1/*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 *          monitoring
4 * Copyright (C) 2003-2006  Jean Delvare <khali@linux-fr.org>
5 *
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy. Complete datasheet can be
10 * obtained from National's website at:
11 *   http://www.national.com/pf/LM/LM90.html
12 *
13 * This driver also supports the LM89 and LM99, two other sensor chips
14 * made by National Semiconductor. Both have an increased remote
15 * temperature measurement accuracy (1 degree), and the LM99
16 * additionally shifts remote temperatures (measured and limits) by 16
17 * degrees, which allows for higher temperatures measurement. The
18 * driver doesn't handle it since it can be done easily in user-space.
19 * Complete datasheets can be obtained from National's website at:
20 *   http://www.national.com/pf/LM/LM89.html
21 *   http://www.national.com/pf/LM/LM99.html
22 * Note that there is no way to differentiate between both chips.
23 *
24 * This driver also supports the LM86, another sensor chip made by
25 * National Semiconductor. It is exactly similar to the LM90 except it
26 * has a higher accuracy.
27 * Complete datasheet can be obtained from National's website at:
28 *   http://www.national.com/pf/LM/LM86.html
29 *
30 * This driver also supports the ADM1032, a sensor chip made by Analog
31 * Devices. That chip is similar to the LM90, with a few differences
32 * that are not handled by this driver. Complete datasheet can be
33 * obtained from Analog's website at:
34 *   http://www.analog.com/en/prod/0,2877,ADM1032,00.html
35 * Among others, it has a higher accuracy than the LM90, much like the
36 * LM86 does.
37 *
38 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
39 * chips made by Maxim. These chips are similar to the LM86. Complete
40 * datasheet can be obtained at Maxim's website at:
41 *   http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
42 * Note that there is no easy way to differentiate between the three
43 * variants. The extra address and features of the MAX6659 are not
44 * supported by this driver.
45 *
46 * This driver also supports the ADT7461 chip from Analog Devices but
47 * only in its "compatability mode". If an ADT7461 chip is found but
48 * is configured in non-compatible mode (where its temperature
49 * register values are decoded differently) it is ignored by this
50 * driver. Complete datasheet can be obtained from Analog's website
51 * at:
52 *   http://www.analog.com/en/prod/0,2877,ADT7461,00.html
53 *
54 * Since the LM90 was the first chipset supported by this driver, most
55 * comments will refer to this chipset, but are actually general and
56 * concern all supported chipsets, unless mentioned otherwise.
57 *
58 * This program is free software; you can redistribute it and/or modify
59 * it under the terms of the GNU General Public License as published by
60 * the Free Software Foundation; either version 2 of the License, or
61 * (at your option) any later version.
62 *
63 * This program is distributed in the hope that it will be useful,
64 * but WITHOUT ANY WARRANTY; without even the implied warranty of
65 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
66 * GNU General Public License for more details.
67 *
68 * You should have received a copy of the GNU General Public License
69 * along with this program; if not, write to the Free Software
70 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
71 */
72
73#include <linux/module.h>
74#include <linux/init.h>
75#include <linux/slab.h>
76#include <linux/jiffies.h>
77#include <linux/i2c.h>
78#include <linux/hwmon-sysfs.h>
79#include <linux/hwmon.h>
80#include <linux/err.h>
81#include <linux/mutex.h>
82#include <linux/sysfs.h>
83
84/*
85 * Addresses to scan
86 * Address is fully defined internally and cannot be changed except for
87 * MAX6659.
88 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, MAX6657 and MAX6658
89 * have address 0x4c.
90 * ADM1032-2, ADT7461-2, LM89-1, and LM99-1 have address 0x4d.
91 * MAX6659 can have address 0x4c, 0x4d or 0x4e (unsupported).
92 */
93
94static unsigned short normal_i2c[] = { 0x4c, 0x4d, I2C_CLIENT_END };
95
96/*
97 * Insmod parameters
98 */
99
100I2C_CLIENT_INSMOD_6(lm90, adm1032, lm99, lm86, max6657, adt7461);
101
102/*
103 * The LM90 registers
104 */
105
106#define LM90_REG_R_MAN_ID		0xFE
107#define LM90_REG_R_CHIP_ID		0xFF
108#define LM90_REG_R_CONFIG1		0x03
109#define LM90_REG_W_CONFIG1		0x09
110#define LM90_REG_R_CONFIG2		0xBF
111#define LM90_REG_W_CONFIG2		0xBF
112#define LM90_REG_R_CONVRATE		0x04
113#define LM90_REG_W_CONVRATE		0x0A
114#define LM90_REG_R_STATUS		0x02
115#define LM90_REG_R_LOCAL_TEMP		0x00
116#define LM90_REG_R_LOCAL_HIGH		0x05
117#define LM90_REG_W_LOCAL_HIGH		0x0B
118#define LM90_REG_R_LOCAL_LOW		0x06
119#define LM90_REG_W_LOCAL_LOW		0x0C
120#define LM90_REG_R_LOCAL_CRIT		0x20
121#define LM90_REG_W_LOCAL_CRIT		0x20
122#define LM90_REG_R_REMOTE_TEMPH		0x01
123#define LM90_REG_R_REMOTE_TEMPL		0x10
124#define LM90_REG_R_REMOTE_OFFSH		0x11
125#define LM90_REG_W_REMOTE_OFFSH		0x11
126#define LM90_REG_R_REMOTE_OFFSL		0x12
127#define LM90_REG_W_REMOTE_OFFSL		0x12
128#define LM90_REG_R_REMOTE_HIGHH		0x07
129#define LM90_REG_W_REMOTE_HIGHH		0x0D
130#define LM90_REG_R_REMOTE_HIGHL		0x13
131#define LM90_REG_W_REMOTE_HIGHL		0x13
132#define LM90_REG_R_REMOTE_LOWH		0x08
133#define LM90_REG_W_REMOTE_LOWH		0x0E
134#define LM90_REG_R_REMOTE_LOWL		0x14
135#define LM90_REG_W_REMOTE_LOWL		0x14
136#define LM90_REG_R_REMOTE_CRIT		0x19
137#define LM90_REG_W_REMOTE_CRIT		0x19
138#define LM90_REG_R_TCRIT_HYST		0x21
139#define LM90_REG_W_TCRIT_HYST		0x21
140
141/*
142 * Conversions and various macros
143 * For local temperatures and limits, critical limits and the hysteresis
144 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
145 * For remote temperatures and limits, it uses signed 11-bit values with
146 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.
147 */
148
149#define TEMP1_FROM_REG(val)	((val) * 1000)
150#define TEMP1_TO_REG(val)	((val) <= -128000 ? -128 : \
151				 (val) >= 127000 ? 127 : \
152				 (val) < 0 ? ((val) - 500) / 1000 : \
153				 ((val) + 500) / 1000)
154#define TEMP2_FROM_REG(val)	((val) / 32 * 125)
155#define TEMP2_TO_REG(val)	((val) <= -128000 ? 0x8000 : \
156				 (val) >= 127875 ? 0x7FE0 : \
157				 (val) < 0 ? ((val) - 62) / 125 * 32 : \
158				 ((val) + 62) / 125 * 32)
159#define HYST_TO_REG(val)	((val) <= 0 ? 0 : (val) >= 30500 ? 31 : \
160				 ((val) + 500) / 1000)
161
162/*
163 * ADT7461 is almost identical to LM90 except that attempts to write
164 * values that are outside the range 0 < temp < 127 are treated as
165 * the boundary value.
166 */
167
168#define TEMP1_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \
169				 (val) >= 127000 ? 127 : \
170				 ((val) + 500) / 1000)
171#define TEMP2_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \
172				 (val) >= 127750 ? 0x7FC0 : \
173				 ((val) + 125) / 250 * 64)
174
175/*
176 * Functions declaration
177 */
178
179static int lm90_attach_adapter(struct i2c_adapter *adapter);
180static int lm90_detect(struct i2c_adapter *adapter, int address,
181	int kind);
182static void lm90_init_client(struct i2c_client *client);
183static int lm90_detach_client(struct i2c_client *client);
184static struct lm90_data *lm90_update_device(struct device *dev);
185
186/*
187 * Driver data (common to all clients)
188 */
189
190static struct i2c_driver lm90_driver = {
191	.driver = {
192		.name	= "lm90",
193	},
194	.id		= I2C_DRIVERID_LM90,
195	.attach_adapter	= lm90_attach_adapter,
196	.detach_client	= lm90_detach_client,
197};
198
199/*
200 * Client data (each client gets its own)
201 */
202
203struct lm90_data {
204	struct i2c_client client;
205	struct class_device *class_dev;
206	struct mutex update_lock;
207	char valid; /* zero until following fields are valid */
208	unsigned long last_updated; /* in jiffies */
209	int kind;
210
211	/* registers values */
212	s8 temp8[5];	/* 0: local input
213			   1: local low limit
214			   2: local high limit
215			   3: local critical limit
216			   4: remote critical limit */
217	s16 temp11[3];	/* 0: remote input
218			   1: remote low limit
219			   2: remote high limit */
220	u8 temp_hyst;
221	u8 alarms; /* bitvector */
222};
223
224/*
225 * Sysfs stuff
226 */
227
228static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
229			  char *buf)
230{
231	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
232	struct lm90_data *data = lm90_update_device(dev);
233	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index]));
234}
235
236static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
237			 const char *buf, size_t count)
238{
239	static const u8 reg[4] = {
240		LM90_REG_W_LOCAL_LOW,
241		LM90_REG_W_LOCAL_HIGH,
242		LM90_REG_W_LOCAL_CRIT,
243		LM90_REG_W_REMOTE_CRIT,
244	};
245
246	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
247	struct i2c_client *client = to_i2c_client(dev);
248	struct lm90_data *data = i2c_get_clientdata(client);
249	long val = simple_strtol(buf, NULL, 10);
250	int nr = attr->index;
251
252	mutex_lock(&data->update_lock);
253	if (data->kind == adt7461)
254		data->temp8[nr] = TEMP1_TO_REG_ADT7461(val);
255	else
256		data->temp8[nr] = TEMP1_TO_REG(val);
257	i2c_smbus_write_byte_data(client, reg[nr - 1], data->temp8[nr]);
258	mutex_unlock(&data->update_lock);
259	return count;
260}
261
262static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
263			   char *buf)
264{
265	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
266	struct lm90_data *data = lm90_update_device(dev);
267	return sprintf(buf, "%d\n", TEMP2_FROM_REG(data->temp11[attr->index]));
268}
269
270static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
271			  const char *buf, size_t count)
272{
273	static const u8 reg[4] = {
274		LM90_REG_W_REMOTE_LOWH,
275		LM90_REG_W_REMOTE_LOWL,
276		LM90_REG_W_REMOTE_HIGHH,
277		LM90_REG_W_REMOTE_HIGHL,
278	};
279
280	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
281	struct i2c_client *client = to_i2c_client(dev);
282	struct lm90_data *data = i2c_get_clientdata(client);
283	long val = simple_strtol(buf, NULL, 10);
284	int nr = attr->index;
285
286	mutex_lock(&data->update_lock);
287	if (data->kind == adt7461)
288		data->temp11[nr] = TEMP2_TO_REG_ADT7461(val);
289	else
290		data->temp11[nr] = TEMP2_TO_REG(val);
291	i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2],
292				  data->temp11[nr] >> 8);
293	i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1],
294				  data->temp11[nr] & 0xff);
295	mutex_unlock(&data->update_lock);
296	return count;
297}
298
299static ssize_t show_temphyst(struct device *dev, struct device_attribute *devattr,
300			     char *buf)
301{
302	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
303	struct lm90_data *data = lm90_update_device(dev);
304	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index])
305		       - TEMP1_FROM_REG(data->temp_hyst));
306}
307
308static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
309			    const char *buf, size_t count)
310{
311	struct i2c_client *client = to_i2c_client(dev);
312	struct lm90_data *data = i2c_get_clientdata(client);
313	long val = simple_strtol(buf, NULL, 10);
314	long hyst;
315
316	mutex_lock(&data->update_lock);
317	hyst = TEMP1_FROM_REG(data->temp8[3]) - val;
318	i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
319				  HYST_TO_REG(hyst));
320	mutex_unlock(&data->update_lock);
321	return count;
322}
323
324static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
325			   char *buf)
326{
327	struct lm90_data *data = lm90_update_device(dev);
328	return sprintf(buf, "%d\n", data->alarms);
329}
330
331static ssize_t show_alarm(struct device *dev, struct device_attribute
332			  *devattr, char *buf)
333{
334	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
335	struct lm90_data *data = lm90_update_device(dev);
336	int bitnr = attr->index;
337
338	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
339}
340
341static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp8, NULL, 0);
342static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0);
343static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
344	set_temp8, 1);
345static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
346	set_temp11, 1);
347static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
348	set_temp8, 2);
349static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
350	set_temp11, 2);
351static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
352	set_temp8, 3);
353static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
354	set_temp8, 4);
355static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
356	set_temphyst, 3);
357static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 4);
358
359/* Individual alarm files */
360static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
361static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
362static SENSOR_DEVICE_ATTR(temp2_input_fault, S_IRUGO, show_alarm, NULL, 2);
363static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
364static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
365static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
366static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
367/* Raw alarm file for compatibility */
368static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
369
370static struct attribute *lm90_attributes[] = {
371	&sensor_dev_attr_temp1_input.dev_attr.attr,
372	&sensor_dev_attr_temp2_input.dev_attr.attr,
373	&sensor_dev_attr_temp1_min.dev_attr.attr,
374	&sensor_dev_attr_temp2_min.dev_attr.attr,
375	&sensor_dev_attr_temp1_max.dev_attr.attr,
376	&sensor_dev_attr_temp2_max.dev_attr.attr,
377	&sensor_dev_attr_temp1_crit.dev_attr.attr,
378	&sensor_dev_attr_temp2_crit.dev_attr.attr,
379	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
380	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
381
382	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
383	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
384	&sensor_dev_attr_temp2_input_fault.dev_attr.attr,
385	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
386	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
387	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
388	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
389	&dev_attr_alarms.attr,
390	NULL
391};
392
393static const struct attribute_group lm90_group = {
394	.attrs = lm90_attributes,
395};
396
397/* pec used for ADM1032 only */
398static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
399			char *buf)
400{
401	struct i2c_client *client = to_i2c_client(dev);
402	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
403}
404
405static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
406		       const char *buf, size_t count)
407{
408	struct i2c_client *client = to_i2c_client(dev);
409	long val = simple_strtol(buf, NULL, 10);
410
411	switch (val) {
412	case 0:
413		client->flags &= ~I2C_CLIENT_PEC;
414		break;
415	case 1:
416		client->flags |= I2C_CLIENT_PEC;
417		break;
418	default:
419		return -EINVAL;
420	}
421
422	return count;
423}
424
425static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
426
427/*
428 * Real code
429 */
430
431/* The ADM1032 supports PEC but not on write byte transactions, so we need
432   to explicitely ask for a transaction without PEC. */
433static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
434{
435	return i2c_smbus_xfer(client->adapter, client->addr,
436			      client->flags & ~I2C_CLIENT_PEC,
437			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
438}
439
440/* It is assumed that client->update_lock is held (unless we are in
441   detection or initialization steps). This matters when PEC is enabled,
442   because we don't want the address pointer to change between the write
443   byte and the read byte transactions. */
444static int lm90_read_reg(struct i2c_client* client, u8 reg, u8 *value)
445{
446	int err;
447
448 	if (client->flags & I2C_CLIENT_PEC) {
449 		err = adm1032_write_byte(client, reg);
450 		if (err >= 0)
451 			err = i2c_smbus_read_byte(client);
452 	} else
453 		err = i2c_smbus_read_byte_data(client, reg);
454
455	if (err < 0) {
456		dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
457			 reg, err);
458		return err;
459	}
460	*value = err;
461
462	return 0;
463}
464
465static int lm90_attach_adapter(struct i2c_adapter *adapter)
466{
467	if (!(adapter->class & I2C_CLASS_HWMON))
468		return 0;
469	return i2c_probe(adapter, &addr_data, lm90_detect);
470}
471
472/*
473 * The following function does more than just detection. If detection
474 * succeeds, it also registers the new chip.
475 */
476static int lm90_detect(struct i2c_adapter *adapter, int address, int kind)
477{
478	struct i2c_client *new_client;
479	struct lm90_data *data;
480	int err = 0;
481	const char *name = "";
482
483	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
484		goto exit;
485
486	if (!(data = kzalloc(sizeof(struct lm90_data), GFP_KERNEL))) {
487		err = -ENOMEM;
488		goto exit;
489	}
490
491	/* The common I2C client data is placed right before the
492	   LM90-specific data. */
493	new_client = &data->client;
494	i2c_set_clientdata(new_client, data);
495	new_client->addr = address;
496	new_client->adapter = adapter;
497	new_client->driver = &lm90_driver;
498	new_client->flags = 0;
499
500	/*
501	 * Now we do the remaining detection. A negative kind means that
502	 * the driver was loaded with no force parameter (default), so we
503	 * must both detect and identify the chip. A zero kind means that
504	 * the driver was loaded with the force parameter, the detection
505	 * step shall be skipped. A positive kind means that the driver
506	 * was loaded with the force parameter and a given kind of chip is
507	 * requested, so both the detection and the identification steps
508	 * are skipped.
509	 */
510
511	/* Default to an LM90 if forced */
512	if (kind == 0)
513		kind = lm90;
514
515	if (kind < 0) { /* detection and identification */
516		u8 man_id, chip_id, reg_config1, reg_convrate;
517
518		if (lm90_read_reg(new_client, LM90_REG_R_MAN_ID,
519				  &man_id) < 0
520		 || lm90_read_reg(new_client, LM90_REG_R_CHIP_ID,
521		 		  &chip_id) < 0
522		 || lm90_read_reg(new_client, LM90_REG_R_CONFIG1,
523		 		  &reg_config1) < 0
524		 || lm90_read_reg(new_client, LM90_REG_R_CONVRATE,
525		 		  &reg_convrate) < 0)
526			goto exit_free;
527
528		if (man_id == 0x01) { /* National Semiconductor */
529			u8 reg_config2;
530
531			if (lm90_read_reg(new_client, LM90_REG_R_CONFIG2,
532					  &reg_config2) < 0)
533				goto exit_free;
534
535			if ((reg_config1 & 0x2A) == 0x00
536			 && (reg_config2 & 0xF8) == 0x00
537			 && reg_convrate <= 0x09) {
538				if (address == 0x4C
539				 && (chip_id & 0xF0) == 0x20) { /* LM90 */
540					kind = lm90;
541				} else
542				if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
543					kind = lm99;
544				} else
545				if (address == 0x4C
546				 && (chip_id & 0xF0) == 0x10) { /* LM86 */
547					kind = lm86;
548				}
549			}
550		} else
551		if (man_id == 0x41) { /* Analog Devices */
552			if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
553			 && (reg_config1 & 0x3F) == 0x00
554			 && reg_convrate <= 0x0A) {
555				kind = adm1032;
556			} else
557			if (chip_id == 0x51 /* ADT7461 */
558			 && (reg_config1 & 0x1F) == 0x00 /* check compat mode */
559			 && reg_convrate <= 0x0A) {
560				kind = adt7461;
561			}
562		} else
563		if (man_id == 0x4D) { /* Maxim */
564			/*
565			 * The Maxim variants do NOT have a chip_id register.
566			 * Reading from that address will return the last read
567			 * value, which in our case is those of the man_id
568			 * register. Likewise, the config1 register seems to
569			 * lack a low nibble, so the value will be those of the
570			 * previous read, so in our case those of the man_id
571			 * register.
572			 */
573			if (chip_id == man_id
574			 && (reg_config1 & 0x1F) == (man_id & 0x0F)
575			 && reg_convrate <= 0x09) {
576			 	kind = max6657;
577			}
578		}
579
580		if (kind <= 0) { /* identification failed */
581			dev_info(&adapter->dev,
582			    "Unsupported chip (man_id=0x%02X, "
583			    "chip_id=0x%02X).\n", man_id, chip_id);
584			goto exit_free;
585		}
586	}
587
588	if (kind == lm90) {
589		name = "lm90";
590	} else if (kind == adm1032) {
591		name = "adm1032";
592		/* The ADM1032 supports PEC, but only if combined
593		   transactions are not used. */
594		if (i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
595			new_client->flags |= I2C_CLIENT_PEC;
596	} else if (kind == lm99) {
597		name = "lm99";
598	} else if (kind == lm86) {
599		name = "lm86";
600	} else if (kind == max6657) {
601		name = "max6657";
602	} else if (kind == adt7461) {
603		name = "adt7461";
604	}
605
606	/* We can fill in the remaining client fields */
607	strlcpy(new_client->name, name, I2C_NAME_SIZE);
608	data->valid = 0;
609	data->kind = kind;
610	mutex_init(&data->update_lock);
611
612	/* Tell the I2C layer a new client has arrived */
613	if ((err = i2c_attach_client(new_client)))
614		goto exit_free;
615
616	/* Initialize the LM90 chip */
617	lm90_init_client(new_client);
618
619	/* Register sysfs hooks */
620	if ((err = sysfs_create_group(&new_client->dev.kobj, &lm90_group)))
621		goto exit_detach;
622	if (new_client->flags & I2C_CLIENT_PEC) {
623		if ((err = device_create_file(&new_client->dev,
624					      &dev_attr_pec)))
625			goto exit_remove_files;
626	}
627
628	data->class_dev = hwmon_device_register(&new_client->dev);
629	if (IS_ERR(data->class_dev)) {
630		err = PTR_ERR(data->class_dev);
631		goto exit_remove_files;
632	}
633
634	return 0;
635
636exit_remove_files:
637	sysfs_remove_group(&new_client->dev.kobj, &lm90_group);
638	device_remove_file(&new_client->dev, &dev_attr_pec);
639exit_detach:
640	i2c_detach_client(new_client);
641exit_free:
642	kfree(data);
643exit:
644	return err;
645}
646
647static void lm90_init_client(struct i2c_client *client)
648{
649	u8 config;
650
651	/*
652	 * Start the conversions.
653	 */
654	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
655				  5); /* 2 Hz */
656	if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
657		dev_warn(&client->dev, "Initialization failed!\n");
658		return;
659	}
660	if (config & 0x40)
661		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
662					  config & 0xBF); /* run */
663}
664
665static int lm90_detach_client(struct i2c_client *client)
666{
667	struct lm90_data *data = i2c_get_clientdata(client);
668	int err;
669
670	hwmon_device_unregister(data->class_dev);
671	sysfs_remove_group(&client->dev.kobj, &lm90_group);
672	device_remove_file(&client->dev, &dev_attr_pec);
673
674	if ((err = i2c_detach_client(client)))
675		return err;
676
677	kfree(data);
678	return 0;
679}
680
681static struct lm90_data *lm90_update_device(struct device *dev)
682{
683	struct i2c_client *client = to_i2c_client(dev);
684	struct lm90_data *data = i2c_get_clientdata(client);
685
686	mutex_lock(&data->update_lock);
687
688	if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
689		u8 oldh, newh, l;
690
691		dev_dbg(&client->dev, "Updating lm90 data.\n");
692		lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP, &data->temp8[0]);
693		lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[1]);
694		lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[2]);
695		lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[3]);
696		lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[4]);
697		lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
698
699		/*
700		 * There is a trick here. We have to read two registers to
701		 * have the remote sensor temperature, but we have to beware
702		 * a conversion could occur inbetween the readings. The
703		 * datasheet says we should either use the one-shot
704		 * conversion register, which we don't want to do (disables
705		 * hardware monitoring) or monitor the busy bit, which is
706		 * impossible (we can't read the values and monitor that bit
707		 * at the exact same time). So the solution used here is to
708		 * read the high byte once, then the low byte, then the high
709		 * byte again. If the new high byte matches the old one,
710		 * then we have a valid reading. Else we have to read the low
711		 * byte again, and now we believe we have a correct reading.
712		 */
713		if (lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPH, &oldh) == 0
714		 && lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPL, &l) == 0
715		 && lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPH, &newh) == 0
716		 && (newh == oldh
717		  || lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPL, &l) == 0))
718			data->temp11[0] = (newh << 8) | l;
719
720		if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &newh) == 0
721		 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL, &l) == 0)
722			data->temp11[1] = (newh << 8) | l;
723		if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &newh) == 0
724		 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL, &l) == 0)
725			data->temp11[2] = (newh << 8) | l;
726		lm90_read_reg(client, LM90_REG_R_STATUS, &data->alarms);
727
728		data->last_updated = jiffies;
729		data->valid = 1;
730	}
731
732	mutex_unlock(&data->update_lock);
733
734	return data;
735}
736
737static int __init sensors_lm90_init(void)
738{
739	return i2c_add_driver(&lm90_driver);
740}
741
742static void __exit sensors_lm90_exit(void)
743{
744	i2c_del_driver(&lm90_driver);
745}
746
747MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
748MODULE_DESCRIPTION("LM90/ADM1032 driver");
749MODULE_LICENSE("GPL");
750
751module_init(sensors_lm90_init);
752module_exit(sensors_lm90_exit);
753