1
2/*
3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4 *
5 * $Id: lart.c,v 1.1.1.1 2007/08/03 18:52:43 Exp $
6 *
7 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
8 *
9 * Copyright (c) 2001, 2d3D, Inc.
10 *
11 * This code is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * References:
16 *
17 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
18 *           - Order Number: 290644-005
19 *           - January 2000
20 *
21 *    [2] MTD internal API documentation
22 *           - http://www.linux-mtd.infradead.org/tech/
23 *
24 * Limitations:
25 *
26 *    Even though this driver is written for 3 Volt Fast Boot
27 *    Block Flash Memory, it is rather specific to LART. With
28 *    Minor modifications, notably the without data/address line
29 *    mangling and different bus settings, etc. it should be
30 *    trivial to adapt to other platforms.
31 *
32 *    If somebody would sponsor me a different board, I'll
33 *    adapt the driver (:
34 */
35
36/* debugging */
37//#define LART_DEBUG
38
39/* partition support */
40#define HAVE_PARTITIONS
41
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/types.h>
45#include <linux/init.h>
46#include <linux/errno.h>
47#include <linux/string.h>
48#include <linux/mtd/mtd.h>
49#ifdef HAVE_PARTITIONS
50#include <linux/mtd/partitions.h>
51#endif
52
53#ifndef CONFIG_SA1100_LART
54#error This is for LART architecture only
55#endif
56
57static char module_name[] = "lart";
58
59/*
60 * These values is specific to 28Fxxxx3 flash memory.
61 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
62 */
63#define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
64#define FLASH_NUMBLOCKS_16m_PARAM	8
65#define FLASH_NUMBLOCKS_8m_PARAM	8
66
67/*
68 * These values is specific to 28Fxxxx3 flash memory.
69 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
70 */
71#define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
72#define FLASH_NUMBLOCKS_16m_MAIN	31
73#define FLASH_NUMBLOCKS_8m_MAIN		15
74
75/*
76 * These values are specific to LART
77 */
78
79/* general */
80#define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
81#define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
82
83/* blob */
84#define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
85#define BLOB_START			0x00000000
86#define BLOB_LEN			(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
87
88/* kernel */
89#define NUM_KERNEL_BLOCKS	7
90#define KERNEL_START		(BLOB_START + BLOB_LEN)
91#define KERNEL_LEN			(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
92
93/* initial ramdisk */
94#define NUM_INITRD_BLOCKS	24
95#define INITRD_START		(KERNEL_START + KERNEL_LEN)
96#define INITRD_LEN			(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
97
98/*
99 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
100 */
101#define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
102#define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
103#define ERASE_SETUP			0x00200020		/* Block Erase */
104#define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
105#define PGM_SETUP			0x00400040		/* Program */
106#define STATUS_READ			0x00700070		/* Read Status Register */
107#define STATUS_CLEAR		0x00500050		/* Clear Status Register */
108#define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
109#define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
110#define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
111
112/*
113 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
114 */
115#define FLASH_MANUFACTURER			0x00890089
116#define FLASH_DEVICE_8mbit_TOP		0x88f188f1
117#define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
118#define FLASH_DEVICE_16mbit_TOP		0x88f388f3
119#define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
120
121/***************************************************************************************************/
122
123/*
124 * The data line mapping on LART is as follows:
125 *
126 *   	 U2  CPU |   U3  CPU
127 *   	 -------------------
128 *   	  0  20  |   0   12
129 *   	  1  22  |   1   14
130 *   	  2  19  |   2   11
131 *   	  3  17  |   3   9
132 *   	  4  24  |   4   0
133 *   	  5  26  |   5   2
134 *   	  6  31  |   6   7
135 *   	  7  29  |   7   5
136 *   	  8  21  |   8   13
137 *   	  9  23  |   9   15
138 *   	  10 18  |   10  10
139 *   	  11 16  |   11  8
140 *   	  12 25  |   12  1
141 *   	  13 27  |   13  3
142 *   	  14 30  |   14  6
143 *   	  15 28  |   15  4
144 */
145
146/* Mangle data (x) */
147#define DATA_TO_FLASH(x)				\
148	(									\
149		(((x) & 0x08009000) >> 11)	+	\
150		(((x) & 0x00002000) >> 10)	+	\
151		(((x) & 0x04004000) >> 8)	+	\
152		(((x) & 0x00000010) >> 4)	+	\
153		(((x) & 0x91000820) >> 3)	+	\
154		(((x) & 0x22080080) >> 2)	+	\
155		((x) & 0x40000400)			+	\
156		(((x) & 0x00040040) << 1)	+	\
157		(((x) & 0x00110000) << 4)	+	\
158		(((x) & 0x00220100) << 5)	+	\
159		(((x) & 0x00800208) << 6)	+	\
160		(((x) & 0x00400004) << 9)	+	\
161		(((x) & 0x00000001) << 12)	+	\
162		(((x) & 0x00000002) << 13)		\
163	)
164
165/* Unmangle data (x) */
166#define FLASH_TO_DATA(x)				\
167	(									\
168		(((x) & 0x00010012) << 11)	+	\
169		(((x) & 0x00000008) << 10)	+	\
170		(((x) & 0x00040040) << 8)	+	\
171		(((x) & 0x00000001) << 4)	+	\
172		(((x) & 0x12200104) << 3)	+	\
173		(((x) & 0x08820020) << 2)	+	\
174		((x) & 0x40000400)			+	\
175		(((x) & 0x00080080) >> 1)	+	\
176		(((x) & 0x01100000) >> 4)	+	\
177		(((x) & 0x04402000) >> 5)	+	\
178		(((x) & 0x20008200) >> 6)	+	\
179		(((x) & 0x80000800) >> 9)	+	\
180		(((x) & 0x00001000) >> 12)	+	\
181		(((x) & 0x00004000) >> 13)		\
182	)
183
184/*
185 * The address line mapping on LART is as follows:
186 *
187 *   	 U3  CPU |   U2  CPU
188 *   	 -------------------
189 *   	  0  2   |   0   2
190 *   	  1  3   |   1   3
191 *   	  2  9   |   2   9
192 *   	  3  13  |   3   8
193 *   	  4  8   |   4   7
194 *   	  5  12  |   5   6
195 *   	  6  11  |   6   5
196 *   	  7  10  |   7   4
197 *   	  8  4   |   8   10
198 *   	  9  5   |   9   11
199 *   	 10  6   |   10  12
200 *   	 11  7   |   11  13
201 *
202 *   	 BOOT BLOCK BOUNDARY
203 *
204 *   	 12  15  |   12  15
205 *   	 13  14  |   13  14
206 *   	 14  16  |   14  16
207 *
208 *   	 MAIN BLOCK BOUNDARY
209 *
210 *   	 15  17  |   15  18
211 *   	 16  18  |   16  17
212 *   	 17  20  |   17  20
213 *   	 18  19  |   18  19
214 *   	 19  21  |   19  21
215 *
216 * As we can see from above, the addresses aren't mangled across
217 * block boundaries, so we don't need to worry about address
218 * translations except for sending/reading commands during
219 * initialization
220 */
221
222/* Mangle address (x) on chip U2 */
223#define ADDR_TO_FLASH_U2(x)				\
224	(									\
225		(((x) & 0x00000f00) >> 4)	+	\
226		(((x) & 0x00042000) << 1)	+	\
227		(((x) & 0x0009c003) << 2)	+	\
228		(((x) & 0x00021080) << 3)	+	\
229		(((x) & 0x00000010) << 4)	+	\
230		(((x) & 0x00000040) << 5)	+	\
231		(((x) & 0x00000024) << 7)	+	\
232		(((x) & 0x00000008) << 10)		\
233	)
234
235/* Unmangle address (x) on chip U2 */
236#define FLASH_U2_TO_ADDR(x)				\
237	(									\
238		(((x) << 4) & 0x00000f00)	+	\
239		(((x) >> 1) & 0x00042000)	+	\
240		(((x) >> 2) & 0x0009c003)	+	\
241		(((x) >> 3) & 0x00021080)	+	\
242		(((x) >> 4) & 0x00000010)	+	\
243		(((x) >> 5) & 0x00000040)	+	\
244		(((x) >> 7) & 0x00000024)	+	\
245		(((x) >> 10) & 0x00000008)		\
246	)
247
248/* Mangle address (x) on chip U3 */
249#define ADDR_TO_FLASH_U3(x)				\
250	(									\
251		(((x) & 0x00000080) >> 3)	+	\
252		(((x) & 0x00000040) >> 1)	+	\
253		(((x) & 0x00052020) << 1)	+	\
254		(((x) & 0x00084f03) << 2)	+	\
255		(((x) & 0x00029010) << 3)	+	\
256		(((x) & 0x00000008) << 5)	+	\
257		(((x) & 0x00000004) << 7)		\
258	)
259
260/* Unmangle address (x) on chip U3 */
261#define FLASH_U3_TO_ADDR(x)				\
262	(									\
263		(((x) << 3) & 0x00000080)	+	\
264		(((x) << 1) & 0x00000040)	+	\
265		(((x) >> 1) & 0x00052020)	+	\
266		(((x) >> 2) & 0x00084f03)	+	\
267		(((x) >> 3) & 0x00029010)	+	\
268		(((x) >> 5) & 0x00000008)	+	\
269		(((x) >> 7) & 0x00000004)		\
270	)
271
272/***************************************************************************************************/
273
274static __u8 read8 (__u32 offset)
275{
276   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
277#ifdef LART_DEBUG
278   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n",__FUNCTION__,offset,*data);
279#endif
280   return (*data);
281}
282
283static __u32 read32 (__u32 offset)
284{
285   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
286#ifdef LART_DEBUG
287   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n",__FUNCTION__,offset,*data);
288#endif
289   return (*data);
290}
291
292static void write32 (__u32 x,__u32 offset)
293{
294   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
295   *data = x;
296#ifdef LART_DEBUG
297   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,*data);
298#endif
299}
300
301/***************************************************************************************************/
302
303/*
304 * Probe for 16mbit flash memory on a LART board without doing
305 * too much damage. Since we need to write 1 dword to memory,
306 * we're f**cked if this happens to be DRAM since we can't
307 * restore the memory (otherwise we might exit Read Array mode).
308 *
309 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
310 */
311static int flash_probe (void)
312{
313   __u32 manufacturer,devtype;
314
315   /* setup "Read Identifier Codes" mode */
316   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
317
318   /* probe U2. U2/U3 returns the same data since the first 3
319	* address lines is mangled in the same way */
320   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
321   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
322
323   /* put the flash back into command mode */
324   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
325
326   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || FLASH_DEVICE_16mbit_BOTTOM));
327}
328
329/*
330 * Erase one block of flash memory at offset ``offset'' which is any
331 * address within the block which should be erased.
332 *
333 * Returns 1 if successful, 0 otherwise.
334 */
335static inline int erase_block (__u32 offset)
336{
337   __u32 status;
338
339#ifdef LART_DEBUG
340   printk (KERN_DEBUG "%s(): 0x%.8x\n",__FUNCTION__,offset);
341#endif
342
343   /* erase and confirm */
344   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
345   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
346
347   /* wait for block erase to finish */
348   do
349	 {
350		write32 (DATA_TO_FLASH (STATUS_READ),offset);
351		status = FLASH_TO_DATA (read32 (offset));
352	 }
353   while ((~status & STATUS_BUSY) != 0);
354
355   /* put the flash back into command mode */
356   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
357
358   /* was the erase successfull? */
359   if ((status & STATUS_ERASE_ERR))
360	 {
361		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
362		return (0);
363	 }
364
365   return (1);
366}
367
368static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
369{
370   __u32 addr,len;
371   int i,first;
372
373#ifdef LART_DEBUG
374   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
375#endif
376
377   /* sanity checks */
378   if (instr->addr + instr->len > mtd->size) return (-EINVAL);
379
380   /*
381	* check that both start and end of the requested erase are
382	* aligned with the erasesize at the appropriate addresses.
383	*
384	* skip all erase regions which are ended before the start of
385	* the requested erase. Actually, to save on the calculations,
386	* we skip to the first erase region which starts after the
387	* start of the requested erase, and then go back one.
388	*/
389   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
390   i--;
391
392   /*
393	* ok, now i is pointing at the erase region in which this
394	* erase request starts. Check the start of the requested
395	* erase range is aligned with the erase size which is in
396	* effect here.
397	*/
398   if (instr->addr & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
399
400   /* Remember the erase region we start on */
401   first = i;
402
403   /*
404	* next, check that the end of the requested erase is aligned
405	* with the erase region at that address.
406	*
407	* as before, drop back one to point at the region in which
408	* the address actually falls
409	*/
410   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
411   i--;
412
413   /* is the end aligned on a block boundary? */
414   if ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
415
416   addr = instr->addr;
417   len = instr->len;
418
419   i = first;
420
421   /* now erase those blocks */
422   while (len)
423	 {
424		if (!erase_block (addr))
425		  {
426			 instr->state = MTD_ERASE_FAILED;
427			 return (-EIO);
428		  }
429
430		addr += mtd->eraseregions[i].erasesize;
431		len -= mtd->eraseregions[i].erasesize;
432
433		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
434	 }
435
436   instr->state = MTD_ERASE_DONE;
437   mtd_erase_callback(instr);
438
439   return (0);
440}
441
442static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
443{
444#ifdef LART_DEBUG
445   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,len);
446#endif
447
448   /* sanity checks */
449   if (!len) return (0);
450   if (from + len > mtd->size) return (-EINVAL);
451
452   /* we always read len bytes */
453   *retlen = len;
454
455   /* first, we read bytes until we reach a dword boundary */
456   if (from & (BUSWIDTH - 1))
457	 {
458		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
459
460		while (len && gap--) *buf++ = read8 (from++), len--;
461	 }
462
463   /* now we read dwords until we reach a non-dword boundary */
464   while (len >= BUSWIDTH)
465	 {
466		*((__u32 *) buf) = read32 (from);
467
468		buf += BUSWIDTH;
469		from += BUSWIDTH;
470		len -= BUSWIDTH;
471	 }
472
473   /* top up the last unaligned bytes */
474   if (len & (BUSWIDTH - 1))
475	 while (len--) *buf++ = read8 (from++);
476
477   return (0);
478}
479
480/*
481 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
482 * must be 32 bits, i.e. it must be on a dword boundary.
483 *
484 * Returns 1 if successful, 0 otherwise.
485 */
486static inline int write_dword (__u32 offset,__u32 x)
487{
488   __u32 status;
489
490#ifdef LART_DEBUG
491   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,x);
492#endif
493
494   /* setup writing */
495   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
496
497   /* write the data */
498   write32 (x,offset);
499
500   /* wait for the write to finish */
501   do
502	 {
503		write32 (DATA_TO_FLASH (STATUS_READ),offset);
504		status = FLASH_TO_DATA (read32 (offset));
505	 }
506   while ((~status & STATUS_BUSY) != 0);
507
508   /* put the flash back into command mode */
509   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
510
511   /* was the write successfull? */
512   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
513	 {
514		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
515		return (0);
516	 }
517
518   return (1);
519}
520
521static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
522{
523   __u8 tmp[4];
524   int i,n;
525
526#ifdef LART_DEBUG
527   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
528#endif
529
530   *retlen = 0;
531
532   /* sanity checks */
533   if (!len) return (0);
534   if (to + len > mtd->size) return (-EINVAL);
535
536   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
537   if (to & (BUSWIDTH - 1))
538	 {
539		__u32 aligned = to & ~(BUSWIDTH - 1);
540		int gap = to - aligned;
541
542		i = n = 0;
543
544		while (gap--) tmp[i++] = 0xFF;
545		while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
546		while (i < BUSWIDTH) tmp[i++] = 0xFF;
547
548		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
549
550		to += n;
551		buf += n;
552		*retlen += n;
553	 }
554
555   /* now we write dwords until we reach a non-dword boundary */
556   while (len >= BUSWIDTH)
557	 {
558		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
559
560		to += BUSWIDTH;
561		buf += BUSWIDTH;
562		*retlen += BUSWIDTH;
563		len -= BUSWIDTH;
564	 }
565
566   /* top up the last unaligned bytes, padded with 0xFF.... */
567   if (len & (BUSWIDTH - 1))
568	 {
569		i = n = 0;
570
571		while (len--) tmp[i++] = buf[n++];
572		while (i < BUSWIDTH) tmp[i++] = 0xFF;
573
574		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
575
576		*retlen += n;
577	 }
578
579   return (0);
580}
581
582/***************************************************************************************************/
583
584static struct mtd_info mtd;
585
586static struct mtd_erase_region_info erase_regions[] = {
587	/* parameter blocks */
588	{
589		.offset		= 0x00000000,
590		.erasesize	= FLASH_BLOCKSIZE_PARAM,
591		.numblocks	= FLASH_NUMBLOCKS_16m_PARAM,
592	},
593	/* main blocks */
594	{
595		.offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
596		.erasesize	= FLASH_BLOCKSIZE_MAIN,
597		.numblocks	= FLASH_NUMBLOCKS_16m_MAIN,
598	}
599};
600
601#ifdef HAVE_PARTITIONS
602static struct mtd_partition lart_partitions[] = {
603	/* blob */
604	{
605		.name	= "blob",
606		.offset	= BLOB_START,
607		.size	= BLOB_LEN,
608	},
609	/* kernel */
610	{
611		.name	= "kernel",
612		.offset	= KERNEL_START,		/* MTDPART_OFS_APPEND */
613		.size	= KERNEL_LEN,
614	},
615	/* initial ramdisk / file system */
616	{
617		.name	= "file system",
618		.offset	= INITRD_START,		/* MTDPART_OFS_APPEND */
619		.size	= INITRD_LEN,		/* MTDPART_SIZ_FULL */
620	}
621};
622#endif
623
624int __init lart_flash_init (void)
625{
626   int result;
627   memset (&mtd,0,sizeof (mtd));
628   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
629   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
630   if (!flash_probe ())
631	 {
632		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
633		return (-ENXIO);
634	 }
635   printk ("%s: This looks like a LART board to me.\n",module_name);
636   mtd.name = module_name;
637   mtd.type = MTD_NORFLASH;
638   mtd.writesize = 1;
639   mtd.flags = MTD_CAP_NORFLASH;
640   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
641   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
642   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
643   mtd.eraseregions = erase_regions;
644   mtd.erase = flash_erase;
645   mtd.read = flash_read;
646   mtd.write = flash_write;
647   mtd.owner = THIS_MODULE;
648
649#ifdef LART_DEBUG
650   printk (KERN_DEBUG
651		   "mtd.name = %s\n"
652		   "mtd.size = 0x%.8x (%uM)\n"
653		   "mtd.erasesize = 0x%.8x (%uK)\n"
654		   "mtd.numeraseregions = %d\n",
655		   mtd.name,
656		   mtd.size,mtd.size / (1024*1024),
657		   mtd.erasesize,mtd.erasesize / 1024,
658		   mtd.numeraseregions);
659
660   if (mtd.numeraseregions)
661	 for (result = 0; result < mtd.numeraseregions; result++)
662	   printk (KERN_DEBUG
663			   "\n\n"
664			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
665			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
666			   "mtd.eraseregions[%d].numblocks = %d\n",
667			   result,mtd.eraseregions[result].offset,
668			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
669			   result,mtd.eraseregions[result].numblocks);
670
671#ifdef HAVE_PARTITIONS
672   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
673
674   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
675	 printk (KERN_DEBUG
676			 "\n\n"
677			 "lart_partitions[%d].name = %s\n"
678			 "lart_partitions[%d].offset = 0x%.8x\n"
679			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
680			 result,lart_partitions[result].name,
681			 result,lart_partitions[result].offset,
682			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
683#endif
684#endif
685
686#ifndef HAVE_PARTITIONS
687   result = add_mtd_device (&mtd);
688#else
689   result = add_mtd_partitions (&mtd,lart_partitions, ARRAY_SIZE(lart_partitions));
690#endif
691
692   return (result);
693}
694
695void __exit lart_flash_exit (void)
696{
697#ifndef HAVE_PARTITIONS
698   del_mtd_device (&mtd);
699#else
700   del_mtd_partitions (&mtd);
701#endif
702}
703
704module_init (lart_flash_init);
705module_exit (lart_flash_exit);
706
707MODULE_LICENSE("GPL");
708MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
709MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
710