KERNEL);
386	if (!buf)
387		return -ENOMEM;
388
389	patt_count = ARRAY_SIZE(patterns);
390	ubi_assert(patt_count > 0);
391
392	for (i = 0; i < patt_count; i++) {
393		err = do_sync_erase(ubi, pnum);
394		if (err)
395			goto out;
396
397		/* Make sure the PEB contains only 0xFF bytes */
398		err = ubi_io_read(ubi, buf, pnum, 0, ubi->peb_size);
399		if (err)
400			goto out;
401
402		err = check_pattern(buf, 0xFF, ubi->peb_size);
403		if (err == 0) {
404			ubi_err("erased PEB %d, but a non-0xFF byte found",
405				pnum);
406			err = -EIO;
407			goto out;
408		}
409
410		/* Write a pattern and check it */
411		memset(buf, patterns[i], ubi->peb_size);
412		err = ubi_io_write(ubi, buf, pnum, 0, ubi->peb_size);
413		if (err)
414			goto out;
415
416		memset(buf, ~patterns[i], ubi->peb_size);
417		err = ubi_io_read(ubi, buf, pnum, 0, ubi->peb_size);
418		if (err)
419			goto out;
420
421		err = check_pattern(buf, patterns[i], ubi->peb_size);
422		if (err == 0) {
423			ubi_err("pattern %x checking failed for PEB %d",
424				patterns[i], pnum);
425			err = -EIO;
426			goto out;
427		}
428	}
429
430	err = patt_count;
431
432out:
433	if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
434		/*
435		 * If a bit-flip or data integrity error was detected, the test
436		 * has not passed because it happened on a freshly erased
437		 * physical eraseblock which means something is wrong with it.
438		 */
439		err = -EIO;
440	kfree(buf);
441	return err;
442}
443
444/**
445 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
446 * @ubi: UBI device description object
447 * @pnum: physical eraseblock number to erase
448 * @torture: if this physical eraseblock has to be tortured
449 *
450 * This function synchronously erases physical eraseblock @pnum. If @torture
451 * flag is not zero, the physical eraseblock is checked by means of writing
452 * different patterns to it and reading them back. If the torturing is enabled,
453 * the physical eraseblock is erased more then once.
454 *
455 * This function returns the number of erasures made in case of success, %-EIO
456 * if the erasure failed or the torturing test failed, and other negative error
457 * codes in case of other errors. Note, %-EIO means that the physical
458 * eraseblock is bad.
459 */
460int ubi_io_sync_erase(const struct ubi_device *ubi, int pnum, int torture)
461{
462	int err, ret = 0;
463
464	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
465
466	err = paranoid_check_not_bad(ubi, pnum);
467	if (err != 0)
468		return err > 0 ? -EINVAL : err;
469
470	if (ubi->ro_mode) {
471		ubi_err("read-only mode");
472		return -EROFS;
473	}
474
475	if (torture) {
476		ret = torture_peb(ubi, pnum);
477		if (ret < 0)
478			return ret;
479	}
480
481	err = do_sync_erase(ubi, pnum);
482	if (err)
483		return err;
484
485	return ret + 1;
486}
487
488/**
489 * ubi_io_is_bad - check if a physical eraseblock is bad.
490 * @ubi: UBI device description object
491 * @pnum: the physical eraseblock number to check
492 *
493 * This function returns a positive number if the physical eraseblock is bad,
494 * zero if not, and a negative error code if an error occurred.
495 */
496int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
497{
498	struct mtd_info *mtd = ubi->mtd;
499
500	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
501
502	if (ubi->bad_allowed) {
503		int ret;
504
505		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
506		if (ret < 0)
507			ubi_err("error %d while checking if PEB %d is bad",
508				ret, pnum);
509		else if (ret)
510			dbg_io("PEB %d is bad", pnum);
511		return ret;
512	}
513
514	return 0;
515}
516
517/**
518 * ubi_io_mark_bad - mark a physical eraseblock as bad.
519 * @ubi: UBI device description object
520 * @pnum: the physical eraseblock number to mark
521 *
522 * This function returns zero in case of success and a negative error code in
523 * case of failure.
524 */
525int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
526{
527	int err;
528	struct mtd_info *mtd = ubi->mtd;
529
530	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
531
532	if (ubi->ro_mode) {
533		ubi_err("read-only mode");
534		return -EROFS;
535	}
536
537	if (!ubi->bad_allowed)
538		return 0;
539
540	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
541	if (err)
542		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
543	return err;
544}
545
546/**
547 * validate_ec_hdr - validate an erase counter header.
548 * @ubi: UBI device description object
549 * @ec_hdr: the erase counter header to check
550 *
551 * This function returns zero if the erase counter header is OK, and %1 if
552 * not.
553 */
554static int validate_ec_hdr(const struct ubi_device *ubi,
555			   const struct ubi_ec_hdr *ec_hdr)
556{
557	long long ec;
558	int vid_hdr_offset, leb_start;
559
560	ec = ubi64_to_cpu(ec_hdr->ec);
561	vid_hdr_offset = ubi32_to_cpu(ec_hdr->vid_hdr_offset);
562	leb_start = ubi32_to_cpu(ec_hdr->data_offset);
563
564	if (ec_hdr->version != UBI_VERSION) {
565		ubi_err("node with incompatible UBI version found: "
566			"this UBI version is %d, image version is %d",
567			UBI_VERSION, (int)ec_hdr->version);
568		goto bad;
569	}
570
571	if (vid_hdr_offset != ubi->vid_hdr_offset) {
572		ubi_err("bad VID header offset %d, expected %d",
573			vid_hdr_offset, ubi->vid_hdr_offset);
574		goto bad;
575	}
576
577	if (leb_start != ubi->leb_start) {
578		ubi_err("bad data offset %d, expected %d",
579			leb_start, ubi->leb_start);
580		goto bad;
581	}
582
583	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
584		ubi_err("bad erase counter %lld", ec);
585		goto bad;
586	}
587
588	return 0;
589
590bad:
591	ubi_err("bad EC header");
592	ubi_dbg_dump_ec_hdr(ec_hdr);
593	ubi_dbg_dump_stack();
594	return 1;
595}
596
597/**
598 * ubi_io_read_ec_hdr - read and check an erase counter header.
599 * @ubi: UBI device description object
600 * @pnum: physical eraseblock to read from
601 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
602 * header
603 * @verbose: be verbose if the header is corrupted or was not found
604 *
605 * This function reads erase counter header from physical eraseblock @pnum and
606 * stores it in @ec_hdr. This function also checks CRC checksum of the read
607 * erase counter header. The following codes may be returned:
608 *
609 * o %0 if the CRC checksum is correct and the header was successfully read;
610 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
611 *   and corrected by the flash driver; this is harmless but may indicate that
612 *   this eraseblock may become bad soon (but may be not);
613 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
614 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
615 * o a negative error code in case of failure.
616 */
617int ubi_io_read_ec_hdr(const struct ubi_device *ubi, int pnum,
618		       struct ubi_ec_hdr *ec_hdr, int verbose)
619{
620	int err, read_err = 0;
621	uint32_t crc, magic, hdr_crc;
622
623	dbg_io("read EC header from PEB %d", pnum);
624	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
625
626	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
627	if (err) {
628		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
629			return err;
630
631		/*
632		 * We read all the data, but either a correctable bit-flip
633		 * occurred, or MTD reported about some data integrity error,
634		 * like an ECC error in case of NAND. The former is harmless,
635		 * the later may mean that the read data is corrupted. But we
636		 * have a CRC check-sum and we will detect this. If the EC
637		 * header is still OK, we just report this as there was a
638		 * bit-flip.
639		 */
640		read_err = err;
641	}
642
643	magic = ubi32_to_cpu(ec_hdr->magic);
644	if (magic != UBI_EC_HDR_MAGIC) {
645		/*
646		 * The magic field is wrong. Let's check if we have read all
647		 * 0xFF. If yes, this physical eraseblock is assumed to be
648		 * empty.
649		 *
650		 * But if there was a read error, we do not test it for all
651		 * 0xFFs. Even if it does contain all 0xFFs, this error
652		 * indicates that something is still wrong with this physical
653		 * eraseblock and we anyway cannot treat it as empty.
654		 */
655		if (read_err != -EBADMSG &&
656		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
657			/* The physical eraseblock is supposedly empty */
658
659			/*
660			 * The below is just a paranoid check, it has to be
661			 * compiled out if paranoid checks are disabled.
662			 */
663			err = paranoid_check_all_ff(ubi, pnum, 0,
664						    ubi->peb_size);
665			if (err)
666				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
667
668			if (verbose)
669				ubi_warn("no EC header found at PEB %d, "
670					 "only 0xFF bytes", pnum);
671			return UBI_IO_PEB_EMPTY;
672		}
673
674		/*
675		 * This is not a valid erase counter header, and these are not
676		 * 0xFF bytes. Report that the header is corrupted.
677		 */
678		if (verbose) {
679			ubi_warn("bad magic number at PEB %d: %08x instead of "
680				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
681			ubi_dbg_dump_ec_hdr(ec_hdr);
682		}
683		return UBI_IO_BAD_EC_HDR;
684	}
685
686	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
687	hdr_crc = ubi32_to_cpu(ec_hdr->hdr_crc);
688
689	if (hdr_crc != crc) {
690		if (verbose) {
691			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
692				 " read %#08x", pnum, crc, hdr_crc);
693			ubi_dbg_dump_ec_hdr(ec_hdr);
694		}
695		return UBI_IO_BAD_EC_HDR;
696	}
697
698	/* And of course validate what has just been read from the media */
699	err = validate_ec_hdr(ubi, ec_hdr);
700	if (err) {
701		ubi_err("validation failed for PEB %d", pnum);
702		return -EINVAL;
703	}
704
705	return read_err ? UBI_IO_BITFLIPS : 0;
706}
707
708/**
709 * ubi_io_write_ec_hdr - write an erase counter header.
710 * @ubi: UBI device description object
711 * @pnum: physical eraseblock to write to
712 * @ec_hdr: the erase counter header to write
713 *
714 * This function writes erase counter header described by @ec_hdr to physical
715 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
716 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
717 * field.
718 *
719 * This function returns zero in case of success and a negative error code in
720 * case of failure. If %-EIO is returned, the physical eraseblock most probably
721 * went bad.
722 */
723int ubi_io_write_ec_hdr(const struct ubi_device *ubi, int pnum,
724			struct ubi_ec_hdr *ec_hdr)
725{
726	int err;
727	uint32_t crc;
728
729	dbg_io("write EC header to PEB %d", pnum);
730	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
731
732	ec_hdr->magic = cpu_to_ubi32(UBI_EC_HDR_MAGIC);
733	ec_hdr->version = UBI_VERSION;
734	ec_hdr->vid_hdr_offset = cpu_to_ubi32(ubi->vid_hdr_offset);
735	ec_hdr->data_offset = cpu_to_ubi32(ubi->leb_start);
736	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
737	ec_hdr->hdr_crc = cpu_to_ubi32(crc);
738
739	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
740	if (err)
741		return -EINVAL;
742
743	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
744	return err;
745}
746
747/**
748 * validate_vid_hdr - validate a volume identifier header.
749 * @ubi: UBI device description object
750 * @vid_hdr: the volume identifier header to check
751 *
752 * This function checks that data stored in the volume identifier header
753 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
754 */
755static int validate_vid_hdr(const struct ubi_device *ubi,
756			    const struct ubi_vid_hdr *vid_hdr)
757{
758	int vol_type = vid_hdr->vol_type;
759	int copy_flag = vid_hdr->copy_flag;
760	int vol_id = ubi32_to_cpu(vid_hdr->vol_id);
761	int lnum = ubi32_to_cpu(vid_hdr->lnum);
762	int compat = vid_hdr->compat;
763	int data_size = ubi32_to_cpu(vid_hdr->data_size);
764	int used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
765	int data_pad = ubi32_to_cpu(vid_hdr->data_pad);
766	int data_crc = ubi32_to_cpu(vid_hdr->data_crc);
767	int usable_leb_size = ubi->leb_size - data_pad;
768
769	if (copy_flag != 0 && copy_flag != 1) {
770		dbg_err("bad copy_flag");
771		goto bad;
772	}
773
774	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
775	    data_pad < 0) {
776		dbg_err("negative values");
777		goto bad;
778	}
779
780	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
781		dbg_err("bad vol_id");
782		goto bad;
783	}
784
785	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
786		dbg_err("bad compat");
787		goto bad;
788	}
789
790	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
791	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
792	    compat != UBI_COMPAT_REJECT) {
793		dbg_err("bad compat");
794		goto bad;
795	}
796
797	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
798		dbg_err("bad vol_type");
799		goto bad;
800	}
801
802	if (data_pad >= ubi->leb_size / 2) {
803		dbg_err("bad data_pad");
804		goto bad;
805	}
806
807	if (vol_type == UBI_VID_STATIC) {
808		/*
809		 * Although from high-level point of view static volumes may
810		 * contain zero bytes of data, but no VID headers can contain
811		 * zero at these fields, because they empty volumes do not have
812		 * mapped logical eraseblocks.
813		 */
814		if (used_ebs == 0) {
815			dbg_err("zero used_ebs");
816			goto bad;
817		}
818		if (data_size == 0) {
819			dbg_err("zero data_size");
820			goto bad;
821		}
822		if (lnum < used_ebs - 1) {
823			if (data_size != usable_leb_size) {
824				dbg_err("bad data_size");
825				goto bad;
826			}
827		} else if (lnum == used_ebs - 1) {
828			if (data_size == 0) {
829				dbg_err("bad data_size at last LEB");
830				goto bad;
831			}
832		} else {
833			dbg_err("too high lnum");
834			goto bad;
835		}
836	} else {
837		if (copy_flag == 0) {
838			if (data_crc != 0) {
839				dbg_err("non-zero data CRC");
840				goto bad;
841			}
842			if (data_size != 0) {
843				dbg_err("non-zero data_size");
844				goto bad;
845			}
846		} else {
847			if (data_size == 0) {
848				dbg_err("zero data_size of copy");
849				goto bad;
850			}
851		}
852		if (used_ebs != 0) {
853			dbg_err("bad used_ebs");
854			goto bad;
855		}
856	}
857
858	return 0;
859
860bad:
861	ubi_err("bad VID header");
862	ubi_dbg_dump_vid_hdr(vid_hdr);
863	ubi_dbg_dump_stack();
864	return 1;
865}
866
867/**
868 * ubi_io_read_vid_hdr - read and check a volume identifier header.
869 * @ubi: UBI device description object
870 * @pnum: physical eraseblock number to read from
871 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
872 * identifier header
873 * @verbose: be verbose if the header is corrupted or wasn't found
874 *
875 * This function reads the volume identifier header from physical eraseblock
876 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
877 * volume identifier header. The following codes may be returned:
878 *
879 * o %0 if the CRC checksum is correct and the header was successfully read;
880 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
881 *   and corrected by the flash driver; this is harmless but may indicate that
882 *   this eraseblock may become bad soon;
883 * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
884 *   error detected);
885 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
886 *   header there);
887 * o a negative error code in case of failure.
888 */
889int ubi_io_read_vid_hdr(const struct ubi_device *ubi, int pnum,
890			struct ubi_vid_hdr *vid_hdr, int verbose)
891{
892	int err, read_err = 0;
893	uint32_t crc, magic, hdr_crc;
894	void *p;
895
896	dbg_io("read VID header from PEB %d", pnum);
897	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
898
899	p = (char *)vid_hdr - ubi->vid_hdr_shift;
900	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
901			  ubi->vid_hdr_alsize);
902	if (err) {
903		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
904			return err;
905
906		/*
907		 * We read all the data, but either a correctable bit-flip
908		 * occurred, or MTD reported about some data integrity error,
909		 * like an ECC error in case of NAND. The former is harmless,
910		 * the later may mean the read data is corrupted. But we have a
911		 * CRC check-sum and we will identify this. If the VID header is
912		 * still OK, we just report this as there was a bit-flip.
913		 */
914		read_err = err;
915	}
916
917	magic = ubi32_to_cpu(vid_hdr->magic);
918	if (magic != UBI_VID_HDR_MAGIC) {
919		/*
920		 * If we have read all 0xFF bytes, the VID header probably does
921		 * not exist and the physical eraseblock is assumed to be free.
922		 *
923		 * But if there was a read error, we do not test the data for
924		 * 0xFFs. Even if it does contain all 0xFFs, this error
925		 * indicates that something is still wrong with this physical
926		 * eraseblock and it cannot be regarded as free.
927		 */
928		if (read_err != -EBADMSG &&
929		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
930			/* The physical eraseblock is supposedly free */
931
932			/*
933			 * The below is just a paranoid check, it has to be
934			 * compiled out if paranoid checks are disabled.
935			 */
936			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
937						    ubi->leb_size);
938			if (err)
939				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
940
941			if (verbose)
942				ubi_warn("no VID header found at PEB %d, "
943					 "only 0xFF bytes", pnum);
944			return UBI_IO_PEB_FREE;
945		}
946
947		/*
948		 * This is not a valid VID header, and these are not 0xFF
949		 * bytes. Report that the header is corrupted.
950		 */
951		if (verbose) {
952			ubi_warn("bad magic number at PEB %d: %08x instead of "
953				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
954			ubi_dbg_dump_vid_hdr(vid_hdr);
955		}
956		return UBI_IO_BAD_VID_HDR;
957	}
958
959	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
960	hdr_crc = ubi32_to_cpu(vid_hdr->hdr_crc);
961
962	if (hdr_crc != crc) {
963		if (verbose) {
964			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
965				 "read %#08x", pnum, crc, hdr_crc);
966			ubi_dbg_dump_vid_hdr(vid_hdr);
967		}
968		return UBI_IO_BAD_VID_HDR;
969	}
970
971	/* Validate the VID header that we have just read */
972	err = validate_vid_hdr(ubi, vid_hdr);
973	if (err) {
974		ubi_err("validation failed for PEB %d", pnum);
975		return -EINVAL;
976	}
977
978	return read_err ? UBI_IO_BITFLIPS : 0;
979}
980
981/**
982 * ubi_io_write_vid_hdr - write a volume identifier header.
983 * @ubi: UBI device description object
984 * @pnum: the physical eraseblock number to write to
985 * @vid_hdr: the volume identifier header to write
986 *
987 * This function writes the volume identifier header described by @vid_hdr to
988 * physical eraseblock @pnum. This function automatically fills the
989 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
990 * header CRC checksum and stores it at vid_hdr->hdr_crc.
991 *
992 * This function returns zero in case of success and a negative error code in
993 * case of failure. If %-EIO is returned, the physical eraseblock probably went
994 * bad.
995 */
996int ubi_io_write_vid_hdr(const struct ubi_device *ubi, int pnum,
997			 struct ubi_vid_hdr *vid_hdr)
998{
999	int err;
1000	uint32_t crc;
1001	void *p;
1002
1003	dbg_io("write VID header to PEB %d", pnum);
1004	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1005
1006	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1007	if (err)
1008		return err > 0 ? -EINVAL: err;
1009
1010	vid_hdr->magic = cpu_to_ubi32(UBI_VID_HDR_MAGIC);
1011	vid_hdr->version = UBI_VERSION;
1012	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1013	vid_hdr->hdr_crc = cpu_to_ubi32(crc);
1014
1015	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1016	if (err)
1017		return -EINVAL;
1018
1019	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1020	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1021			   ubi->vid_hdr_alsize);
1022	return err;
1023}
1024
1025#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1026
1027/**
1028 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1029 * @ubi: UBI device description object
1030 * @pnum: physical eraseblock number to check
1031 *
1032 * This function returns zero if the physical eraseblock is good, a positive
1033 * number if it is bad and a negative error code if an error occurred.
1034 */
1035static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1036{
1037	int err;
1038
1039	err = ubi_io_is_bad(ubi, pnum);
1040	if (!err)
1041		return err;
1042
1043	ubi_err("paranoid check failed for PEB %d", pnum);
1044	ubi_dbg_dump_stack();
1045	return err;
1046}
1047
1048/**
1049 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1050 * @ubi: UBI device description object
1051 * @pnum: physical eraseblock number the erase counter header belongs to
1052 * @ec_hdr: the erase counter header to check
1053 *
1054 * This function returns zero if the erase counter header contains valid
1055 * values, and %1 if not.
1056 */
1057static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1058				 const struct ubi_ec_hdr *ec_hdr)
1059{
1060	int err;
1061	uint32_t magic;
1062
1063	magic = ubi32_to_cpu(ec_hdr->magic);
1064	if (magic != UBI_EC_HDR_MAGIC) {
1065		ubi_err("bad magic %#08x, must be %#08x",
1066			magic, UBI_EC_HDR_MAGIC);
1067		goto fail;
1068	}
1069
1070	err = validate_ec_hdr(ubi, ec_hdr);
1071	if (err) {
1072		ubi_err("paranoid check failed for PEB %d", pnum);
1073		goto fail;
1074	}
1075
1076	return 0;
1077
1078fail:
1079	ubi_dbg_dump_ec_hdr(ec_hdr);
1080	ubi_dbg_dump_stack();
1081	return 1;
1082}
1083
1084/**
1085 * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1086 * physical eraseblock is in-place and is all right.
1087 * @ubi: UBI device description object
1088 * @pnum: the physical eraseblock number to check
1089 *
1090 * This function returns zero if the erase counter header is all right, %1 if
1091 * not, and a negative error code if an error occurred.
1092 */
1093static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1094{
1095	int err;
1096	uint32_t crc, hdr_crc;
1097	struct ubi_ec_hdr *ec_hdr;
1098
1099	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1100	if (!ec_hdr)
1101		return -ENOMEM;
1102
1103	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1104	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1105		goto exit;
1106
1107	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1108	hdr_crc = ubi32_to_cpu(ec_hdr->hdr_crc);
1109	if (hdr_crc != crc) {
1110		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1111		ubi_err("paranoid check failed for PEB %d", pnum);
1112		ubi_dbg_dump_ec_hdr(ec_hdr);
1113		ubi_dbg_dump_stack();
1114		err = 1;
1115		goto exit;
1116	}
1117
1118	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1119
1120exit:
1121	kfree(ec_hdr);
1122	return err;
1123}
1124
1125/**
1126 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock number the volume identifier header belongs to
1129 * @vid_hdr: the volume identifier header to check
1130 *
1131 * This function returns zero if the volume identifier header is all right, and
1132 * %1 if not.
1133 */
1134static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1135				  const struct ubi_vid_hdr *vid_hdr)
1136{
1137	int err;
1138	uint32_t magic;
1139
1140	magic = ubi32_to_cpu(vid_hdr->magic);
1141	if (magic != UBI_VID_HDR_MAGIC) {
1142		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1143			magic, pnum, UBI_VID_HDR_MAGIC);
1144		goto fail;
1145	}
1146
1147	err = validate_vid_hdr(ubi, vid_hdr);
1148	if (err) {
1149		ubi_err("paranoid check failed for PEB %d", pnum);
1150		goto fail;
1151	}
1152
1153	return err;
1154
1155fail:
1156	ubi_err("paranoid check failed for PEB %d", pnum);
1157	ubi_dbg_dump_vid_hdr(vid_hdr);
1158	ubi_dbg_dump_stack();
1159	return 1;
1160
1161}
1162
1163/**
1164 * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1165 * physical eraseblock is in-place and is all right.
1166 * @ubi: UBI device description object
1167 * @pnum: the physical eraseblock number to check
1168 *
1169 * This function returns zero if the volume identifier header is all right,
1170 * %1 if not, and a negative error code if an error occurred.
1171 */
1172static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1173{
1174	int err;
1175	uint32_t crc, hdr_crc;
1176	struct ubi_vid_hdr *vid_hdr;
1177	void *p;
1178
1179	vid_hdr = ubi_zalloc_vid_hdr(ubi);
1180	if (!vid_hdr)
1181		return -ENOMEM;
1182
1183	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1184	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1185			  ubi->vid_hdr_alsize);
1186	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1187		goto exit;
1188
1189	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1190	hdr_crc = ubi32_to_cpu(vid_hdr->hdr_crc);
1191	if (hdr_crc != crc) {
1192		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1193			"read %#08x", pnum, crc, hdr_crc);
1194		ubi_err("paranoid check failed for PEB %d", pnum);
1195		ubi_dbg_dump_vid_hdr(vid_hdr);
1196		ubi_dbg_dump_stack();
1197		err = 1;
1198		goto exit;
1199	}
1200
1201	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1202
1203exit:
1204	ubi_free_vid_hdr(ubi, vid_hdr);
1205	return err;
1206}
1207
1208/**
1209 * paranoid_check_all_ff - check that a region of flash is empty.
1210 * @ubi: UBI device description object
1211 * @pnum: the physical eraseblock number to check
1212 * @offset: the starting offset within the physical eraseblock to check
1213 * @len: the length of the region to check
1214 *
1215 * This function returns zero if only 0xFF bytes are present at offset
1216 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1217 * code if an error occurred.
1218 */
1219static int paranoid_check_all_ff(const struct ubi_device *ubi, int pnum,
1220				 int offset, int len)
1221{
1222	size_t read;
1223	int err;
1224	void *buf;
1225	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1226
1227	buf = kzalloc(len, GFP_KERNEL);
1228	if (!buf)
1229		return -ENOMEM;
1230
1231	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
1232	if (err && err != -EUCLEAN) {
1233		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1234			"read %zd bytes", err, len, pnum, offset, read);
1235		goto error;
1236	}
1237
1238	err = check_pattern(buf, 0xFF, len);
1239	if (err == 0) {
1240		ubi_err("flash region at PEB %d:%d, length %d does not "
1241			"contain all 0xFF bytes", pnum, offset, len);
1242		goto fail;
1243	}
1244
1245	kfree(buf);
1246	return 0;
1247
1248fail:
1249	ubi_err("paranoid check failed for PEB %d", pnum);
1250	dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1251	ubi_dbg_hexdump(buf, len);
1252	err = 1;
1253error:
1254	ubi_dbg_dump_stack();
1255	kfree(buf);
1256	return err;
1257}
1258
1259#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1260