1/*
2 * ramdisk.c - Multiple RAM disk driver - gzip-loading version - v. 0.8 beta.
3 *
4 * (C) Chad Page, Theodore Ts'o, et. al, 1995.
5 *
6 * This RAM disk is designed to have filesystems created on it and mounted
7 * just like a regular floppy disk.
8 *
9 * It also does something suggested by Linus: use the buffer cache as the
10 * RAM disk data.  This makes it possible to dynamically allocate the RAM disk
11 * buffer - with some consequences I have to deal with as I write this.
12 *
13 * This code is based on the original ramdisk.c, written mostly by
14 * Theodore Ts'o (TYT) in 1991.  The code was largely rewritten by
15 * Chad Page to use the buffer cache to store the RAM disk data in
16 * 1995; Theodore then took over the driver again, and cleaned it up
17 * for inclusion in the mainline kernel.
18 *
19 * The original CRAMDISK code was written by Richard Lyons, and
20 * adapted by Chad Page to use the new RAM disk interface.  Theodore
21 * Ts'o rewrote it so that both the compressed RAM disk loader and the
22 * kernel decompressor uses the same inflate.c codebase.  The RAM disk
23 * loader now also loads into a dynamic (buffer cache based) RAM disk,
24 * not the old static RAM disk.  Support for the old static RAM disk has
25 * been completely removed.
26 *
27 * Loadable module support added by Tom Dyas.
28 *
29 * Further cleanups by Chad Page (page0588@sundance.sjsu.edu):
30 *	Cosmetic changes in #ifdef MODULE, code movement, etc.
31 * 	When the RAM disk module is removed, free the protected buffers
32 * 	Default RAM disk size changed to 2.88 MB
33 *
34 *  Added initrd: Werner Almesberger & Hans Lermen, Feb '96
35 *
36 * 4/25/96 : Made RAM disk size a parameter (default is now 4 MB)
37 *		- Chad Page
38 *
39 * Add support for fs images split across >1 disk, Paul Gortmaker, Mar '98
40 *
41 * Make block size and block size shift for RAM disks a global macro
42 * and set blk_size for -ENOSPC,     Werner Fink <werner@suse.de>, Apr '99
43 */
44
45#include <linux/string.h>
46#include <linux/slab.h>
47#include <asm/atomic.h>
48#include <linux/bio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/init.h>
52#include <linux/pagemap.h>
53#include <linux/blkdev.h>
54#include <linux/genhd.h>
55#include <linux/buffer_head.h>		/* for invalidate_bdev() */
56#include <linux/backing-dev.h>
57#include <linux/blkpg.h>
58#include <linux/writeback.h>
59
60#include <asm/uaccess.h>
61
62/* Various static variables go here.  Most are used only in the RAM disk code.
63 */
64
65static struct gendisk *rd_disks[CONFIG_BLK_DEV_RAM_COUNT];
66static struct block_device *rd_bdev[CONFIG_BLK_DEV_RAM_COUNT];/* Protected device data */
67static struct request_queue *rd_queue[CONFIG_BLK_DEV_RAM_COUNT];
68
69/*
70 * Parameters for the boot-loading of the RAM disk.  These are set by
71 * init/main.c (from arguments to the kernel command line) or from the
72 * architecture-specific setup routine (from the stored boot sector
73 * information).
74 */
75int rd_size = CONFIG_BLK_DEV_RAM_SIZE;		/* Size of the RAM disks */
76/*
77 * It would be very desirable to have a soft-blocksize (that in the case
78 * of the ramdisk driver is also the hardblocksize ;) of PAGE_SIZE because
79 * doing that we'll achieve a far better MM footprint. Using a rd_blocksize of
80 * BLOCK_SIZE in the worst case we'll make PAGE_SIZE/BLOCK_SIZE buffer-pages
81 * unfreeable. With a rd_blocksize of PAGE_SIZE instead we are sure that only
82 * 1 page will be protected. Depending on the size of the ramdisk you
83 * may want to change the ramdisk blocksize to achieve a better or worse MM
84 * behaviour. The default is still BLOCK_SIZE (needed by rd_load_image that
85 * supposes the filesystem in the image uses a BLOCK_SIZE blocksize).
86 */
87static int rd_blocksize = CONFIG_BLK_DEV_RAM_BLOCKSIZE;
88
89/*
90 * Copyright (C) 2000 Linus Torvalds.
91 *               2000 Transmeta Corp.
92 * aops copied from ramfs.
93 */
94
95/*
96 * If a ramdisk page has buffers, some may be uptodate and some may be not.
97 * To bring the page uptodate we zero out the non-uptodate buffers.  The
98 * page must be locked.
99 */
100static void make_page_uptodate(struct page *page)
101{
102	if (page_has_buffers(page)) {
103		struct buffer_head *bh = page_buffers(page);
104		struct buffer_head *head = bh;
105
106		do {
107			if (!buffer_uptodate(bh)) {
108				memset(bh->b_data, 0, bh->b_size);
109				/*
110				 * akpm: I'm totally undecided about this.  The
111				 * buffer has just been magically brought "up to
112				 * date", but nobody should want to be reading
113				 * it anyway, because it hasn't been used for
114				 * anything yet.  It is still in a "not read
115				 * from disk yet" state.
116				 *
117				 * But non-uptodate buffers against an uptodate
118				 * page are against the rules.  So do it anyway.
119				 */
120				 set_buffer_uptodate(bh);
121			}
122		} while ((bh = bh->b_this_page) != head);
123	} else {
124		memset(page_address(page), 0, PAGE_CACHE_SIZE);
125	}
126	flush_dcache_page(page);
127	SetPageUptodate(page);
128}
129
130static int ramdisk_readpage(struct file *file, struct page *page)
131{
132	if (!PageUptodate(page))
133		make_page_uptodate(page);
134	unlock_page(page);
135	return 0;
136}
137
138static int ramdisk_prepare_write(struct file *file, struct page *page,
139				unsigned offset, unsigned to)
140{
141	if (!PageUptodate(page))
142		make_page_uptodate(page);
143	return 0;
144}
145
146static int ramdisk_commit_write(struct file *file, struct page *page,
147				unsigned offset, unsigned to)
148{
149	set_page_dirty(page);
150	return 0;
151}
152
153/*
154 * ->writepage to the blockdev's mapping has to redirty the page so that the
155 * VM doesn't go and steal it.  We return AOP_WRITEPAGE_ACTIVATE so that the VM
156 * won't try to (pointlessly) write the page again for a while.
157 *
158 * Really, these pages should not be on the LRU at all.
159 */
160static int ramdisk_writepage(struct page *page, struct writeback_control *wbc)
161{
162	if (!PageUptodate(page))
163		make_page_uptodate(page);
164	SetPageDirty(page);
165	if (wbc->for_reclaim)
166		return AOP_WRITEPAGE_ACTIVATE;
167	unlock_page(page);
168	return 0;
169}
170
171/*
172 * This is a little speedup thing: short-circuit attempts to write back the
173 * ramdisk blockdev inode to its non-existent backing store.
174 */
175static int ramdisk_writepages(struct address_space *mapping,
176				struct writeback_control *wbc)
177{
178	return 0;
179}
180
181/*
182 * ramdisk blockdev pages have their own ->set_page_dirty() because we don't
183 * want them to contribute to dirty memory accounting.
184 */
185static int ramdisk_set_page_dirty(struct page *page)
186{
187	if (!TestSetPageDirty(page))
188		return 1;
189	return 0;
190}
191
192static const struct address_space_operations ramdisk_aops = {
193	.readpage	= ramdisk_readpage,
194	.prepare_write	= ramdisk_prepare_write,
195	.commit_write	= ramdisk_commit_write,
196	.writepage	= ramdisk_writepage,
197	.set_page_dirty	= ramdisk_set_page_dirty,
198	.writepages	= ramdisk_writepages,
199};
200
201static int rd_blkdev_pagecache_IO(int rw, struct bio_vec *vec, sector_t sector,
202				struct address_space *mapping)
203{
204	pgoff_t index = sector >> (PAGE_CACHE_SHIFT - 9);
205	unsigned int vec_offset = vec->bv_offset;
206	int offset = (sector << 9) & ~PAGE_CACHE_MASK;
207	int size = vec->bv_len;
208	int err = 0;
209
210	do {
211		int count;
212		struct page *page;
213		char *src;
214		char *dst;
215
216		count = PAGE_CACHE_SIZE - offset;
217		if (count > size)
218			count = size;
219		size -= count;
220
221		page = grab_cache_page(mapping, index);
222		if (!page) {
223			err = -ENOMEM;
224			goto out;
225		}
226
227		if (!PageUptodate(page))
228			make_page_uptodate(page);
229
230		index++;
231
232		if (rw == READ) {
233			src = kmap_atomic(page, KM_USER0) + offset;
234			dst = kmap_atomic(vec->bv_page, KM_USER1) + vec_offset;
235		} else {
236			src = kmap_atomic(vec->bv_page, KM_USER0) + vec_offset;
237			dst = kmap_atomic(page, KM_USER1) + offset;
238		}
239		offset = 0;
240		vec_offset += count;
241
242		memcpy(dst, src, count);
243
244		kunmap_atomic(src, KM_USER0);
245		kunmap_atomic(dst, KM_USER1);
246
247		if (rw == READ)
248			flush_dcache_page(vec->bv_page);
249		else
250			set_page_dirty(page);
251		unlock_page(page);
252		put_page(page);
253	} while (size);
254
255 out:
256	return err;
257}
258
259/*
260 *  Basically, my strategy here is to set up a buffer-head which can't be
261 *  deleted, and make that my Ramdisk.  If the request is outside of the
262 *  allocated size, we must get rid of it...
263 *
264 * 19-JAN-1998  Richard Gooch <rgooch@atnf.csiro.au>  Added devfs support
265 *
266 */
267static int rd_make_request(request_queue_t *q, struct bio *bio)
268{
269	struct block_device *bdev = bio->bi_bdev;
270	struct address_space * mapping = bdev->bd_inode->i_mapping;
271	sector_t sector = bio->bi_sector;
272	unsigned long len = bio->bi_size >> 9;
273	int rw = bio_data_dir(bio);
274	struct bio_vec *bvec;
275	int ret = 0, i;
276
277	if (sector + len > get_capacity(bdev->bd_disk))
278		goto fail;
279
280	if (rw==READA)
281		rw=READ;
282
283	bio_for_each_segment(bvec, bio, i) {
284		ret |= rd_blkdev_pagecache_IO(rw, bvec, sector, mapping);
285		sector += bvec->bv_len >> 9;
286	}
287	if (ret)
288		goto fail;
289
290	bio_endio(bio, bio->bi_size, 0);
291	return 0;
292fail:
293	bio_io_error(bio, bio->bi_size);
294	return 0;
295}
296
297static int rd_ioctl(struct inode *inode, struct file *file,
298			unsigned int cmd, unsigned long arg)
299{
300	int error;
301	struct block_device *bdev = inode->i_bdev;
302
303	if (cmd != BLKFLSBUF)
304		return -ENOTTY;
305
306	/*
307	 * special: we want to release the ramdisk memory, it's not like with
308	 * the other blockdevices where this ioctl only flushes away the buffer
309	 * cache
310	 */
311	error = -EBUSY;
312	mutex_lock(&bdev->bd_mutex);
313	if (bdev->bd_openers <= 2) {
314		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
315		error = 0;
316	}
317	mutex_unlock(&bdev->bd_mutex);
318	return error;
319}
320
321/*
322 * This is the backing_dev_info for the blockdev inode itself.  It doesn't need
323 * writeback and it does not contribute to dirty memory accounting.
324 */
325static struct backing_dev_info rd_backing_dev_info = {
326	.ra_pages	= 0,	/* No readahead */
327	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK | BDI_CAP_MAP_COPY,
328	.unplug_io_fn	= default_unplug_io_fn,
329};
330
331/*
332 * This is the backing_dev_info for the files which live atop the ramdisk
333 * "device".  These files do need writeback and they do contribute to dirty
334 * memory accounting.
335 */
336static struct backing_dev_info rd_file_backing_dev_info = {
337	.ra_pages	= 0,	/* No readahead */
338	.capabilities	= BDI_CAP_MAP_COPY,	/* Does contribute to dirty memory */
339	.unplug_io_fn	= default_unplug_io_fn,
340};
341
342static int rd_open(struct inode *inode, struct file *filp)
343{
344	unsigned unit = iminor(inode);
345
346	if (rd_bdev[unit] == NULL) {
347		struct block_device *bdev = inode->i_bdev;
348		struct address_space *mapping;
349		unsigned bsize;
350		gfp_t gfp_mask;
351
352		inode = igrab(bdev->bd_inode);
353		rd_bdev[unit] = bdev;
354		bdev->bd_openers++;
355		bsize = bdev_hardsect_size(bdev);
356		bdev->bd_block_size = bsize;
357		inode->i_blkbits = blksize_bits(bsize);
358		inode->i_size = get_capacity(bdev->bd_disk)<<9;
359
360		mapping = inode->i_mapping;
361		mapping->a_ops = &ramdisk_aops;
362		mapping->backing_dev_info = &rd_backing_dev_info;
363		bdev->bd_inode_backing_dev_info = &rd_file_backing_dev_info;
364
365		/*
366		 * Deep badness.  rd_blkdev_pagecache_IO() needs to allocate
367		 * pagecache pages within a request_fn.  We cannot recur back
368		 * into the filesytem which is mounted atop the ramdisk, because
369		 * that would deadlock on fs locks.  And we really don't want
370		 * to reenter rd_blkdev_pagecache_IO when we're already within
371		 * that function.
372		 *
373		 * So we turn off __GFP_FS and __GFP_IO.
374		 *
375		 * And to give this thing a hope of working, turn on __GFP_HIGH.
376		 * Hopefully, there's enough regular memory allocation going on
377		 * for the page allocator emergency pools to keep the ramdisk
378		 * driver happy.
379		 */
380		gfp_mask = mapping_gfp_mask(mapping);
381		gfp_mask &= ~(__GFP_FS|__GFP_IO);
382		gfp_mask |= __GFP_HIGH;
383		mapping_set_gfp_mask(mapping, gfp_mask);
384	}
385
386	return 0;
387}
388
389static struct block_device_operations rd_bd_op = {
390	.owner =	THIS_MODULE,
391	.open =		rd_open,
392	.ioctl =	rd_ioctl,
393};
394
395/*
396 * Before freeing the module, invalidate all of the protected buffers!
397 */
398static void __exit rd_cleanup(void)
399{
400	int i;
401
402	for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
403		struct block_device *bdev = rd_bdev[i];
404		rd_bdev[i] = NULL;
405		if (bdev) {
406			invalidate_bdev(bdev);
407			blkdev_put(bdev);
408		}
409		del_gendisk(rd_disks[i]);
410		put_disk(rd_disks[i]);
411		blk_cleanup_queue(rd_queue[i]);
412	}
413	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
414}
415
416/*
417 * This is the registration and initialization section of the RAM disk driver
418 */
419static int __init rd_init(void)
420{
421	int i;
422	int err = -ENOMEM;
423
424	if (rd_blocksize > PAGE_SIZE || rd_blocksize < 512 ||
425			(rd_blocksize & (rd_blocksize-1))) {
426		printk("RAMDISK: wrong blocksize %d, reverting to defaults\n",
427		       rd_blocksize);
428		rd_blocksize = BLOCK_SIZE;
429	}
430
431	for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
432		rd_disks[i] = alloc_disk(1);
433		if (!rd_disks[i])
434			goto out;
435
436		rd_queue[i] = blk_alloc_queue(GFP_KERNEL);
437		if (!rd_queue[i]) {
438			put_disk(rd_disks[i]);
439			goto out;
440		}
441	}
442
443	if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) {
444		err = -EIO;
445		goto out;
446	}
447
448	for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
449		struct gendisk *disk = rd_disks[i];
450
451		blk_queue_make_request(rd_queue[i], &rd_make_request);
452		blk_queue_hardsect_size(rd_queue[i], rd_blocksize);
453
454		/* rd_size is given in kB */
455		disk->major = RAMDISK_MAJOR;
456		disk->first_minor = i;
457		disk->fops = &rd_bd_op;
458		disk->queue = rd_queue[i];
459		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
460		sprintf(disk->disk_name, "ram%d", i);
461		set_capacity(disk, rd_size * 2);
462		add_disk(rd_disks[i]);
463	}
464
465	/* rd_size is given in kB */
466	printk("RAMDISK driver initialized: "
467		"%d RAM disks of %dK size %d blocksize\n",
468		CONFIG_BLK_DEV_RAM_COUNT, rd_size, rd_blocksize);
469
470	return 0;
471out:
472	while (i--) {
473		put_disk(rd_disks[i]);
474		blk_cleanup_queue(rd_queue[i]);
475	}
476	return err;
477}
478
479module_init(rd_init);
480module_exit(rd_cleanup);
481
482/* options - nonmodular */
483#ifndef MODULE
484static int __init ramdisk_size(char *str)
485{
486	rd_size = simple_strtol(str,NULL,0);
487	return 1;
488}
489static int __init ramdisk_size2(char *str)	/* kludge */
490{
491	return ramdisk_size(str);
492}
493static int __init ramdisk_blocksize(char *str)
494{
495	rd_blocksize = simple_strtol(str,NULL,0);
496	return 1;
497}
498__setup("ramdisk=", ramdisk_size);
499__setup("ramdisk_size=", ramdisk_size2);
500__setup("ramdisk_blocksize=", ramdisk_blocksize);
501#endif
502
503/* options - modular */
504module_param(rd_size, int, 0);
505MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
506module_param(rd_blocksize, int, 0);
507MODULE_PARM_DESC(rd_blocksize, "Blocksize of each RAM disk in bytes.");
508MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
509
510MODULE_LICENSE("GPL");
511