1/*
2 *  linux/drivers/mtd/onenand/onenand_base.c
3 *
4 *  Copyright (C) 2005-2007 Samsung Electronics
5 *  Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 *  Credits:
8 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 *	auto-placement support, read-while load support, various fixes
10 *	Copyright (C) Nokia Corporation, 2007
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/sched.h>
21#include <linux/interrupt.h>
22#include <linux/jiffies.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/onenand.h>
25#include <linux/mtd/partitions.h>
26
27#include <asm/io.h>
28
29/**
30 * onenand_oob_64 - oob info for large (2KB) page
31 */
32static struct nand_ecclayout onenand_oob_64 = {
33	.eccbytes	= 20,
34	.eccpos		= {
35		8, 9, 10, 11, 12,
36		24, 25, 26, 27, 28,
37		40, 41, 42, 43, 44,
38		56, 57, 58, 59, 60,
39		},
40	.oobfree	= {
41		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42		{34, 3}, {46, 2}, {50, 3}, {62, 2}
43	}
44};
45
46/**
47 * onenand_oob_32 - oob info for middle (1KB) page
48 */
49static struct nand_ecclayout onenand_oob_32 = {
50	.eccbytes	= 10,
51	.eccpos		= {
52		8, 9, 10, 11, 12,
53		24, 25, 26, 27, 28,
54		},
55	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
56};
57
58static const unsigned char ffchars[] = {
59	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
60	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
61	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
63	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
64	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
65	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
66	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
67};
68
69/**
70 * onenand_readw - [OneNAND Interface] Read OneNAND register
71 * @param addr		address to read
72 *
73 * Read OneNAND register
74 */
75static unsigned short onenand_readw(void __iomem *addr)
76{
77	return readw(addr);
78}
79
80/**
81 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
82 * @param value		value to write
83 * @param addr		address to write
84 *
85 * Write OneNAND register with value
86 */
87static void onenand_writew(unsigned short value, void __iomem *addr)
88{
89	writew(value, addr);
90}
91
92/**
93 * onenand_block_address - [DEFAULT] Get block address
94 * @param this		onenand chip data structure
95 * @param block		the block
96 * @return		translated block address if DDP, otherwise same
97 *
98 * Setup Start Address 1 Register (F100h)
99 */
100static int onenand_block_address(struct onenand_chip *this, int block)
101{
102	/* Device Flash Core select, NAND Flash Block Address */
103	if (block & this->density_mask)
104		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105
106	return block;
107}
108
109/**
110 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111 * @param this		onenand chip data structure
112 * @param block		the block
113 * @return		set DBS value if DDP, otherwise 0
114 *
115 * Setup Start Address 2 Register (F101h) for DDP
116 */
117static int onenand_bufferram_address(struct onenand_chip *this, int block)
118{
119	/* Device BufferRAM Select */
120	if (block & this->density_mask)
121		return ONENAND_DDP_CHIP1;
122
123	return ONENAND_DDP_CHIP0;
124}
125
126/**
127 * onenand_page_address - [DEFAULT] Get page address
128 * @param page		the page address
129 * @param sector	the sector address
130 * @return		combined page and sector address
131 *
132 * Setup Start Address 8 Register (F107h)
133 */
134static int onenand_page_address(int page, int sector)
135{
136	/* Flash Page Address, Flash Sector Address */
137	int fpa, fsa;
138
139	fpa = page & ONENAND_FPA_MASK;
140	fsa = sector & ONENAND_FSA_MASK;
141
142	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
143}
144
145/**
146 * onenand_buffer_address - [DEFAULT] Get buffer address
147 * @param dataram1	DataRAM index
148 * @param sectors	the sector address
149 * @param count		the number of sectors
150 * @return		the start buffer value
151 *
152 * Setup Start Buffer Register (F200h)
153 */
154static int onenand_buffer_address(int dataram1, int sectors, int count)
155{
156	int bsa, bsc;
157
158	/* BufferRAM Sector Address */
159	bsa = sectors & ONENAND_BSA_MASK;
160
161	if (dataram1)
162		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
163	else
164		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
165
166	/* BufferRAM Sector Count */
167	bsc = count & ONENAND_BSC_MASK;
168
169	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
170}
171
172/**
173 * onenand_command - [DEFAULT] Send command to OneNAND device
174 * @param mtd		MTD device structure
175 * @param cmd		the command to be sent
176 * @param addr		offset to read from or write to
177 * @param len		number of bytes to read or write
178 *
179 * Send command to OneNAND device. This function is used for middle/large page
180 * devices (1KB/2KB Bytes per page)
181 */
182static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
183{
184	struct onenand_chip *this = mtd->priv;
185	int value, readcmd = 0, block_cmd = 0;
186	int block, page;
187
188	/* Address translation */
189	switch (cmd) {
190	case ONENAND_CMD_UNLOCK:
191	case ONENAND_CMD_LOCK:
192	case ONENAND_CMD_LOCK_TIGHT:
193	case ONENAND_CMD_UNLOCK_ALL:
194		block = -1;
195		page = -1;
196		break;
197
198	case ONENAND_CMD_ERASE:
199	case ONENAND_CMD_BUFFERRAM:
200	case ONENAND_CMD_OTP_ACCESS:
201		block_cmd = 1;
202		block = (int) (addr >> this->erase_shift);
203		page = -1;
204		break;
205
206	default:
207		block = (int) (addr >> this->erase_shift);
208		page = (int) (addr >> this->page_shift);
209		page &= this->page_mask;
210		break;
211	}
212
213	/* NOTE: The setting order of the registers is very important! */
214	if (cmd == ONENAND_CMD_BUFFERRAM) {
215		/* Select DataRAM for DDP */
216		value = onenand_bufferram_address(this, block);
217		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
218
219		/* Switch to the next data buffer */
220		ONENAND_SET_NEXT_BUFFERRAM(this);
221
222		return 0;
223	}
224
225	if (block != -1) {
226		/* Write 'DFS, FBA' of Flash */
227		value = onenand_block_address(this, block);
228		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
229
230		if (block_cmd) {
231			/* Select DataRAM for DDP */
232			value = onenand_bufferram_address(this, block);
233			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
234		}
235	}
236
237	if (page != -1) {
238		/* Now we use page size operation */
239		int sectors = 4, count = 4;
240		int dataram;
241
242		switch (cmd) {
243		case ONENAND_CMD_READ:
244		case ONENAND_CMD_READOOB:
245			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
246			readcmd = 1;
247			break;
248
249		default:
250			dataram = ONENAND_CURRENT_BUFFERRAM(this);
251			break;
252		}
253
254		/* Write 'FPA, FSA' of Flash */
255		value = onenand_page_address(page, sectors);
256		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
257
258		/* Write 'BSA, BSC' of DataRAM */
259		value = onenand_buffer_address(dataram, sectors, count);
260		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
261
262		if (readcmd) {
263			/* Select DataRAM for DDP */
264			value = onenand_bufferram_address(this, block);
265			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
266		}
267	}
268
269	/* Interrupt clear */
270	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
271
272	/* Write command */
273	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
274
275	return 0;
276}
277
278/**
279 * onenand_wait - [DEFAULT] wait until the command is done
280 * @param mtd		MTD device structure
281 * @param state		state to select the max. timeout value
282 *
283 * Wait for command done. This applies to all OneNAND command
284 * Read can take up to 30us, erase up to 2ms and program up to 350us
285 * according to general OneNAND specs
286 */
287static int onenand_wait(struct mtd_info *mtd, int state)
288{
289	struct onenand_chip * this = mtd->priv;
290	unsigned long timeout;
291	unsigned int flags = ONENAND_INT_MASTER;
292	unsigned int interrupt = 0;
293	unsigned int ctrl;
294
295	/* The 20 msec is enough */
296	timeout = jiffies + msecs_to_jiffies(20);
297	while (time_before(jiffies, timeout)) {
298		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
299
300		if (interrupt & flags)
301			break;
302
303		if (state != FL_READING)
304			cond_resched();
305	}
306	/* To get correct interrupt status in timeout case */
307	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
308
309	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
310
311	if (ctrl & ONENAND_CTRL_ERROR) {
312		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
313		if (ctrl & ONENAND_CTRL_LOCK)
314			printk(KERN_ERR "onenand_wait: it's locked error.\n");
315		return ctrl;
316	}
317
318	if (interrupt & ONENAND_INT_READ) {
319		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
320		if (ecc) {
321			printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
322			if (ecc & ONENAND_ECC_2BIT_ALL) {
323				mtd->ecc_stats.failed++;
324				return ecc;
325			} else if (ecc & ONENAND_ECC_1BIT_ALL)
326				mtd->ecc_stats.corrected++;
327		}
328	} else if (state == FL_READING) {
329		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
330		return -EIO;
331	}
332
333	return 0;
334}
335
336/*
337 * onenand_interrupt - [DEFAULT] onenand interrupt handler
338 * @param irq		onenand interrupt number
339 * @param dev_id	interrupt data
340 *
341 * complete the work
342 */
343static irqreturn_t onenand_interrupt(int irq, void *data)
344{
345	struct onenand_chip *this = (struct onenand_chip *) data;
346
347	/* To handle shared interrupt */
348	if (!this->complete.done)
349		complete(&this->complete);
350
351	return IRQ_HANDLED;
352}
353
354/*
355 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
356 * @param mtd		MTD device structure
357 * @param state		state to select the max. timeout value
358 *
359 * Wait for command done.
360 */
361static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
362{
363	struct onenand_chip *this = mtd->priv;
364
365	wait_for_completion(&this->complete);
366
367	return onenand_wait(mtd, state);
368}
369
370/*
371 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
372 * @param mtd		MTD device structure
373 * @param state		state to select the max. timeout value
374 *
375 * Try interrupt based wait (It is used one-time)
376 */
377static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
378{
379	struct onenand_chip *this = mtd->priv;
380	unsigned long remain, timeout;
381
382	/* We use interrupt wait first */
383	this->wait = onenand_interrupt_wait;
384
385	timeout = msecs_to_jiffies(100);
386	remain = wait_for_completion_timeout(&this->complete, timeout);
387	if (!remain) {
388		printk(KERN_INFO "OneNAND: There's no interrupt. "
389				"We use the normal wait\n");
390
391		/* Release the irq */
392		free_irq(this->irq, this);
393
394		this->wait = onenand_wait;
395	}
396
397	return onenand_wait(mtd, state);
398}
399
400/*
401 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
402 * @param mtd		MTD device structure
403 *
404 * There's two method to wait onenand work
405 * 1. polling - read interrupt status register
406 * 2. interrupt - use the kernel interrupt method
407 */
408static void onenand_setup_wait(struct mtd_info *mtd)
409{
410	struct onenand_chip *this = mtd->priv;
411	int syscfg;
412
413	init_completion(&this->complete);
414
415	if (this->irq <= 0) {
416		this->wait = onenand_wait;
417		return;
418	}
419
420	if (request_irq(this->irq, &onenand_interrupt,
421				IRQF_SHARED, "onenand", this)) {
422		/* If we can't get irq, use the normal wait */
423		this->wait = onenand_wait;
424		return;
425	}
426
427	/* Enable interrupt */
428	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
429	syscfg |= ONENAND_SYS_CFG1_IOBE;
430	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
431
432	this->wait = onenand_try_interrupt_wait;
433}
434
435/**
436 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
437 * @param mtd		MTD data structure
438 * @param area		BufferRAM area
439 * @return		offset given area
440 *
441 * Return BufferRAM offset given area
442 */
443static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
444{
445	struct onenand_chip *this = mtd->priv;
446
447	if (ONENAND_CURRENT_BUFFERRAM(this)) {
448		if (area == ONENAND_DATARAM)
449			return mtd->writesize;
450		if (area == ONENAND_SPARERAM)
451			return mtd->oobsize;
452	}
453
454	return 0;
455}
456
457/**
458 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
459 * @param mtd		MTD data structure
460 * @param area		BufferRAM area
461 * @param buffer	the databuffer to put/get data
462 * @param offset	offset to read from or write to
463 * @param count		number of bytes to read/write
464 *
465 * Read the BufferRAM area
466 */
467static int onenand_read_bufferram(struct mtd_info *mtd, int area,
468		unsigned char *buffer, int offset, size_t count)
469{
470	struct onenand_chip *this = mtd->priv;
471	void __iomem *bufferram;
472
473	bufferram = this->base + area;
474
475	bufferram += onenand_bufferram_offset(mtd, area);
476
477	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
478		unsigned short word;
479
480		/* Align with word(16-bit) size */
481		count--;
482
483		/* Read word and save byte */
484		word = this->read_word(bufferram + offset + count);
485		buffer[count] = (word & 0xff);
486	}
487
488	memcpy(buffer, bufferram + offset, count);
489
490	return 0;
491}
492
493/**
494 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
495 * @param mtd		MTD data structure
496 * @param area		BufferRAM area
497 * @param buffer	the databuffer to put/get data
498 * @param offset	offset to read from or write to
499 * @param count		number of bytes to read/write
500 *
501 * Read the BufferRAM area with Sync. Burst Mode
502 */
503static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
504		unsigned char *buffer, int offset, size_t count)
505{
506	struct onenand_chip *this = mtd->priv;
507	void __iomem *bufferram;
508
509	bufferram = this->base + area;
510
511	bufferram += onenand_bufferram_offset(mtd, area);
512
513	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
514
515	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
516		unsigned short word;
517
518		/* Align with word(16-bit) size */
519		count--;
520
521		/* Read word and save byte */
522		word = this->read_word(bufferram + offset + count);
523		buffer[count] = (word & 0xff);
524	}
525
526	memcpy(buffer, bufferram + offset, count);
527
528	this->mmcontrol(mtd, 0);
529
530	return 0;
531}
532
533/**
534 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
535 * @param mtd		MTD data structure
536 * @param area		BufferRAM area
537 * @param buffer	the databuffer to put/get data
538 * @param offset	offset to read from or write to
539 * @param count		number of bytes to read/write
540 *
541 * Write the BufferRAM area
542 */
543static int onenand_write_bufferram(struct mtd_info *mtd, int area,
544		const unsigned char *buffer, int offset, size_t count)
545{
546	struct onenand_chip *this = mtd->priv;
547	void __iomem *bufferram;
548
549	bufferram = this->base + area;
550
551	bufferram += onenand_bufferram_offset(mtd, area);
552
553	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
554		unsigned short word;
555		int byte_offset;
556
557		/* Align with word(16-bit) size */
558		count--;
559
560		/* Calculate byte access offset */
561		byte_offset = offset + count;
562
563		/* Read word and save byte */
564		word = this->read_word(bufferram + byte_offset);
565		word = (word & ~0xff) | buffer[count];
566		this->write_word(word, bufferram + byte_offset);
567	}
568
569	memcpy(bufferram + offset, buffer, count);
570
571	return 0;
572}
573
574/**
575 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
576 * @param mtd		MTD data structure
577 * @param addr		address to check
578 * @return		1 if there are valid data, otherwise 0
579 *
580 * Check bufferram if there is data we required
581 */
582static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
583{
584	struct onenand_chip *this = mtd->priv;
585	int blockpage, found = 0;
586	unsigned int i;
587
588	blockpage = (int) (addr >> this->page_shift);
589
590	/* Is there valid data? */
591	i = ONENAND_CURRENT_BUFFERRAM(this);
592	if (this->bufferram[i].blockpage == blockpage)
593		found = 1;
594	else {
595		/* Check another BufferRAM */
596		i = ONENAND_NEXT_BUFFERRAM(this);
597		if (this->bufferram[i].blockpage == blockpage) {
598			ONENAND_SET_NEXT_BUFFERRAM(this);
599			found = 1;
600		}
601	}
602
603	if (found && ONENAND_IS_DDP(this)) {
604		/* Select DataRAM for DDP */
605		int block = (int) (addr >> this->erase_shift);
606		int value = onenand_bufferram_address(this, block);
607		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
608	}
609
610	return found;
611}
612
613/**
614 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
615 * @param mtd		MTD data structure
616 * @param addr		address to update
617 * @param valid		valid flag
618 *
619 * Update BufferRAM information
620 */
621static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
622		int valid)
623{
624	struct onenand_chip *this = mtd->priv;
625	int blockpage;
626	unsigned int i;
627
628	blockpage = (int) (addr >> this->page_shift);
629
630	/* Invalidate another BufferRAM */
631	i = ONENAND_NEXT_BUFFERRAM(this);
632	if (this->bufferram[i].blockpage == blockpage)
633		this->bufferram[i].blockpage = -1;
634
635	/* Update BufferRAM */
636	i = ONENAND_CURRENT_BUFFERRAM(this);
637	if (valid)
638		this->bufferram[i].blockpage = blockpage;
639	else
640		this->bufferram[i].blockpage = -1;
641}
642
643/**
644 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
645 * @param mtd		MTD data structure
646 * @param addr		start address to invalidate
647 * @param len		length to invalidate
648 *
649 * Invalidate BufferRAM information
650 */
651static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
652		unsigned int len)
653{
654	struct onenand_chip *this = mtd->priv;
655	int i;
656	loff_t end_addr = addr + len;
657
658	/* Invalidate BufferRAM */
659	for (i = 0; i < MAX_BUFFERRAM; i++) {
660		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
661		if (buf_addr >= addr && buf_addr < end_addr)
662			this->bufferram[i].blockpage = -1;
663	}
664}
665
666/**
667 * onenand_get_device - [GENERIC] Get chip for selected access
668 * @param mtd		MTD device structure
669 * @param new_state	the state which is requested
670 *
671 * Get the device and lock it for exclusive access
672 */
673static int onenand_get_device(struct mtd_info *mtd, int new_state)
674{
675	struct onenand_chip *this = mtd->priv;
676	DECLARE_WAITQUEUE(wait, current);
677
678	/*
679	 * Grab the lock and see if the device is available
680	 */
681	while (1) {
682		spin_lock(&this->chip_lock);
683		if (this->state == FL_READY) {
684			this->state = new_state;
685			spin_unlock(&this->chip_lock);
686			break;
687		}
688		if (new_state == FL_PM_SUSPENDED) {
689			spin_unlock(&this->chip_lock);
690			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
691		}
692		set_current_state(TASK_UNINTERRUPTIBLE);
693		add_wait_queue(&this->wq, &wait);
694		spin_unlock(&this->chip_lock);
695		schedule();
696		remove_wait_queue(&this->wq, &wait);
697	}
698
699	return 0;
700}
701
702/**
703 * onenand_release_device - [GENERIC] release chip
704 * @param mtd		MTD device structure
705 *
706 * Deselect, release chip lock and wake up anyone waiting on the device
707 */
708static void onenand_release_device(struct mtd_info *mtd)
709{
710	struct onenand_chip *this = mtd->priv;
711
712	/* Release the chip */
713	spin_lock(&this->chip_lock);
714	this->state = FL_READY;
715	wake_up(&this->wq);
716	spin_unlock(&this->chip_lock);
717}
718
719/**
720 * onenand_read - [MTD Interface] Read data from flash
721 * @param mtd		MTD device structure
722 * @param from		offset to read from
723 * @param len		number of bytes to read
724 * @param retlen	pointer to variable to store the number of read bytes
725 * @param buf		the databuffer to put data
726 *
727 * Read with ecc
728*/
729static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
730	size_t *retlen, u_char *buf)
731{
732	struct onenand_chip *this = mtd->priv;
733	struct mtd_ecc_stats stats;
734	int read = 0, column;
735	int thislen;
736	int ret = 0, boundary = 0;
737
738	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
739
740	/* Do not allow reads past end of device */
741	if ((from + len) > mtd->size) {
742		printk(KERN_ERR "onenand_read: Attempt read beyond end of device\n");
743		*retlen = 0;
744		return -EINVAL;
745	}
746
747	/* Grab the lock and see if the device is available */
748	onenand_get_device(mtd, FL_READING);
749
750	stats = mtd->ecc_stats;
751
752 	/* Read-while-load method */
753
754 	/* Do first load to bufferRAM */
755 	if (read < len) {
756 		if (!onenand_check_bufferram(mtd, from)) {
757 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
758 			ret = this->wait(mtd, FL_READING);
759 			onenand_update_bufferram(mtd, from, !ret);
760 		}
761 	}
762
763 	thislen = min_t(int, mtd->writesize, len - read);
764 	column = from & (mtd->writesize - 1);
765 	if (column + thislen > mtd->writesize)
766 		thislen = mtd->writesize - column;
767
768 	while (!ret) {
769 		/* If there is more to load then start next load */
770 		from += thislen;
771 		if (read + thislen < len) {
772 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
773 			/*
774 			 * Chip boundary handling in DDP
775 			 * Now we issued chip 1 read and pointed chip 1
776 			 * bufferam so we have to point chip 0 bufferam.
777 			 */
778 			if (ONENAND_IS_DDP(this) &&
779 			    unlikely(from == (this->chipsize >> 1))) {
780 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
781 				boundary = 1;
782 			} else
783 				boundary = 0;
784 			ONENAND_SET_PREV_BUFFERRAM(this);
785 		}
786 		/* While load is going, read from last bufferRAM */
787 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
788 		/* See if we are done */
789 		read += thislen;
790 		if (read == len)
791 			break;
792 		/* Set up for next read from bufferRAM */
793 		if (unlikely(boundary))
794 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
795 		ONENAND_SET_NEXT_BUFFERRAM(this);
796 		buf += thislen;
797 		thislen = min_t(int, mtd->writesize, len - read);
798 		column = 0;
799 		cond_resched();
800 		/* Now wait for load */
801 		ret = this->wait(mtd, FL_READING);
802 		onenand_update_bufferram(mtd, from, !ret);
803 	}
804
805	/* Deselect and wake up anyone waiting on the device */
806	onenand_release_device(mtd);
807
808	/*
809	 * Return success, if no ECC failures, else -EBADMSG
810	 * fs driver will take care of that, because
811	 * retlen == desired len and result == -EBADMSG
812	 */
813	*retlen = read;
814
815	if (mtd->ecc_stats.failed - stats.failed)
816		return -EBADMSG;
817
818	if (ret)
819		return ret;
820
821	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
822}
823
824/**
825 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
826 * @param mtd		MTD device structure
827 * @param buf		destination address
828 * @param column	oob offset to read from
829 * @param thislen	oob length to read
830 */
831static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
832				int thislen)
833{
834	struct onenand_chip *this = mtd->priv;
835	struct nand_oobfree *free;
836	int readcol = column;
837	int readend = column + thislen;
838	int lastgap = 0;
839	unsigned int i;
840	uint8_t *oob_buf = this->oob_buf;
841
842	free = this->ecclayout->oobfree;
843	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
844		if (readcol >= lastgap)
845			readcol += free->offset - lastgap;
846		if (readend >= lastgap)
847			readend += free->offset - lastgap;
848		lastgap = free->offset + free->length;
849	}
850	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
851	free = this->ecclayout->oobfree;
852	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
853		int free_end = free->offset + free->length;
854		if (free->offset < readend && free_end > readcol) {
855			int st = max_t(int,free->offset,readcol);
856			int ed = min_t(int,free_end,readend);
857			int n = ed - st;
858			memcpy(buf, oob_buf + st, n);
859			buf += n;
860		} else if (column == 0)
861			break;
862	}
863	return 0;
864}
865
866/**
867 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
868 * @param mtd		MTD device structure
869 * @param from		offset to read from
870 * @param len		number of bytes to read
871 * @param retlen	pointer to variable to store the number of read bytes
872 * @param buf		the databuffer to put data
873 * @param mode		operation mode
874 *
875 * OneNAND read out-of-band data from the spare area
876 */
877static int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
878			size_t *retlen, u_char *buf, mtd_oob_mode_t mode)
879{
880	struct onenand_chip *this = mtd->priv;
881	int read = 0, thislen, column, oobsize;
882	int ret = 0;
883
884	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
885
886	/* Initialize return length value */
887	*retlen = 0;
888
889	if (mode == MTD_OOB_AUTO)
890		oobsize = this->ecclayout->oobavail;
891	else
892		oobsize = mtd->oobsize;
893
894	column = from & (mtd->oobsize - 1);
895
896	if (unlikely(column >= oobsize)) {
897		printk(KERN_ERR "onenand_read_oob: Attempted to start read outside oob\n");
898		return -EINVAL;
899	}
900
901	/* Do not allow reads past end of device */
902	if (unlikely(from >= mtd->size ||
903		     column + len > ((mtd->size >> this->page_shift) -
904				     (from >> this->page_shift)) * oobsize)) {
905		printk(KERN_ERR "onenand_read_oob: Attempted to read beyond end of device\n");
906		return -EINVAL;
907	}
908
909	/* Grab the lock and see if the device is available */
910	onenand_get_device(mtd, FL_READING);
911
912	while (read < len) {
913		cond_resched();
914
915		thislen = oobsize - column;
916		thislen = min_t(int, thislen, len);
917
918		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
919
920		onenand_update_bufferram(mtd, from, 0);
921
922		ret = this->wait(mtd, FL_READING);
923		/* First copy data and check return value for ECC handling */
924
925		if (mode == MTD_OOB_AUTO)
926			onenand_transfer_auto_oob(mtd, buf, column, thislen);
927		else
928			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
929
930		if (ret) {
931			printk(KERN_ERR "onenand_read_oob: read failed = 0x%x\n", ret);
932			break;
933		}
934
935		read += thislen;
936
937		if (read == len)
938			break;
939
940		buf += thislen;
941
942		/* Read more? */
943		if (read < len) {
944			/* Page size */
945			from += mtd->writesize;
946			column = 0;
947		}
948	}
949
950	/* Deselect and wake up anyone waiting on the device */
951	onenand_release_device(mtd);
952
953	*retlen = read;
954	return ret;
955}
956
957/**
958 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
959 * @param mtd:		MTD device structure
960 * @param from:		offset to read from
961 * @param ops:		oob operation description structure
962 */
963static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
964			    struct mtd_oob_ops *ops)
965{
966	switch (ops->mode) {
967	case MTD_OOB_PLACE:
968	case MTD_OOB_AUTO:
969		break;
970	case MTD_OOB_RAW:
971		/* Not implemented yet */
972	default:
973		return -EINVAL;
974	}
975	return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
976				   &ops->oobretlen, ops->oobbuf, ops->mode);
977}
978
979/**
980 * onenand_bbt_wait - [DEFAULT] wait until the command is done
981 * @param mtd		MTD device structure
982 * @param state		state to select the max. timeout value
983 *
984 * Wait for command done.
985 */
986static int onenand_bbt_wait(struct mtd_info *mtd, int state)
987{
988	struct onenand_chip *this = mtd->priv;
989	unsigned long timeout;
990	unsigned int interrupt;
991	unsigned int ctrl;
992
993	/* The 20 msec is enough */
994	timeout = jiffies + msecs_to_jiffies(20);
995	while (time_before(jiffies, timeout)) {
996		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
997		if (interrupt & ONENAND_INT_MASTER)
998			break;
999	}
1000	/* To get correct interrupt status in timeout case */
1001	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1002	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1003
1004	if (ctrl & ONENAND_CTRL_ERROR) {
1005		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1006		/* Initial bad block case */
1007		if (ctrl & ONENAND_CTRL_LOAD)
1008			return ONENAND_BBT_READ_ERROR;
1009		return ONENAND_BBT_READ_FATAL_ERROR;
1010	}
1011
1012	if (interrupt & ONENAND_INT_READ) {
1013		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1014		if (ecc & ONENAND_ECC_2BIT_ALL)
1015			return ONENAND_BBT_READ_ERROR;
1016	} else {
1017		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1018			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1019		return ONENAND_BBT_READ_FATAL_ERROR;
1020	}
1021
1022	return 0;
1023}
1024
1025/**
1026 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1027 * @param mtd		MTD device structure
1028 * @param from		offset to read from
1029 * @param ops		oob operation description structure
1030 *
1031 * OneNAND read out-of-band data from the spare area for bbt scan
1032 */
1033int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1034			    struct mtd_oob_ops *ops)
1035{
1036	struct onenand_chip *this = mtd->priv;
1037	int read = 0, thislen, column;
1038	int ret = 0;
1039	size_t len = ops->ooblen;
1040	u_char *buf = ops->oobbuf;
1041
1042	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1043
1044	/* Initialize return value */
1045	ops->oobretlen = 0;
1046
1047	/* Do not allow reads past end of device */
1048	if (unlikely((from + len) > mtd->size)) {
1049		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1050		return ONENAND_BBT_READ_FATAL_ERROR;
1051	}
1052
1053	/* Grab the lock and see if the device is available */
1054	onenand_get_device(mtd, FL_READING);
1055
1056	column = from & (mtd->oobsize - 1);
1057
1058	while (read < len) {
1059		cond_resched();
1060
1061		thislen = mtd->oobsize - column;
1062		thislen = min_t(int, thislen, len);
1063
1064		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1065
1066		onenand_update_bufferram(mtd, from, 0);
1067
1068		ret = onenand_bbt_wait(mtd, FL_READING);
1069		if (ret)
1070			break;
1071
1072		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1073		read += thislen;
1074		if (read == len)
1075			break;
1076
1077		buf += thislen;
1078
1079		/* Read more? */
1080		if (read < len) {
1081			/* Update Page size */
1082			from += mtd->writesize;
1083			column = 0;
1084		}
1085	}
1086
1087	/* Deselect and wake up anyone waiting on the device */
1088	onenand_release_device(mtd);
1089
1090	ops->oobretlen = read;
1091	return ret;
1092}
1093
1094#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1095/**
1096 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1097 * @param mtd		MTD device structure
1098 * @param buf		the databuffer to verify
1099 * @param to		offset to read from
1100 *
1101 */
1102static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1103{
1104	struct onenand_chip *this = mtd->priv;
1105	char oobbuf[64];
1106	int status, i;
1107
1108	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1109	onenand_update_bufferram(mtd, to, 0);
1110	status = this->wait(mtd, FL_READING);
1111	if (status)
1112		return status;
1113
1114	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1115	for (i = 0; i < mtd->oobsize; i++)
1116		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1117			return -EBADMSG;
1118
1119	return 0;
1120}
1121
1122/**
1123 * onenand_verify - [GENERIC] verify the chip contents after a write
1124 * @param mtd          MTD device structure
1125 * @param buf          the databuffer to verify
1126 * @param addr         offset to read from
1127 * @param len          number of bytes to read and compare
1128 *
1129 */
1130static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1131{
1132	struct onenand_chip *this = mtd->priv;
1133	void __iomem *dataram;
1134	int ret = 0;
1135	int thislen, column;
1136
1137	while (len != 0) {
1138		thislen = min_t(int, mtd->writesize, len);
1139		column = addr & (mtd->writesize - 1);
1140		if (column + thislen > mtd->writesize)
1141			thislen = mtd->writesize - column;
1142
1143		this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
1144
1145		onenand_update_bufferram(mtd, addr, 0);
1146
1147		ret = this->wait(mtd, FL_READING);
1148		if (ret)
1149			return ret;
1150
1151		onenand_update_bufferram(mtd, addr, 1);
1152
1153		dataram = this->base + ONENAND_DATARAM;
1154		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1155
1156		if (memcmp(buf, dataram + column, thislen))
1157			return -EBADMSG;
1158
1159		len -= thislen;
1160		buf += thislen;
1161		addr += thislen;
1162	}
1163
1164	return 0;
1165}
1166#else
1167#define onenand_verify(...)		(0)
1168#define onenand_verify_oob(...)		(0)
1169#endif
1170
1171#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1172
1173/**
1174 * onenand_write - [MTD Interface] write buffer to FLASH
1175 * @param mtd		MTD device structure
1176 * @param to		offset to write to
1177 * @param len		number of bytes to write
1178 * @param retlen	pointer to variable to store the number of written bytes
1179 * @param buf		the data to write
1180 *
1181 * Write with ECC
1182 */
1183static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1184	size_t *retlen, const u_char *buf)
1185{
1186	struct onenand_chip *this = mtd->priv;
1187	int written = 0;
1188	int ret = 0;
1189	int column, subpage;
1190
1191	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1192
1193	/* Initialize retlen, in case of early exit */
1194	*retlen = 0;
1195
1196	/* Do not allow writes past end of device */
1197	if (unlikely((to + len) > mtd->size)) {
1198		printk(KERN_ERR "onenand_write: Attempt write to past end of device\n");
1199		return -EINVAL;
1200	}
1201
1202	/* Reject writes, which are not page aligned */
1203        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1204                printk(KERN_ERR "onenand_write: Attempt to write not page aligned data\n");
1205                return -EINVAL;
1206        }
1207
1208	column = to & (mtd->writesize - 1);
1209
1210	/* Grab the lock and see if the device is available */
1211	onenand_get_device(mtd, FL_WRITING);
1212
1213	/* Loop until all data write */
1214	while (written < len) {
1215		int thislen = min_t(int, mtd->writesize - column, len - written);
1216		u_char *wbuf = (u_char *) buf;
1217
1218		cond_resched();
1219
1220		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1221
1222		/* Partial page write */
1223		subpage = thislen < mtd->writesize;
1224		if (subpage) {
1225			memset(this->page_buf, 0xff, mtd->writesize);
1226			memcpy(this->page_buf + column, buf, thislen);
1227			wbuf = this->page_buf;
1228		}
1229
1230		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1231		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1232
1233		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1234
1235		ret = this->wait(mtd, FL_WRITING);
1236
1237		/* In partial page write we don't update bufferram */
1238		onenand_update_bufferram(mtd, to, !ret && !subpage);
1239
1240		if (ret) {
1241			printk(KERN_ERR "onenand_write: write filaed %d\n", ret);
1242			break;
1243		}
1244
1245		/* Only check verify write turn on */
1246		ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1247		if (ret) {
1248			printk(KERN_ERR "onenand_write: verify failed %d\n", ret);
1249			break;
1250		}
1251
1252		written += thislen;
1253
1254		if (written == len)
1255			break;
1256
1257		column = 0;
1258		to += thislen;
1259		buf += thislen;
1260	}
1261
1262	/* Deselect and wake up anyone waiting on the device */
1263	onenand_release_device(mtd);
1264
1265	*retlen = written;
1266
1267	return ret;
1268}
1269
1270/**
1271 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1272 * @param mtd		MTD device structure
1273 * @param oob_buf	oob buffer
1274 * @param buf		source address
1275 * @param column	oob offset to write to
1276 * @param thislen	oob length to write
1277 */
1278static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1279				  const u_char *buf, int column, int thislen)
1280{
1281	struct onenand_chip *this = mtd->priv;
1282	struct nand_oobfree *free;
1283	int writecol = column;
1284	int writeend = column + thislen;
1285	int lastgap = 0;
1286	unsigned int i;
1287
1288	free = this->ecclayout->oobfree;
1289	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1290		if (writecol >= lastgap)
1291			writecol += free->offset - lastgap;
1292		if (writeend >= lastgap)
1293			writeend += free->offset - lastgap;
1294		lastgap = free->offset + free->length;
1295	}
1296	free = this->ecclayout->oobfree;
1297	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1298		int free_end = free->offset + free->length;
1299		if (free->offset < writeend && free_end > writecol) {
1300			int st = max_t(int,free->offset,writecol);
1301			int ed = min_t(int,free_end,writeend);
1302			int n = ed - st;
1303			memcpy(oob_buf + st, buf, n);
1304			buf += n;
1305		} else if (column == 0)
1306			break;
1307	}
1308	return 0;
1309}
1310
1311/**
1312 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1313 * @param mtd		MTD device structure
1314 * @param to		offset to write to
1315 * @param len		number of bytes to write
1316 * @param retlen	pointer to variable to store the number of written bytes
1317 * @param buf		the data to write
1318 * @param mode		operation mode
1319 *
1320 * OneNAND write out-of-band
1321 */
1322static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1323				size_t *retlen, const u_char *buf, mtd_oob_mode_t mode)
1324{
1325	struct onenand_chip *this = mtd->priv;
1326	int column, ret = 0, oobsize;
1327	int written = 0;
1328	u_char *oobbuf;
1329
1330	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1331
1332	/* Initialize retlen, in case of early exit */
1333	*retlen = 0;
1334
1335	if (mode == MTD_OOB_AUTO)
1336		oobsize = this->ecclayout->oobavail;
1337	else
1338		oobsize = mtd->oobsize;
1339
1340	column = to & (mtd->oobsize - 1);
1341
1342	if (unlikely(column >= oobsize)) {
1343		printk(KERN_ERR "onenand_write_oob: Attempted to start write outside oob\n");
1344		return -EINVAL;
1345	}
1346
1347	/* For compatibility with NAND: Do not allow write past end of page */
1348	if (unlikely(column + len > oobsize)) {
1349		printk(KERN_ERR "onenand_write_oob: "
1350		      "Attempt to write past end of page\n");
1351		return -EINVAL;
1352	}
1353
1354	/* Do not allow reads past end of device */
1355	if (unlikely(to >= mtd->size ||
1356		     column + len > ((mtd->size >> this->page_shift) -
1357				     (to >> this->page_shift)) * oobsize)) {
1358		printk(KERN_ERR "onenand_write_oob: Attempted to write past end of device\n");
1359		return -EINVAL;
1360	}
1361
1362	/* Grab the lock and see if the device is available */
1363	onenand_get_device(mtd, FL_WRITING);
1364
1365	oobbuf = this->oob_buf;
1366
1367	/* Loop until all data write */
1368	while (written < len) {
1369		int thislen = min_t(int, oobsize, len - written);
1370
1371		cond_resched();
1372
1373		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1374
1375		/* We send data to spare ram with oobsize
1376		 * to prevent byte access */
1377		memset(oobbuf, 0xff, mtd->oobsize);
1378		if (mode == MTD_OOB_AUTO)
1379			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1380		else
1381			memcpy(oobbuf + column, buf, thislen);
1382		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1383
1384		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1385
1386		onenand_update_bufferram(mtd, to, 0);
1387
1388		ret = this->wait(mtd, FL_WRITING);
1389		if (ret) {
1390			printk(KERN_ERR "onenand_write_oob: write failed %d\n", ret);
1391			break;
1392		}
1393
1394		ret = onenand_verify_oob(mtd, oobbuf, to);
1395		if (ret) {
1396			printk(KERN_ERR "onenand_write_oob: verify failed %d\n", ret);
1397			break;
1398		}
1399
1400		written += thislen;
1401		if (written == len)
1402			break;
1403
1404		to += mtd->writesize;
1405		buf += thislen;
1406		column = 0;
1407	}
1408
1409	/* Deselect and wake up anyone waiting on the device */
1410	onenand_release_device(mtd);
1411
1412	*retlen = written;
1413
1414	return ret;
1415}
1416
1417/**
1418 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1419 * @param mtd:		MTD device structure
1420 * @param to:		offset to write
1421 * @param ops:		oob operation description structure
1422 */
1423static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1424			     struct mtd_oob_ops *ops)
1425{
1426	switch (ops->mode) {
1427	case MTD_OOB_PLACE:
1428	case MTD_OOB_AUTO:
1429		break;
1430	case MTD_OOB_RAW:
1431		/* Not implemented yet */
1432	default:
1433		return -EINVAL;
1434	}
1435	return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1436				    &ops->oobretlen, ops->oobbuf, ops->mode);
1437}
1438
1439/**
1440 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1441 * @param mtd		MTD device structure
1442 * @param ofs		offset from device start
1443 * @param getchip	0, if the chip is already selected
1444 * @param allowbbt	1, if its allowed to access the bbt area
1445 *
1446 * Check, if the block is bad. Either by reading the bad block table or
1447 * calling of the scan function.
1448 */
1449static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1450{
1451	struct onenand_chip *this = mtd->priv;
1452	struct bbm_info *bbm = this->bbm;
1453
1454	/* Return info from the table */
1455	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1456}
1457
1458/**
1459 * onenand_erase - [MTD Interface] erase block(s)
1460 * @param mtd		MTD device structure
1461 * @param instr		erase instruction
1462 *
1463 * Erase one ore more blocks
1464 */
1465static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1466{
1467	struct onenand_chip *this = mtd->priv;
1468	unsigned int block_size;
1469	loff_t addr;
1470	int len;
1471	int ret = 0;
1472
1473	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1474
1475	block_size = (1 << this->erase_shift);
1476
1477	/* Start address must align on block boundary */
1478	if (unlikely(instr->addr & (block_size - 1))) {
1479		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1480		return -EINVAL;
1481	}
1482
1483	/* Length must align on block boundary */
1484	if (unlikely(instr->len & (block_size - 1))) {
1485		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1486		return -EINVAL;
1487	}
1488
1489	/* Do not allow erase past end of device */
1490	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1491		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1492		return -EINVAL;
1493	}
1494
1495	instr->fail_addr = 0xffffffff;
1496
1497	/* Grab the lock and see if the device is available */
1498	onenand_get_device(mtd, FL_ERASING);
1499
1500	/* Loop throught the pages */
1501	len = instr->len;
1502	addr = instr->addr;
1503
1504	instr->state = MTD_ERASING;
1505
1506	while (len) {
1507		cond_resched();
1508
1509		/* Check if we have a bad block, we do not erase bad blocks */
1510		if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1511			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1512			instr->state = MTD_ERASE_FAILED;
1513			goto erase_exit;
1514		}
1515
1516		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1517
1518		onenand_invalidate_bufferram(mtd, addr, block_size);
1519
1520		ret = this->wait(mtd, FL_ERASING);
1521		/* Check, if it is write protected */
1522		if (ret) {
1523			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1524			instr->state = MTD_ERASE_FAILED;
1525			instr->fail_addr = addr;
1526			goto erase_exit;
1527		}
1528
1529		len -= block_size;
1530		addr += block_size;
1531	}
1532
1533	instr->state = MTD_ERASE_DONE;
1534
1535erase_exit:
1536
1537	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1538	/* Do call back function */
1539	if (!ret)
1540		mtd_erase_callback(instr);
1541
1542	/* Deselect and wake up anyone waiting on the device */
1543	onenand_release_device(mtd);
1544
1545	return ret;
1546}
1547
1548/**
1549 * onenand_sync - [MTD Interface] sync
1550 * @param mtd		MTD device structure
1551 *
1552 * Sync is actually a wait for chip ready function
1553 */
1554static void onenand_sync(struct mtd_info *mtd)
1555{
1556	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1557
1558	/* Grab the lock and see if the device is available */
1559	onenand_get_device(mtd, FL_SYNCING);
1560
1561	/* Release it and go back */
1562	onenand_release_device(mtd);
1563}
1564
1565/**
1566 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1567 * @param mtd		MTD device structure
1568 * @param ofs		offset relative to mtd start
1569 *
1570 * Check whether the block is bad
1571 */
1572static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1573{
1574	/* Check for invalid offset */
1575	if (ofs > mtd->size)
1576		return -EINVAL;
1577
1578	return onenand_block_checkbad(mtd, ofs, 1, 0);
1579}
1580
1581/**
1582 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1583 * @param mtd		MTD device structure
1584 * @param ofs		offset from device start
1585 *
1586 * This is the default implementation, which can be overridden by
1587 * a hardware specific driver.
1588 */
1589static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1590{
1591	struct onenand_chip *this = mtd->priv;
1592	struct bbm_info *bbm = this->bbm;
1593	u_char buf[2] = {0, 0};
1594	size_t retlen;
1595	int block;
1596
1597	/* Get block number */
1598	block = ((int) ofs) >> bbm->bbt_erase_shift;
1599        if (bbm->bbt)
1600                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1601
1602        /* We write two bytes, so we dont have to mess with 16 bit access */
1603        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1604        return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf, MTD_OOB_PLACE);
1605}
1606
1607/**
1608 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1609 * @param mtd		MTD device structure
1610 * @param ofs		offset relative to mtd start
1611 *
1612 * Mark the block as bad
1613 */
1614static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1615{
1616	struct onenand_chip *this = mtd->priv;
1617	int ret;
1618
1619	ret = onenand_block_isbad(mtd, ofs);
1620	if (ret) {
1621		/* If it was bad already, return success and do nothing */
1622		if (ret > 0)
1623			return 0;
1624		return ret;
1625	}
1626
1627	return this->block_markbad(mtd, ofs);
1628}
1629
1630/**
1631 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1632 * @param mtd		MTD device structure
1633 * @param ofs		offset relative to mtd start
1634 * @param len		number of bytes to lock or unlock
1635 * @param cmd		lock or unlock command
1636 *
1637 * Lock or unlock one or more blocks
1638 */
1639static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1640{
1641	struct onenand_chip *this = mtd->priv;
1642	int start, end, block, value, status;
1643	int wp_status_mask;
1644
1645	start = ofs >> this->erase_shift;
1646	end = len >> this->erase_shift;
1647
1648	if (cmd == ONENAND_CMD_LOCK)
1649		wp_status_mask = ONENAND_WP_LS;
1650	else
1651		wp_status_mask = ONENAND_WP_US;
1652
1653	/* Continuous lock scheme */
1654	if (this->options & ONENAND_HAS_CONT_LOCK) {
1655		/* Set start block address */
1656		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1657		/* Set end block address */
1658		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1659		/* Write lock command */
1660		this->command(mtd, cmd, 0, 0);
1661
1662		/* There's no return value */
1663		this->wait(mtd, FL_LOCKING);
1664
1665		/* Sanity check */
1666		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1667		    & ONENAND_CTRL_ONGO)
1668			continue;
1669
1670		/* Check lock status */
1671		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1672		if (!(status & wp_status_mask))
1673			printk(KERN_ERR "wp status = 0x%x\n", status);
1674
1675		return 0;
1676	}
1677
1678	/* Block lock scheme */
1679	for (block = start; block < start + end; block++) {
1680		/* Set block address */
1681		value = onenand_block_address(this, block);
1682		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1683		/* Select DataRAM for DDP */
1684		value = onenand_bufferram_address(this, block);
1685		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1686		/* Set start block address */
1687		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1688		/* Write lock command */
1689		this->command(mtd, cmd, 0, 0);
1690
1691		/* There's no return value */
1692		this->wait(mtd, FL_LOCKING);
1693
1694		/* Sanity check */
1695		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1696		    & ONENAND_CTRL_ONGO)
1697			continue;
1698
1699		/* Check lock status */
1700		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1701		if (!(status & wp_status_mask))
1702			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1703	}
1704
1705	return 0;
1706}
1707
1708/**
1709 * onenand_lock - [MTD Interface] Lock block(s)
1710 * @param mtd		MTD device structure
1711 * @param ofs		offset relative to mtd start
1712 * @param len		number of bytes to unlock
1713 *
1714 * Lock one or more blocks
1715 */
1716static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1717{
1718	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1719}
1720
1721/**
1722 * onenand_unlock - [MTD Interface] Unlock block(s)
1723 * @param mtd		MTD device structure
1724 * @param ofs		offset relative to mtd start
1725 * @param len		number of bytes to unlock
1726 *
1727 * Unlock one or more blocks
1728 */
1729static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1730{
1731	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1732}
1733
1734/**
1735 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1736 * @param this		onenand chip data structure
1737 *
1738 * Check lock status
1739 */
1740static void onenand_check_lock_status(struct onenand_chip *this)
1741{
1742	unsigned int value, block, status;
1743	unsigned int end;
1744
1745	end = this->chipsize >> this->erase_shift;
1746	for (block = 0; block < end; block++) {
1747		/* Set block address */
1748		value = onenand_block_address(this, block);
1749		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1750		/* Select DataRAM for DDP */
1751		value = onenand_bufferram_address(this, block);
1752		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1753		/* Set start block address */
1754		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1755
1756		/* Check lock status */
1757		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1758		if (!(status & ONENAND_WP_US))
1759			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1760	}
1761}
1762
1763/**
1764 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1765 * @param mtd		MTD device structure
1766 *
1767 * Unlock all blocks
1768 */
1769static int onenand_unlock_all(struct mtd_info *mtd)
1770{
1771	struct onenand_chip *this = mtd->priv;
1772
1773	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1774		/* Set start block address */
1775		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1776		/* Write unlock command */
1777		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1778
1779		/* There's no return value */
1780		this->wait(mtd, FL_LOCKING);
1781
1782		/* Sanity check */
1783		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1784		    & ONENAND_CTRL_ONGO)
1785			continue;
1786
1787		if (ONENAND_IS_DDP(this)) {
1788			/* 1st block on another chip */
1789			loff_t ofs = this->chipsize >> 1;
1790			size_t len = mtd->erasesize;
1791
1792			onenand_unlock(mtd, ofs, len);
1793		}
1794
1795		onenand_check_lock_status(this);
1796
1797		return 0;
1798	}
1799
1800	onenand_unlock(mtd, 0x0, this->chipsize);
1801
1802	return 0;
1803}
1804
1805#ifdef CONFIG_MTD_ONENAND_OTP
1806
1807/* Interal OTP operation */
1808typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1809		size_t *retlen, u_char *buf);
1810
1811/**
1812 * do_otp_read - [DEFAULT] Read OTP block area
1813 * @param mtd		MTD device structure
1814 * @param from		The offset to read
1815 * @param len		number of bytes to read
1816 * @param retlen	pointer to variable to store the number of readbytes
1817 * @param buf		the databuffer to put/get data
1818 *
1819 * Read OTP block area.
1820 */
1821static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1822		size_t *retlen, u_char *buf)
1823{
1824	struct onenand_chip *this = mtd->priv;
1825	int ret;
1826
1827	/* Enter OTP access mode */
1828	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1829	this->wait(mtd, FL_OTPING);
1830
1831	ret = mtd->read(mtd, from, len, retlen, buf);
1832
1833	/* Exit OTP access mode */
1834	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1835	this->wait(mtd, FL_RESETING);
1836
1837	return ret;
1838}
1839
1840/**
1841 * do_otp_write - [DEFAULT] Write OTP block area
1842 * @param mtd		MTD device structure
1843 * @param from		The offset to write
1844 * @param len		number of bytes to write
1845 * @param retlen	pointer to variable to store the number of write bytes
1846 * @param buf		the databuffer to put/get data
1847 *
1848 * Write OTP block area.
1849 */
1850static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1851		size_t *retlen, u_char *buf)
1852{
1853	struct onenand_chip *this = mtd->priv;
1854	unsigned char *pbuf = buf;
1855	int ret;
1856
1857	/* Force buffer page aligned */
1858	if (len < mtd->writesize) {
1859		memcpy(this->page_buf, buf, len);
1860		memset(this->page_buf + len, 0xff, mtd->writesize - len);
1861		pbuf = this->page_buf;
1862		len = mtd->writesize;
1863	}
1864
1865	/* Enter OTP access mode */
1866	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1867	this->wait(mtd, FL_OTPING);
1868
1869	ret = mtd->write(mtd, from, len, retlen, pbuf);
1870
1871	/* Exit OTP access mode */
1872	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1873	this->wait(mtd, FL_RESETING);
1874
1875	return ret;
1876}
1877
1878/**
1879 * do_otp_lock - [DEFAULT] Lock OTP block area
1880 * @param mtd		MTD device structure
1881 * @param from		The offset to lock
1882 * @param len		number of bytes to lock
1883 * @param retlen	pointer to variable to store the number of lock bytes
1884 * @param buf		the databuffer to put/get data
1885 *
1886 * Lock OTP block area.
1887 */
1888static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1889		size_t *retlen, u_char *buf)
1890{
1891	struct onenand_chip *this = mtd->priv;
1892	int ret;
1893
1894	/* Enter OTP access mode */
1895	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1896	this->wait(mtd, FL_OTPING);
1897
1898	ret = onenand_do_write_oob(mtd, from, len, retlen, buf, MTD_OOB_PLACE);
1899
1900	/* Exit OTP access mode */
1901	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1902	this->wait(mtd, FL_RESETING);
1903
1904	return ret;
1905}
1906
1907/**
1908 * onenand_otp_walk - [DEFAULT] Handle OTP operation
1909 * @param mtd		MTD device structure
1910 * @param from		The offset to read/write
1911 * @param len		number of bytes to read/write
1912 * @param retlen	pointer to variable to store the number of read bytes
1913 * @param buf		the databuffer to put/get data
1914 * @param action	do given action
1915 * @param mode		specify user and factory
1916 *
1917 * Handle OTP operation.
1918 */
1919static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1920			size_t *retlen, u_char *buf,
1921			otp_op_t action, int mode)
1922{
1923	struct onenand_chip *this = mtd->priv;
1924	int otp_pages;
1925	int density;
1926	int ret = 0;
1927
1928	*retlen = 0;
1929
1930	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1931	if (density < ONENAND_DEVICE_DENSITY_512Mb)
1932		otp_pages = 20;
1933	else
1934		otp_pages = 10;
1935
1936	if (mode == MTD_OTP_FACTORY) {
1937		from += mtd->writesize * otp_pages;
1938		otp_pages = 64 - otp_pages;
1939	}
1940
1941	/* Check User/Factory boundary */
1942	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1943		return 0;
1944
1945	while (len > 0 && otp_pages > 0) {
1946		if (!action) {	/* OTP Info functions */
1947			struct otp_info *otpinfo;
1948
1949			len -= sizeof(struct otp_info);
1950			if (len <= 0)
1951				return -ENOSPC;
1952
1953			otpinfo = (struct otp_info *) buf;
1954			otpinfo->start = from;
1955			otpinfo->length = mtd->writesize;
1956			otpinfo->locked = 0;
1957
1958			from += mtd->writesize;
1959			buf += sizeof(struct otp_info);
1960			*retlen += sizeof(struct otp_info);
1961		} else {
1962			size_t tmp_retlen;
1963			int size = len;
1964
1965			ret = action(mtd, from, len, &tmp_retlen, buf);
1966
1967			buf += size;
1968			len -= size;
1969			*retlen += size;
1970
1971			if (ret < 0)
1972				return ret;
1973		}
1974		otp_pages--;
1975	}
1976
1977	return 0;
1978}
1979
1980/**
1981 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1982 * @param mtd		MTD device structure
1983 * @param buf		the databuffer to put/get data
1984 * @param len		number of bytes to read
1985 *
1986 * Read factory OTP info.
1987 */
1988static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1989			struct otp_info *buf, size_t len)
1990{
1991	size_t retlen;
1992	int ret;
1993
1994	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1995
1996	return ret ? : retlen;
1997}
1998
1999/**
2000 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2001 * @param mtd		MTD device structure
2002 * @param from		The offset to read
2003 * @param len		number of bytes to read
2004 * @param retlen	pointer to variable to store the number of read bytes
2005 * @param buf		the databuffer to put/get data
2006 *
2007 * Read factory OTP area.
2008 */
2009static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2010			size_t len, size_t *retlen, u_char *buf)
2011{
2012	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2013}
2014
2015/**
2016 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2017 * @param mtd		MTD device structure
2018 * @param buf		the databuffer to put/get data
2019 * @param len		number of bytes to read
2020 *
2021 * Read user OTP info.
2022 */
2023static int onenand_get_user_prot_info(struct mtd_info *mtd,
2024			struct otp_info *buf, size_t len)
2025{
2026	size_t retlen;
2027	int ret;
2028
2029	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2030
2031	return ret ? : retlen;
2032}
2033
2034/**
2035 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2036 * @param mtd		MTD device structure
2037 * @param from		The offset to read
2038 * @param len		number of bytes to read
2039 * @param retlen	pointer to variable to store the number of read bytes
2040 * @param buf		the databuffer to put/get data
2041 *
2042 * Read user OTP area.
2043 */
2044static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2045			size_t len, size_t *retlen, u_char *buf)
2046{
2047	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2048}
2049
2050/**
2051 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2052 * @param mtd		MTD device structure
2053 * @param from		The offset to write
2054 * @param len		number of bytes to write
2055 * @param retlen	pointer to variable to store the number of write bytes
2056 * @param buf		the databuffer to put/get data
2057 *
2058 * Write user OTP area.
2059 */
2060static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2061			size_t len, size_t *retlen, u_char *buf)
2062{
2063	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2064}
2065
2066/**
2067 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2068 * @param mtd		MTD device structure
2069 * @param from		The offset to lock
2070 * @param len		number of bytes to unlock
2071 *
2072 * Write lock mark on spare area in page 0 in OTP block
2073 */
2074static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2075			size_t len)
2076{
2077	unsigned char oob_buf[64];
2078	size_t retlen;
2079	int ret;
2080
2081	memset(oob_buf, 0xff, mtd->oobsize);
2082	/*
2083	 * Note: OTP lock operation
2084	 *       OTP block : 0xXXFC
2085	 *       1st block : 0xXXF3 (If chip support)
2086	 *       Both      : 0xXXF0 (If chip support)
2087	 */
2088	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2089
2090	/*
2091	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2092	 * We write 16 bytes spare area instead of 2 bytes.
2093	 */
2094	from = 0;
2095	len = 16;
2096
2097	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2098
2099	return ret ? : retlen;
2100}
2101#endif	/* CONFIG_MTD_ONENAND_OTP */
2102
2103/**
2104 * onenand_check_features - Check and set OneNAND features
2105 * @param mtd		MTD data structure
2106 *
2107 * Check and set OneNAND features
2108 * - lock scheme
2109 */
2110static void onenand_check_features(struct mtd_info *mtd)
2111{
2112	struct onenand_chip *this = mtd->priv;
2113	unsigned int density, process;
2114
2115	/* Lock scheme depends on density and process */
2116	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2117	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2118
2119	/* Lock scheme */
2120	if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
2121		/* A-Die has all block unlock */
2122		if (process) {
2123			printk(KERN_DEBUG "Chip support all block unlock\n");
2124			this->options |= ONENAND_HAS_UNLOCK_ALL;
2125		}
2126	} else {
2127		/* Some OneNAND has continues lock scheme */
2128		if (!process) {
2129			printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
2130			this->options |= ONENAND_HAS_CONT_LOCK;
2131		}
2132	}
2133}
2134
2135/**
2136 * onenand_print_device_info - Print device & version ID
2137 * @param device        device ID
2138 * @param version	version ID
2139 *
2140 * Print device & version ID
2141 */
2142static void onenand_print_device_info(int device, int version)
2143{
2144        int vcc, demuxed, ddp, density;
2145
2146        vcc = device & ONENAND_DEVICE_VCC_MASK;
2147        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2148        ddp = device & ONENAND_DEVICE_IS_DDP;
2149        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
2150        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2151                demuxed ? "" : "Muxed ",
2152                ddp ? "(DDP)" : "",
2153                (16 << density),
2154                vcc ? "2.65/3.3" : "1.8",
2155                device);
2156	printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
2157}
2158
2159static const struct onenand_manufacturers onenand_manuf_ids[] = {
2160        {ONENAND_MFR_SAMSUNG, "Samsung"},
2161};
2162
2163/**
2164 * onenand_check_maf - Check manufacturer ID
2165 * @param manuf         manufacturer ID
2166 *
2167 * Check manufacturer ID
2168 */
2169static int onenand_check_maf(int manuf)
2170{
2171	int size = ARRAY_SIZE(onenand_manuf_ids);
2172	char *name;
2173        int i;
2174
2175	for (i = 0; i < size; i++)
2176                if (manuf == onenand_manuf_ids[i].id)
2177                        break;
2178
2179	if (i < size)
2180		name = onenand_manuf_ids[i].name;
2181	else
2182		name = "Unknown";
2183
2184	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2185
2186	return (i == size);
2187}
2188
2189/**
2190 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2191 * @param mtd		MTD device structure
2192 *
2193 * OneNAND detection method:
2194 *   Compare the values from command with ones from register
2195 */
2196static int onenand_probe(struct mtd_info *mtd)
2197{
2198	struct onenand_chip *this = mtd->priv;
2199	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2200	int density;
2201	int syscfg;
2202
2203	/* Save system configuration 1 */
2204	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2205	/* Clear Sync. Burst Read mode to read BootRAM */
2206	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2207
2208	/* Send the command for reading device ID from BootRAM */
2209	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2210
2211	/* Read manufacturer and device IDs from BootRAM */
2212	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2213	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2214
2215	/* Reset OneNAND to read default register values */
2216	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2217	/* Wait reset */
2218	this->wait(mtd, FL_RESETING);
2219
2220	/* Restore system configuration 1 */
2221	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2222
2223	/* Check manufacturer ID */
2224	if (onenand_check_maf(bram_maf_id))
2225		return -ENXIO;
2226
2227	/* Read manufacturer and device IDs from Register */
2228	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2229	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2230	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2231
2232	/* Check OneNAND device */
2233	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2234		return -ENXIO;
2235
2236	/* Flash device information */
2237	onenand_print_device_info(dev_id, ver_id);
2238	this->device_id = dev_id;
2239	this->version_id = ver_id;
2240
2241	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2242	this->chipsize = (16 << density) << 20;
2243	/* Set density mask. it is used for DDP */
2244	if (ONENAND_IS_DDP(this))
2245		this->density_mask = (1 << (density + 6));
2246	else
2247		this->density_mask = 0;
2248
2249	/* OneNAND page size & block size */
2250	/* The data buffer size is equal to page size */
2251	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2252	mtd->oobsize = mtd->writesize >> 5;
2253	/* Pages per a block are always 64 in OneNAND */
2254	mtd->erasesize = mtd->writesize << 6;
2255
2256	this->erase_shift = ffs(mtd->erasesize) - 1;
2257	this->page_shift = ffs(mtd->writesize) - 1;
2258	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2259
2260	/* REVIST: Multichip handling */
2261
2262	mtd->size = this->chipsize;
2263
2264	/* Check OneNAND features */
2265	onenand_check_features(mtd);
2266
2267	return 0;
2268}
2269
2270/**
2271 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2272 * @param mtd		MTD device structure
2273 */
2274static int onenand_suspend(struct mtd_info *mtd)
2275{
2276	return onenand_get_device(mtd, FL_PM_SUSPENDED);
2277}
2278
2279/**
2280 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2281 * @param mtd		MTD device structure
2282 */
2283static void onenand_resume(struct mtd_info *mtd)
2284{
2285	struct onenand_chip *this = mtd->priv;
2286
2287	if (this->state == FL_PM_SUSPENDED)
2288		onenand_release_device(mtd);
2289	else
2290		printk(KERN_ERR "resume() called for the chip which is not"
2291				"in suspended state\n");
2292}
2293
2294/**
2295 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2296 * @param mtd		MTD device structure
2297 * @param maxchips	Number of chips to scan for
2298 *
2299 * This fills out all the not initialized function pointers
2300 * with the defaults.
2301 * The flash ID is read and the mtd/chip structures are
2302 * filled with the appropriate values.
2303 */
2304int onenand_scan(struct mtd_info *mtd, int maxchips)
2305{
2306	int i;
2307	struct onenand_chip *this = mtd->priv;
2308
2309	if (!this->read_word)
2310		this->read_word = onenand_readw;
2311	if (!this->write_word)
2312		this->write_word = onenand_writew;
2313
2314	if (!this->command)
2315		this->command = onenand_command;
2316	if (!this->wait)
2317		onenand_setup_wait(mtd);
2318
2319	if (!this->read_bufferram)
2320		this->read_bufferram = onenand_read_bufferram;
2321	if (!this->write_bufferram)
2322		this->write_bufferram = onenand_write_bufferram;
2323
2324	if (!this->block_markbad)
2325		this->block_markbad = onenand_default_block_markbad;
2326	if (!this->scan_bbt)
2327		this->scan_bbt = onenand_default_bbt;
2328
2329	if (onenand_probe(mtd))
2330		return -ENXIO;
2331
2332	/* Set Sync. Burst Read after probing */
2333	if (this->mmcontrol) {
2334		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2335		this->read_bufferram = onenand_sync_read_bufferram;
2336	}
2337
2338	/* Allocate buffers, if necessary */
2339	if (!this->page_buf) {
2340		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2341		if (!this->page_buf) {
2342			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2343			return -ENOMEM;
2344		}
2345		this->options |= ONENAND_PAGEBUF_ALLOC;
2346	}
2347	if (!this->oob_buf) {
2348		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2349		if (!this->oob_buf) {
2350			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2351			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2352				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2353				kfree(this->page_buf);
2354			}
2355			return -ENOMEM;
2356		}
2357		this->options |= ONENAND_OOBBUF_ALLOC;
2358	}
2359
2360	this->state = FL_READY;
2361	init_waitqueue_head(&this->wq);
2362	spin_lock_init(&this->chip_lock);
2363
2364	/*
2365	 * Allow subpage writes up to oobsize.
2366	 */
2367	switch (mtd->oobsize) {
2368	case 64:
2369		this->ecclayout = &onenand_oob_64;
2370		mtd->subpage_sft = 2;
2371		break;
2372
2373	case 32:
2374		this->ecclayout = &onenand_oob_32;
2375		mtd->subpage_sft = 1;
2376		break;
2377
2378	default:
2379		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2380			mtd->oobsize);
2381		mtd->subpage_sft = 0;
2382		/* To prevent kernel oops */
2383		this->ecclayout = &onenand_oob_32;
2384		break;
2385	}
2386
2387	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2388
2389	/*
2390	 * The number of bytes available for a client to place data into
2391	 * the out of band area
2392	 */
2393	this->ecclayout->oobavail = 0;
2394	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2395	    this->ecclayout->oobfree[i].length; i++)
2396		this->ecclayout->oobavail +=
2397			this->ecclayout->oobfree[i].length;
2398	mtd->oobavail = this->ecclayout->oobavail;
2399
2400	mtd->ecclayout = this->ecclayout;
2401
2402	/* Fill in remaining MTD driver data */
2403	mtd->type = MTD_NANDFLASH;
2404	mtd->flags = MTD_CAP_NANDFLASH;
2405	mtd->erase = onenand_erase;
2406	mtd->point = NULL;
2407	mtd->unpoint = NULL;
2408	mtd->read = onenand_read;
2409	mtd->write = onenand_write;
2410	mtd->read_oob = onenand_read_oob;
2411	mtd->write_oob = onenand_write_oob;
2412#ifdef CONFIG_MTD_ONENAND_OTP
2413	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2414	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2415	mtd->get_user_prot_info = onenand_get_user_prot_info;
2416	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2417	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2418	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2419#endif
2420	mtd->sync = onenand_sync;
2421	mtd->lock = onenand_lock;
2422	mtd->unlock = onenand_unlock;
2423	mtd->suspend = onenand_suspend;
2424	mtd->resume = onenand_resume;
2425	mtd->block_isbad = onenand_block_isbad;
2426	mtd->block_markbad = onenand_block_markbad;
2427	mtd->owner = THIS_MODULE;
2428
2429	/* Unlock whole block */
2430	onenand_unlock_all(mtd);
2431
2432	return this->scan_bbt(mtd);
2433}
2434
2435/**
2436 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2437 * @param mtd		MTD device structure
2438 */
2439void onenand_release(struct mtd_info *mtd)
2440{
2441	struct onenand_chip *this = mtd->priv;
2442
2443#ifdef CONFIG_MTD_PARTITIONS
2444	/* Deregister partitions */
2445	del_mtd_partitions (mtd);
2446#endif
2447	/* Deregister the device */
2448	del_mtd_device (mtd);
2449
2450	/* Free bad block table memory, if allocated */
2451	if (this->bbm) {
2452		struct bbm_info *bbm = this->bbm;
2453		kfree(bbm->bbt);
2454		kfree(this->bbm);
2455	}
2456	/* Buffers allocated by onenand_scan */
2457	if (this->options & ONENAND_PAGEBUF_ALLOC)
2458		kfree(this->page_buf);
2459	if (this->options & ONENAND_OOBBUF_ALLOC)
2460		kfree(this->oob_buf);
2461}
2462
2463EXPORT_SYMBOL_GPL(onenand_scan);
2464EXPORT_SYMBOL_GPL(onenand_release);
2465
2466MODULE_LICENSE("GPL");
2467MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2468MODULE_DESCRIPTION("Generic OneNAND flash driver code");
2469