1/* $Id: ide-cris.c,v 1.1.1.1 2007/08/03 18:52:31 Exp $
2 *
3 * Etrax specific IDE functions, like init and PIO-mode setting etc.
4 * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
5 * Copyright (c) 2000-2005 Axis Communications AB
6 *
7 * Authors:    Bjorn Wesen        (initial version)
8 *             Mikael Starvik     (crisv32 port)
9 */
10
11/* Regarding DMA:
12 *
13 * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
14 * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
15 * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
16 * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
17 * device can't do DMA handshaking for some stupid reason. We don't need to do that.
18 */
19
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/timer.h>
23#include <linux/mm.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/blkdev.h>
27#include <linux/hdreg.h>
28#include <linux/ide.h>
29#include <linux/init.h>
30
31#include <asm/io.h>
32#include <asm/dma.h>
33
34/* number of DMA descriptors */
35#define MAX_DMA_DESCRS 64
36
37/* number of times to retry busy-flags when reading/writing IDE-registers
38 * this can't be too high because a hung harddisk might cause the watchdog
39 * to trigger (sometimes INB and OUTB are called with irq's disabled)
40 */
41
42#define IDE_REGISTER_TIMEOUT 300
43
44#define LOWDB(x)
45#define D(x)
46
47enum /* Transfer types */
48{
49	TYPE_PIO,
50	TYPE_DMA,
51	TYPE_UDMA
52};
53
54/* CRISv32 specifics */
55#ifdef CONFIG_ETRAX_ARCH_V32
56#include <asm/arch/hwregs/ata_defs.h>
57#include <asm/arch/hwregs/dma_defs.h>
58#include <asm/arch/hwregs/dma.h>
59#include <asm/arch/pinmux.h>
60
61#define ATA_UDMA2_CYC    2
62#define ATA_UDMA2_DVS    3
63#define ATA_UDMA1_CYC    2
64#define ATA_UDMA1_DVS    4
65#define ATA_UDMA0_CYC    4
66#define ATA_UDMA0_DVS    6
67#define ATA_DMA2_STROBE  7
68#define ATA_DMA2_HOLD    1
69#define ATA_DMA1_STROBE  8
70#define ATA_DMA1_HOLD    3
71#define ATA_DMA0_STROBE 25
72#define ATA_DMA0_HOLD   19
73#define ATA_PIO4_SETUP   3
74#define ATA_PIO4_STROBE  7
75#define ATA_PIO4_HOLD    1
76#define ATA_PIO3_SETUP   3
77#define ATA_PIO3_STROBE  9
78#define ATA_PIO3_HOLD    3
79#define ATA_PIO2_SETUP   3
80#define ATA_PIO2_STROBE 13
81#define ATA_PIO2_HOLD    5
82#define ATA_PIO1_SETUP   5
83#define ATA_PIO1_STROBE 23
84#define ATA_PIO1_HOLD    9
85#define ATA_PIO0_SETUP   9
86#define ATA_PIO0_STROBE 39
87#define ATA_PIO0_HOLD    9
88
89int
90cris_ide_ack_intr(ide_hwif_t* hwif)
91{
92	reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2,
93	                         int, hwif->io_ports[0]);
94	REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel);
95	return 1;
96}
97
98static inline int
99cris_ide_busy(void)
100{
101	reg_ata_rs_stat_data stat_data;
102	stat_data = REG_RD(ata, regi_ata, rs_stat_data);
103	return stat_data.busy;
104}
105
106static inline int
107cris_ide_ready(void)
108{
109	return !cris_ide_busy();
110}
111
112static inline int
113cris_ide_data_available(unsigned short* data)
114{
115	reg_ata_rs_stat_data stat_data;
116	stat_data = REG_RD(ata, regi_ata, rs_stat_data);
117	*data = stat_data.data;
118	return stat_data.dav;
119}
120
121static void
122cris_ide_write_command(unsigned long command)
123{
124	REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */
125}
126
127static void
128cris_ide_set_speed(int type, int setup, int strobe, int hold)
129{
130	reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0);
131	reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1);
132
133	if (type == TYPE_PIO) {
134		ctrl0.pio_setup = setup;
135		ctrl0.pio_strb = strobe;
136		ctrl0.pio_hold = hold;
137	} else if (type == TYPE_DMA) {
138		ctrl0.dma_strb = strobe;
139		ctrl0.dma_hold = hold;
140	} else if (type == TYPE_UDMA) {
141		ctrl1.udma_tcyc = setup;
142		ctrl1.udma_tdvs = strobe;
143	}
144	REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
145	REG_WR(ata, regi_ata, rw_ctrl1, ctrl1);
146}
147
148static unsigned long
149cris_ide_base_address(int bus)
150{
151	reg_ata_rw_ctrl2 ctrl2 = {0};
152	ctrl2.sel = bus;
153	return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
154}
155
156static unsigned long
157cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
158{
159	reg_ata_rw_ctrl2 ctrl2 = {0};
160	ctrl2.addr = addr;
161	ctrl2.cs1 = cs1;
162	ctrl2.cs0 = cs0;
163	return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
164}
165
166static __init void
167cris_ide_reset(unsigned val)
168{
169	reg_ata_rw_ctrl0 ctrl0 = {0};
170	ctrl0.rst = val ? regk_ata_active : regk_ata_inactive;
171	REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
172}
173
174static __init void
175cris_ide_init(void)
176{
177	reg_ata_rw_ctrl0 ctrl0 = {0};
178	reg_ata_rw_intr_mask intr_mask = {0};
179
180	ctrl0.en = regk_ata_yes;
181	REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
182
183	intr_mask.bus0 = regk_ata_yes;
184	intr_mask.bus1 = regk_ata_yes;
185	intr_mask.bus2 = regk_ata_yes;
186	intr_mask.bus3 = regk_ata_yes;
187
188	REG_WR(ata, regi_ata, rw_intr_mask, intr_mask);
189
190	crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
191	crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
192
193	crisv32_pinmux_alloc_fixed(pinmux_ata);
194	crisv32_pinmux_alloc_fixed(pinmux_ata0);
195	crisv32_pinmux_alloc_fixed(pinmux_ata1);
196	crisv32_pinmux_alloc_fixed(pinmux_ata2);
197	crisv32_pinmux_alloc_fixed(pinmux_ata3);
198
199	DMA_RESET(regi_dma2);
200	DMA_ENABLE(regi_dma2);
201	DMA_RESET(regi_dma3);
202	DMA_ENABLE(regi_dma3);
203
204	DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2);
205	DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2);
206}
207
208static dma_descr_context mycontext __attribute__ ((__aligned__(32)));
209
210#define cris_dma_descr_type dma_descr_data
211#define cris_pio_read regk_ata_rd
212#define cris_ultra_mask 0x7
213#define MAX_DESCR_SIZE 0xffffffffUL
214
215static unsigned long
216cris_ide_get_reg(unsigned long reg)
217{
218	return (reg & 0x0e000000) >> 25;
219}
220
221static void
222cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
223{
224	d->buf = (char*)virt_to_phys(buf);
225	d->after = d->buf + len;
226	d->eol = last;
227}
228
229static void
230cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len)
231{
232	reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
233	reg_ata_rw_trf_cnt trf_cnt = {0};
234
235	mycontext.saved_data = (dma_descr_data*)virt_to_phys(d);
236	mycontext.saved_data_buf = d->buf;
237	/* start the dma channel */
238	DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext));
239
240	/* initiate a multi word dma read using PIO handshaking */
241	trf_cnt.cnt = len >> 1;
242	/* Due to a "feature" the transfer count has to be one extra word for UDMA. */
243	if (type == TYPE_UDMA)
244		trf_cnt.cnt++;
245	REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt);
246
247	ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr;
248	ctrl2.trf_mode = regk_ata_dma;
249	ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio :
250	            type == TYPE_DMA ? regk_ata_dma : regk_ata_udma;
251	ctrl2.multi = regk_ata_yes;
252	ctrl2.dma_size = regk_ata_word;
253	REG_WR(ata, regi_ata, rw_ctrl2, ctrl2);
254}
255
256static void
257cris_ide_wait_dma(int dir)
258{
259	reg_dma_rw_stat status;
260	do
261	{
262		status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat);
263	} while(status.list_state != regk_dma_data_at_eol);
264}
265
266static int cris_dma_test_irq(ide_drive_t *drive)
267{
268	int intr = REG_RD_INT(ata, regi_ata, r_intr);
269	reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
270	return intr & (1 << ctrl2.sel) ? 1 : 0;
271}
272
273static void cris_ide_initialize_dma(int dir)
274{
275}
276
277#else
278/* CRISv10 specifics */
279#include <asm/arch/svinto.h>
280#include <asm/arch/io_interface_mux.h>
281
282/* PIO timing (in R_ATA_CONFIG)
283 *
284 *                        _____________________________
285 * ADDRESS :     ________/
286 *
287 *                            _______________
288 * DIOR    :     ____________/               \__________
289 *
290 *                               _______________
291 * DATA    :     XXXXXXXXXXXXXXXX_______________XXXXXXXX
292 *
293 *
294 * DIOR is unbuffered while address and data is buffered.
295 * This creates two problems:
296 * 1. The DIOR pulse is to early (because it is unbuffered)
297 * 2. The rise time of DIOR is long
298 *
299 * There are at least three different plausible solutions
300 * 1. Use a pad capable of larger currents in Etrax
301 * 2. Use an external buffer
302 * 3. Make the strobe pulse longer
303 *
304 * Some of the strobe timings below are modified to compensate
305 * for this. This implies a slight performance decrease.
306 *
307 * THIS SHOULD NEVER BE CHANGED!
308 *
309 * TODO: Is this true for the latest LX boards still ?
310 */
311
312#define ATA_UDMA2_CYC    0 /* No UDMA supported, just to make it compile. */
313#define ATA_UDMA2_DVS    0
314#define ATA_UDMA1_CYC    0
315#define ATA_UDMA1_DVS    0
316#define ATA_UDMA0_CYC    0
317#define ATA_UDMA0_DVS    0
318#define ATA_DMA2_STROBE  4
319#define ATA_DMA2_HOLD    0
320#define ATA_DMA1_STROBE  4
321#define ATA_DMA1_HOLD    1
322#define ATA_DMA0_STROBE 12
323#define ATA_DMA0_HOLD    9
324#define ATA_PIO4_SETUP   1
325#define ATA_PIO4_STROBE  5
326#define ATA_PIO4_HOLD    0
327#define ATA_PIO3_SETUP   1
328#define ATA_PIO3_STROBE  5
329#define ATA_PIO3_HOLD    1
330#define ATA_PIO2_SETUP   1
331#define ATA_PIO2_STROBE  6
332#define ATA_PIO2_HOLD    2
333#define ATA_PIO1_SETUP   2
334#define ATA_PIO1_STROBE 11
335#define ATA_PIO1_HOLD    4
336#define ATA_PIO0_SETUP   4
337#define ATA_PIO0_STROBE 19
338#define ATA_PIO0_HOLD    4
339
340int
341cris_ide_ack_intr(ide_hwif_t* hwif)
342{
343	return 1;
344}
345
346static inline int
347cris_ide_busy(void)
348{
349	return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ;
350}
351
352static inline int
353cris_ide_ready(void)
354{
355	return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ;
356}
357
358static inline int
359cris_ide_data_available(unsigned short* data)
360{
361	unsigned long status = *R_ATA_STATUS_DATA;
362	*data = (unsigned short)status;
363	return status & IO_MASK(R_ATA_STATUS_DATA, dav);
364}
365
366static void
367cris_ide_write_command(unsigned long command)
368{
369	*R_ATA_CTRL_DATA = command;
370}
371
372static void
373cris_ide_set_speed(int type, int setup, int strobe, int hold)
374{
375	static int pio_setup = ATA_PIO4_SETUP;
376	static int pio_strobe = ATA_PIO4_STROBE;
377	static int pio_hold = ATA_PIO4_HOLD;
378	static int dma_strobe = ATA_DMA2_STROBE;
379	static int dma_hold = ATA_DMA2_HOLD;
380
381	if (type == TYPE_PIO) {
382		pio_setup = setup;
383		pio_strobe = strobe;
384		pio_hold = hold;
385	} else if (type == TYPE_DMA) {
386		dma_strobe = strobe;
387	  dma_hold = hold;
388	}
389	*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
390	  IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) |
391		IO_FIELD( R_ATA_CONFIG, dma_hold,   dma_hold ) |
392		IO_FIELD( R_ATA_CONFIG, pio_setup,  pio_setup ) |
393		IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) |
394		IO_FIELD( R_ATA_CONFIG, pio_hold,   pio_hold ) );
395}
396
397static unsigned long
398cris_ide_base_address(int bus)
399{
400	return IO_FIELD(R_ATA_CTRL_DATA, sel, bus);
401}
402
403static unsigned long
404cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
405{
406	return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) |
407	       IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) |
408	       IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1);
409}
410
411static __init void
412cris_ide_reset(unsigned val)
413{
414#ifdef CONFIG_ETRAX_IDE_G27_RESET
415	REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val);
416#endif
417#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
418	REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, val);
419#endif
420#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
421	REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, val);
422#endif
423#ifdef CONFIG_ETRAX_IDE_PB7_RESET
424	port_pb_dir_shadow = port_pb_dir_shadow |
425		IO_STATE(R_PORT_PB_DIR, dir7, output);
426	*R_PORT_PB_DIR = port_pb_dir_shadow;
427	REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val);
428#endif
429}
430
431static __init void
432cris_ide_init(void)
433{
434	volatile unsigned int dummy;
435
436	*R_ATA_CTRL_DATA = 0;
437	*R_ATA_TRANSFER_CNT = 0;
438	*R_ATA_CONFIG = 0;
439
440	if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) {
441		printk(KERN_CRIT "ide: Failed to get IO interface\n");
442		return;
443	} else if (cris_request_dma(ATA_TX_DMA_NBR,
444		                          "ETRAX100LX IDE TX",
445		                          DMA_VERBOSE_ON_ERROR,
446		                          dma_ata)) {
447		cris_free_io_interface(if_ata);
448		printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n");
449		return;
450	} else if (cris_request_dma(ATA_RX_DMA_NBR,
451		                          "ETRAX100LX IDE RX",
452		                          DMA_VERBOSE_ON_ERROR,
453		                          dma_ata)) {
454		cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx");
455		cris_free_io_interface(if_ata);
456		printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n");
457		return;
458	}
459
460	/* make a dummy read to set the ata controller in a proper state */
461	dummy = *R_ATA_STATUS_DATA;
462
463	*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ));
464	*R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw,   read) |
465	                     IO_FIELD( R_ATA_CTRL_DATA, addr, 1   ) );
466
467	while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/
468
469	*R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
470	                     IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
471	                     IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
472	                     IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );
473
474	/* reset the dma channels we will use */
475
476	RESET_DMA(ATA_TX_DMA_NBR);
477	RESET_DMA(ATA_RX_DMA_NBR);
478	WAIT_DMA(ATA_TX_DMA_NBR);
479	WAIT_DMA(ATA_RX_DMA_NBR);
480}
481
482#define cris_dma_descr_type etrax_dma_descr
483#define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read)
484#define cris_ultra_mask 0x0
485#define MAX_DESCR_SIZE 0x10000UL
486
487static unsigned long
488cris_ide_get_reg(unsigned long reg)
489{
490	return (reg & 0x0e000000) >> 25;
491}
492
493static void
494cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
495{
496	d->buf = virt_to_phys(buf);
497	d->sw_len = len == MAX_DESCR_SIZE ? 0 : len;
498	if (last)
499		d->ctrl |= d_eol;
500}
501
502static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len)
503{
504	unsigned long cmd;
505
506	if (dir) {
507		/* need to do this before RX DMA due to a chip bug
508		 * it is enough to just flush the part of the cache that
509		 * corresponds to the buffers we start, but since HD transfers
510		 * usually are more than 8 kB, it is easier to optimize for the
511		 * normal case and just flush the entire cache. its the only
512		 * way to be sure! (OB movie quote)
513		 */
514		flush_etrax_cache();
515		*R_DMA_CH3_FIRST = virt_to_phys(d);
516		*R_DMA_CH3_CMD   = IO_STATE(R_DMA_CH3_CMD, cmd, start);
517
518	} else {
519		*R_DMA_CH2_FIRST = virt_to_phys(d);
520		*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);
521	}
522
523	/* initiate a multi word dma read using DMA handshaking */
524
525	*R_ATA_TRANSFER_CNT =
526		IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1);
527
528	cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write);
529	cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) :
530	                          IO_STATE(R_ATA_CTRL_DATA, handsh, dma);
531	*R_ATA_CTRL_DATA =
532		cmd |
533		IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
534		IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma)  |
535		IO_STATE(R_ATA_CTRL_DATA, multi,    on)   |
536		IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
537}
538
539static void
540cris_ide_wait_dma(int dir)
541{
542	if (dir)
543		WAIT_DMA(ATA_RX_DMA_NBR);
544	else
545		WAIT_DMA(ATA_TX_DMA_NBR);
546}
547
548static int cris_dma_test_irq(ide_drive_t *drive)
549{
550	int intr = *R_IRQ_MASK0_RD;
551	int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG);
552	return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0;
553}
554
555
556static void cris_ide_initialize_dma(int dir)
557{
558	if (dir)
559	{
560		RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
561		WAIT_DMA(ATA_RX_DMA_NBR);
562	}
563	else
564	{
565		RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
566		WAIT_DMA(ATA_TX_DMA_NBR);
567	}
568}
569
570#endif
571
572void
573cris_ide_outw(unsigned short data, unsigned long reg) {
574	int timeleft;
575
576	LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));
577
578	/* note the lack of handling any timeouts. we stop waiting, but we don't
579	 * really notify anybody.
580	 */
581
582	timeleft = IDE_REGISTER_TIMEOUT;
583	/* wait for busy flag */
584	do {
585		timeleft--;
586	} while(timeleft && cris_ide_busy());
587
588	/*
589	 * Fall through at a timeout, so the ongoing command will be
590	 * aborted by the write below, which is expected to be a dummy
591	 * command to the command register.  This happens when a faulty
592	 * drive times out on a command.  See comment on timeout in
593	 * INB.
594	 */
595	if(!timeleft)
596		printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);
597
598	cris_ide_write_command(reg|data); /* write data to the drive's register */
599
600	timeleft = IDE_REGISTER_TIMEOUT;
601	/* wait for transmitter ready */
602	do {
603		timeleft--;
604	} while(timeleft && !cris_ide_ready());
605}
606
607void
608cris_ide_outb(unsigned char data, unsigned long reg)
609{
610	cris_ide_outw(data, reg);
611}
612
613void
614cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
615{
616	cris_ide_outw(addr, port);
617}
618
619unsigned short
620cris_ide_inw(unsigned long reg) {
621	int timeleft;
622	unsigned short val;
623
624	timeleft = IDE_REGISTER_TIMEOUT;
625	/* wait for busy flag */
626	do {
627		timeleft--;
628	} while(timeleft && cris_ide_busy());
629
630	if(!timeleft) {
631		/*
632		 * If we're asked to read the status register, like for
633		 * example when a command does not complete for an
634		 * extended time, but the ATA interface is stuck in a
635		 * busy state at the *ETRAX* ATA interface level (as has
636		 * happened repeatedly with at least one bad disk), then
637		 * the best thing to do is to pretend that we read
638		 * "busy" in the status register, so the IDE driver will
639		 * time-out, abort the ongoing command and perform a
640		 * reset sequence.  Note that the subsequent OUT_BYTE
641		 * call will also timeout on busy, but as long as the
642		 * write is still performed, everything will be fine.
643		 */
644		if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET)
645			return BUSY_STAT;
646		else
647			/* For other rare cases we assume 0 is good enough.  */
648			return 0;
649	}
650
651	cris_ide_write_command(reg | cris_pio_read);
652
653	timeleft = IDE_REGISTER_TIMEOUT;
654	/* wait for available */
655	do {
656		timeleft--;
657	} while(timeleft && !cris_ide_data_available(&val));
658
659	if(!timeleft)
660		return 0;
661
662	LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg));
663
664	return val;
665}
666
667unsigned char
668cris_ide_inb(unsigned long reg)
669{
670	return (unsigned char)cris_ide_inw(reg);
671}
672
673static int cris_dma_check (ide_drive_t *drive);
674static int cris_dma_end (ide_drive_t *drive);
675static int cris_dma_setup (ide_drive_t *drive);
676static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command);
677static int cris_dma_test_irq(ide_drive_t *drive);
678static void cris_dma_start(ide_drive_t *drive);
679static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int);
680static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int);
681static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
682static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
683static int cris_dma_on (ide_drive_t *drive);
684
685static void cris_dma_off(ide_drive_t *drive)
686{
687}
688
689static void tune_cris_ide(ide_drive_t *drive, u8 pio)
690{
691	int setup, strobe, hold;
692
693	switch(pio)
694	{
695		case 0:
696			setup = ATA_PIO0_SETUP;
697			strobe = ATA_PIO0_STROBE;
698			hold = ATA_PIO0_HOLD;
699			break;
700		case 1:
701			setup = ATA_PIO1_SETUP;
702			strobe = ATA_PIO1_STROBE;
703			hold = ATA_PIO1_HOLD;
704			break;
705		case 2:
706			setup = ATA_PIO2_SETUP;
707			strobe = ATA_PIO2_STROBE;
708			hold = ATA_PIO2_HOLD;
709			break;
710		case 3:
711			setup = ATA_PIO3_SETUP;
712			strobe = ATA_PIO3_STROBE;
713			hold = ATA_PIO3_HOLD;
714			break;
715		case 4:
716			setup = ATA_PIO4_SETUP;
717			strobe = ATA_PIO4_STROBE;
718			hold = ATA_PIO4_HOLD;
719			break;
720		default:
721			return;
722	}
723
724	cris_ide_set_speed(TYPE_PIO, setup, strobe, hold);
725}
726
727static int speed_cris_ide(ide_drive_t *drive, u8 speed)
728{
729	int cyc = 0, dvs = 0, strobe = 0, hold = 0;
730
731	if (speed >= XFER_PIO_0 && speed <= XFER_PIO_4) {
732		tune_cris_ide(drive, speed - XFER_PIO_0);
733		return ide_config_drive_speed(drive, speed);
734	}
735
736	switch(speed)
737	{
738		case XFER_UDMA_0:
739			cyc = ATA_UDMA0_CYC;
740			dvs = ATA_UDMA0_DVS;
741			break;
742		case XFER_UDMA_1:
743			cyc = ATA_UDMA1_CYC;
744			dvs = ATA_UDMA1_DVS;
745			break;
746		case XFER_UDMA_2:
747			cyc = ATA_UDMA2_CYC;
748			dvs = ATA_UDMA2_DVS;
749			break;
750		case XFER_MW_DMA_0:
751			strobe = ATA_DMA0_STROBE;
752			hold = ATA_DMA0_HOLD;
753			break;
754		case XFER_MW_DMA_1:
755			strobe = ATA_DMA1_STROBE;
756			hold = ATA_DMA1_HOLD;
757			break;
758		case XFER_MW_DMA_2:
759			strobe = ATA_DMA2_STROBE;
760			hold = ATA_DMA2_HOLD;
761			break;
762		default:
763			BUG();
764			break;
765	}
766
767	if (speed >= XFER_UDMA_0)
768		cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0);
769	else
770		cris_ide_set_speed(TYPE_DMA, 0, strobe, hold);
771
772	return ide_config_drive_speed(drive, speed);
773}
774
775void __init
776init_e100_ide (void)
777{
778	hw_regs_t hw;
779	int ide_offsets[IDE_NR_PORTS];
780	int h;
781	int i;
782
783	printk("ide: ETRAX FS built-in ATA DMA controller\n");
784
785	for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++)
786		ide_offsets[i] = cris_ide_reg_addr(i, 0, 1);
787
788	/* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */
789	ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0);
790
791	/* first fill in some stuff in the ide_hwifs fields */
792
793	for(h = 0; h < MAX_HWIFS; h++) {
794		ide_hwif_t *hwif = &ide_hwifs[h];
795		ide_setup_ports(&hw, cris_ide_base_address(h),
796		                ide_offsets,
797		                0, 0, cris_ide_ack_intr,
798		                ide_default_irq(0));
799		ide_register_hw(&hw, 1, &hwif);
800		hwif->mmio = 1;
801		hwif->chipset = ide_etrax100;
802		hwif->tuneproc = &tune_cris_ide;
803		hwif->speedproc = &speed_cris_ide;
804		hwif->ata_input_data = &cris_ide_input_data;
805		hwif->ata_output_data = &cris_ide_output_data;
806		hwif->atapi_input_bytes = &cris_atapi_input_bytes;
807		hwif->atapi_output_bytes = &cris_atapi_output_bytes;
808		hwif->ide_dma_check = &cris_dma_check;
809		hwif->ide_dma_end = &cris_dma_end;
810		hwif->dma_setup = &cris_dma_setup;
811		hwif->dma_exec_cmd = &cris_dma_exec_cmd;
812		hwif->ide_dma_test_irq = &cris_dma_test_irq;
813		hwif->dma_start = &cris_dma_start;
814		hwif->OUTB = &cris_ide_outb;
815		hwif->OUTW = &cris_ide_outw;
816		hwif->OUTBSYNC = &cris_ide_outbsync;
817		hwif->INB = &cris_ide_inb;
818		hwif->INW = &cris_ide_inw;
819		hwif->dma_host_off = &cris_dma_off;
820		hwif->dma_host_on = &cris_dma_on;
821		hwif->dma_off_quietly = &cris_dma_off;
822		hwif->udma_four = 0;
823		hwif->ultra_mask = cris_ultra_mask;
824		hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */
825		hwif->autodma = 1;
826		hwif->drives[0].autodma = 1;
827		hwif->drives[1].autodma = 1;
828	}
829
830	/* Reset pulse */
831	cris_ide_reset(0);
832	udelay(25);
833	cris_ide_reset(1);
834
835	cris_ide_init();
836
837	cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD);
838	cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD);
839	cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0);
840}
841
842static int cris_dma_on (ide_drive_t *drive)
843{
844	return 0;
845}
846
847
848static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16)));
849
850/*
851 * The following routines are mainly used by the ATAPI drivers.
852 *
853 * These routines will round up any request for an odd number of bytes,
854 * so if an odd bytecount is specified, be sure that there's at least one
855 * extra byte allocated for the buffer.
856 */
857static void
858cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
859{
860	D(printk("atapi_input_bytes, buffer 0x%x, count %d\n",
861	         buffer, bytecount));
862
863	if(bytecount & 1) {
864		printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
865		bytecount++; /* to round off */
866	}
867
868	/* setup DMA and start transfer */
869
870	cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
871	cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount);
872
873	/* wait for completion */
874	LED_DISK_READ(1);
875	cris_ide_wait_dma(1);
876	LED_DISK_READ(0);
877}
878
879static void
880cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
881{
882	D(printk("atapi_output_bytes, buffer 0x%x, count %d\n",
883	         buffer, bytecount));
884
885	if(bytecount & 1) {
886		printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
887		bytecount++;
888	}
889
890	cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
891	cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount);
892
893	/* wait for completion */
894
895	LED_DISK_WRITE(1);
896	LED_DISK_READ(1);
897	cris_ide_wait_dma(0);
898	LED_DISK_WRITE(0);
899}
900
901/*
902 * This is used for most PIO data transfers *from* the IDE interface
903 */
904static void
905cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
906{
907	cris_atapi_input_bytes(drive, buffer, wcount << 2);
908}
909
910/*
911 * This is used for most PIO data transfers *to* the IDE interface
912 */
913static void
914cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
915{
916	cris_atapi_output_bytes(drive, buffer, wcount << 2);
917}
918
919/* we only have one DMA channel on the chip for ATA, so we can keep these statically */
920static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16)));
921static unsigned int ata_tot_size;
922
923/*
924 * cris_ide_build_dmatable() prepares a dma request.
925 * Returns 0 if all went okay, returns 1 otherwise.
926 */
927static int cris_ide_build_dmatable (ide_drive_t *drive)
928{
929	ide_hwif_t *hwif = drive->hwif;
930	struct scatterlist* sg;
931	struct request *rq  = drive->hwif->hwgroup->rq;
932	unsigned long size, addr;
933	unsigned int count = 0;
934	int i = 0;
935
936	sg = hwif->sg_table;
937
938	ata_tot_size = 0;
939
940	ide_map_sg(drive, rq);
941	i = hwif->sg_nents;
942
943	while(i) {
944		/*
945		 * Determine addr and size of next buffer area.  We assume that
946		 * individual virtual buffers are always composed linearly in
947		 * physical memory.  For example, we assume that any 8kB buffer
948		 * is always composed of two adjacent physical 4kB pages rather
949		 * than two possibly non-adjacent physical 4kB pages.
950		 */
951		/* group sequential buffers into one large buffer */
952		addr = page_to_phys(sg->page) + sg->offset;
953		size = sg_dma_len(sg);
954		while (sg++, --i) {
955			if ((addr + size) != page_to_phys(sg->page) + sg->offset)
956				break;
957			size += sg_dma_len(sg);
958		}
959
960		/* did we run out of descriptors? */
961
962		if(count >= MAX_DMA_DESCRS) {
963			printk("%s: too few DMA descriptors\n", drive->name);
964			return 1;
965		}
966
967		/* however, this case is more difficult - rw_trf_cnt cannot be more
968		   than 65536 words per transfer, so in that case we need to either
969		   1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with
970		      the descriptors, or
971		   2) simply do the request here, and get dma_intr to only ide_end_request on
972		      those blocks that were actually set-up for transfer.
973		*/
974
975		if(ata_tot_size + size > 131072) {
976			printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
977			return 1;
978		}
979
980		/* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we
981                   don't handle size > 131072 only one split is necessary */
982
983		if(size > MAX_DESCR_SIZE) {
984			cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0);
985			count++;
986			ata_tot_size += MAX_DESCR_SIZE;
987			size -= MAX_DESCR_SIZE;
988			addr += MAX_DESCR_SIZE;
989		}
990
991		cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1);
992		count++;
993		ata_tot_size += size;
994	}
995
996	if (count) {
997		/* return and say all is ok */
998		return 0;
999	}
1000
1001	printk("%s: empty DMA table?\n", drive->name);
1002	return 1;	/* let the PIO routines handle this weirdness */
1003}
1004
1005/*
1006 * cris_dma_intr() is the handler for disk read/write DMA interrupts
1007 */
1008static ide_startstop_t cris_dma_intr (ide_drive_t *drive)
1009{
1010	LED_DISK_READ(0);
1011	LED_DISK_WRITE(0);
1012
1013	return ide_dma_intr(drive);
1014}
1015
1016/*
1017 * Functions below initiates/aborts DMA read/write operations on a drive.
1018 *
1019 * The caller is assumed to have selected the drive and programmed the drive's
1020 * sector address using CHS or LBA.  All that remains is to prepare for DMA
1021 * and then issue the actual read/write DMA/PIO command to the drive.
1022 *
1023 * For ATAPI devices, we just prepare for DMA and return. The caller should
1024 * then issue the packet command to the drive and call us again with
1025 * cris_dma_start afterwards.
1026 *
1027 * Returns 0 if all went well.
1028 * Returns 1 if DMA read/write could not be started, in which case
1029 * the caller should revert to PIO for the current request.
1030 */
1031
1032static int cris_dma_check(ide_drive_t *drive)
1033{
1034	if (ide_tune_dma(drive))
1035		return 0;
1036
1037	return -1;
1038}
1039
1040static int cris_dma_end(ide_drive_t *drive)
1041{
1042	drive->waiting_for_dma = 0;
1043	return 0;
1044}
1045
1046static int cris_dma_setup(ide_drive_t *drive)
1047{
1048	struct request *rq = drive->hwif->hwgroup->rq;
1049
1050	cris_ide_initialize_dma(!rq_data_dir(rq));
1051	if (cris_ide_build_dmatable (drive)) {
1052		ide_map_sg(drive, rq);
1053		return 1;
1054	}
1055
1056	drive->waiting_for_dma = 1;
1057	return 0;
1058}
1059
1060static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command)
1061{
1062	/* set the irq handler which will finish the request when DMA is done */
1063	ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL);
1064
1065	/* issue cmd to drive */
1066	cris_ide_outb(command, IDE_COMMAND_REG);
1067}
1068
1069static void cris_dma_start(ide_drive_t *drive)
1070{
1071	struct request *rq = drive->hwif->hwgroup->rq;
1072	int writing = rq_data_dir(rq);
1073	int type = TYPE_DMA;
1074
1075	if (drive->current_speed >= XFER_UDMA_0)
1076		type = TYPE_UDMA;
1077
1078	cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size);
1079
1080	if (writing) {
1081		LED_DISK_WRITE(1);
1082	} else {
1083		LED_DISK_READ(1);
1084	}
1085}
1086