1/*
2 * arch/v850/kernel/setup.c -- Arch-dependent initialization functions
3 *
4 *  Copyright (C) 2001,02,03,05,06  NEC Electronics Corporation
5 *  Copyright (C) 2001,02,03,05,06  Miles Bader <miles@gnu.org>
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License.  See the file COPYING in the main directory of this
9 * archive for more details.
10 *
11 * Written by Miles Bader <miles@gnu.org>
12 */
13
14#include <linux/mm.h>
15#include <linux/bootmem.h>
16#include <linux/swap.h>		/* we don't have swap, but for nr_free_pages */
17#include <linux/irq.h>
18#include <linux/reboot.h>
19#include <linux/personality.h>
20#include <linux/major.h>
21#include <linux/root_dev.h>
22#include <linux/mtd/mtd.h>
23#include <linux/init.h>
24
25#include <asm/irq.h>
26#include <asm/setup.h>
27
28#include "mach.h"
29
30/* These symbols are all defined in the linker map to delineate various
31   statically allocated regions of memory.  */
32
33extern char _intv_start, _intv_end;
34/* `kram' is only used if the kernel uses part of normal user RAM.  */
35extern char _kram_start __attribute__ ((__weak__));
36extern char _kram_end __attribute__ ((__weak__));
37extern char _init_start, _init_end;
38extern char _bootmap;
39extern char _stext, _etext, _sdata, _edata, _sbss, _ebss;
40/* Many platforms use an embedded root image.  */
41extern char _root_fs_image_start __attribute__ ((__weak__));
42extern char _root_fs_image_end __attribute__ ((__weak__));
43
44
45char __initdata command_line[COMMAND_LINE_SIZE];
46
47/* Memory not used by the kernel.  */
48static unsigned long total_ram_pages;
49
50/* System RAM.  */
51static unsigned long ram_start = 0, ram_len = 0;
52
53
54#define ADDR_TO_PAGE_UP(x)   ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT)
55#define ADDR_TO_PAGE(x)	     (((unsigned long)x) >> PAGE_SHIFT)
56#define PAGE_TO_ADDR(x)	     (((unsigned long)x) << PAGE_SHIFT)
57
58static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len);
59
60void set_mem_root (void *addr, size_t len, char *cmd_line);
61
62
63void __init setup_arch (char **cmdline)
64{
65	/* Keep a copy of command line */
66	*cmdline = command_line;
67	memcpy (boot_command_line, command_line, COMMAND_LINE_SIZE);
68	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
69
70	console_verbose ();
71
72	init_mm.start_code = (unsigned long) &_stext;
73	init_mm.end_code = (unsigned long) &_etext;
74	init_mm.end_data = (unsigned long) &_edata;
75	init_mm.brk = (unsigned long) &_kram_end;
76
77	/* Find out what mem this machine has.  */
78	mach_get_physical_ram (&ram_start, &ram_len);
79	/* ... and tell the kernel about it.  */
80	init_mem_alloc (ram_start, ram_len);
81
82	printk (KERN_INFO "CPU: %s\nPlatform: %s\n",
83		CPU_MODEL_LONG, PLATFORM_LONG);
84
85	/* do machine-specific setups.  */
86	mach_setup (cmdline);
87
88#ifdef CONFIG_MTD
89	if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start)
90		set_mem_root (&_root_fs_image_start,
91			      &_root_fs_image_end - &_root_fs_image_start,
92			      *cmdline);
93#endif
94}
95
96void __init trap_init (void)
97{
98}
99
100#ifdef CONFIG_MTD
101
102/* From drivers/mtd/devices/slram.c */
103#define SLRAM_BLK_SZ 0x4000
104
105/* Set the root filesystem to be the given memory region.
106   Some parameter may be appended to CMD_LINE.  */
107void set_mem_root (void *addr, size_t len, char *cmd_line)
108{
109	/* Some sort of idiocy in MTD means we must supply a length that's
110	   a multiple of SLRAM_BLK_SZ.  We just round up the real length,
111	   as the file system shouldn't attempt to access anything beyond
112	   the end of the image anyway.  */
113	len = (((len - 1) + SLRAM_BLK_SZ) / SLRAM_BLK_SZ) * SLRAM_BLK_SZ;
114
115	/* The only way to pass info to the MTD slram driver is via
116	   the command line.  */
117	if (*cmd_line) {
118		cmd_line += strlen (cmd_line);
119		*cmd_line++ = ' ';
120	}
121	sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len);
122
123	ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0);
124}
125#endif
126
127
128static void irq_nop (unsigned irq) { }
129static unsigned irq_zero (unsigned irq) { return 0; }
130
131static void nmi_end (unsigned irq)
132{
133	if (irq != IRQ_NMI (0)) {
134		printk (KERN_CRIT "NMI %d is unrecoverable; restarting...",
135			irq - IRQ_NMI (0));
136		machine_restart (0);
137	}
138}
139
140static struct hw_interrupt_type nmi_irq_type = {
141	.typename = "NMI",
142	.startup = irq_zero,		/* startup */
143	.shutdown = irq_nop,		/* shutdown */
144	.enable = irq_nop,		/* enable */
145	.disable = irq_nop,		/* disable */
146	.ack = irq_nop,		/* ack */
147	.end = nmi_end,		/* end */
148};
149
150void __init init_IRQ (void)
151{
152	init_irq_handlers (0, NUM_MACH_IRQS, 1, 0);
153	init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type);
154	mach_init_irqs ();
155}
156
157
158void __init mem_init (void)
159{
160	max_mapnr = MAP_NR (ram_start + ram_len);
161
162	num_physpages = ADDR_TO_PAGE (ram_len);
163
164	total_ram_pages = free_all_bootmem ();
165
166	printk (KERN_INFO
167		"Memory: %luK/%luK available"
168		" (%luK kernel code, %luK data)\n",
169		PAGE_TO_ADDR (nr_free_pages()) / 1024,
170		ram_len / 1024,
171		((unsigned long)&_etext - (unsigned long)&_stext) / 1024,
172		((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024);
173}
174
175void free_initmem (void)
176{
177	unsigned long ram_end = ram_start + ram_len;
178	unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start));
179
180	if (start >= ram_start && start < ram_end) {
181		unsigned long addr;
182		unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end));
183
184		if (end > ram_end)
185			end = ram_end;
186
187		printk("Freeing unused kernel memory: %ldK freed\n",
188		       (end - start) / 1024);
189
190		for (addr = start; addr < end; addr += PAGE_SIZE) {
191			struct page *page = virt_to_page (addr);
192			ClearPageReserved (page);
193			init_page_count (page);
194			__free_page (page);
195			total_ram_pages++;
196		}
197	}
198}
199
200
201/* Initialize the `bootmem allocator'.  RAM_START and RAM_LEN identify
202   what RAM may be used.  */
203static void __init
204init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len)
205{
206	/* The part of the kernel that's in the same managed RAM space
207	   used for general allocation.  */
208	unsigned long kram_start = (unsigned long)&_kram_start;
209	unsigned long kram_end = (unsigned long)&_kram_end;
210	/* End of the managed RAM space.  */
211	unsigned long ram_end = ram_start + ram_len;
212	/* Address range of the interrupt vector table.  */
213	unsigned long intv_start = (unsigned long)&_intv_start;
214	unsigned long intv_end = (unsigned long)&_intv_end;
215	/* True if the interrupt vectors are in the managed RAM area.  */
216	int intv_in_ram = (intv_end > ram_start && intv_start < ram_end);
217	/* True if the interrupt vectors are inside the kernel's RAM.  */
218	int intv_in_kram = (intv_end > kram_start && intv_start < kram_end);
219	/* A pointer to an optional function that reserves platform-specific
220	   memory regions.  We declare the pointer `volatile' to avoid gcc
221	   turning the call into a static call (the problem is that since
222	   it's a weak symbol, a static call may end up trying to reference
223	   the location 0x0, which is not always reachable).  */
224	void (*volatile mrb) (void) = mach_reserve_bootmem;
225	/* The bootmem allocator's allocation bitmap.  */
226	unsigned long bootmap = (unsigned long)&_bootmap;
227	unsigned long bootmap_len;
228
229	/* Round bootmap location up to next page.  */
230	bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap));
231
232	/* Initialize bootmem allocator.  */
233	bootmap_len = init_bootmem_node (NODE_DATA (0),
234					 ADDR_TO_PAGE (bootmap),
235					 ADDR_TO_PAGE (PAGE_OFFSET),
236					 ADDR_TO_PAGE (ram_end));
237
238	/* Now make the RAM actually allocatable (it starts out `reserved'). */
239	free_bootmem (ram_start, ram_len);
240
241	if (kram_end > kram_start)
242		/* Reserve the RAM part of the kernel's address space, so it
243		   doesn't get allocated.  */
244		reserve_bootmem (kram_start, kram_end - kram_start);
245
246	if (intv_in_ram && !intv_in_kram)
247		/* Reserve the interrupt vector space.  */
248		reserve_bootmem (intv_start, intv_end - intv_start);
249
250	if (bootmap >= ram_start && bootmap < ram_end)
251		/* Reserve the bootmap space.  */
252		reserve_bootmem (bootmap, bootmap_len);
253
254	/* Reserve the memory used by the root filesystem image if it's
255	   in RAM.  */
256	if (&_root_fs_image_end > &_root_fs_image_start
257	    && (unsigned long)&_root_fs_image_start >= ram_start
258	    && (unsigned long)&_root_fs_image_start < ram_end)
259		reserve_bootmem ((unsigned long)&_root_fs_image_start,
260				 &_root_fs_image_end - &_root_fs_image_start);
261
262	/* Let the platform-dependent code reserve some too.  */
263	if (mrb)
264		(*mrb) ();
265}
266
267/* Tell the kernel about what RAM it may use for memory allocation.  */
268static void __init
269init_mem_alloc (unsigned long ram_start, unsigned long ram_len)
270{
271	unsigned i;
272	unsigned long zones_size[MAX_NR_ZONES];
273
274	init_bootmem_alloc (ram_start, ram_len);
275
276	for (i = 0; i < MAX_NR_ZONES; i++)
277		zones_size[i] = 0;
278
279	/* We stuff all the memory into one area, which includes the
280	   initial gap from PAGE_OFFSET to ram_start.  */
281	zones_size[ZONE_DMA]
282		= ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET));
283
284	/* The allocator is very picky about the address of the first
285	   allocatable page -- it must be at least as aligned as the
286	   maximum allocation -- so try to detect cases where it will get
287	   confused and signal them at compile time (this is a common
288	   problem when porting to a new platform with ).  There is a
289	   similar runtime check in free_area_init_core.  */
290#if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1))
291#error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it)
292#endif
293	NODE_DATA(0)->node_mem_map = NULL;
294	free_area_init_node (0, NODE_DATA(0), zones_size,
295			     ADDR_TO_PAGE (PAGE_OFFSET), 0);
296}
297
298
299
300/* Taken from m68knommu */
301void show_mem(void)
302{
303    unsigned long i;
304    int free = 0, total = 0, reserved = 0, shared = 0;
305    int cached = 0;
306
307    printk(KERN_INFO "\nMem-info:\n");
308    show_free_areas();
309    i = max_mapnr;
310    while (i-- > 0) {
311	total++;
312	if (PageReserved(mem_map+i))
313	    reserved++;
314	else if (PageSwapCache(mem_map+i))
315	    cached++;
316	else if (!page_count(mem_map+i))
317	    free++;
318	else
319	    shared += page_count(mem_map+i) - 1;
320    }
321    printk(KERN_INFO "%d pages of RAM\n",total);
322    printk(KERN_INFO "%d free pages\n",free);
323    printk(KERN_INFO "%d reserved pages\n",reserved);
324    printk(KERN_INFO "%d pages shared\n",shared);
325    printk(KERN_INFO "%d pages swap cached\n",cached);
326}
327