• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500-V1.0.1.40_1.0.68/src/linux/linux-2.6/arch/powerpc/platforms/cell/spufs/
1/*
2 * spu_switch.c
3 *
4 * (C) Copyright IBM Corp. 2005
5 *
6 * Author: Mark Nutter <mnutter@us.ibm.com>
7 *
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
10 *
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources.  SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes.  When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
18 *
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35#include <linux/module.h>
36#include <linux/errno.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
41#include <linux/smp.h>
42#include <linux/stddef.h>
43#include <linux/unistd.h>
44
45#include <asm/io.h>
46#include <asm/spu.h>
47#include <asm/spu_priv1.h>
48#include <asm/spu_csa.h>
49#include <asm/mmu_context.h>
50
51#include "spu_save_dump.h"
52#include "spu_restore_dump.h"
53
54#define RELAX_SPIN_COUNT				1000
55#define POLL_WHILE_TRUE(_c) {				\
56    do {						\
57	int _i;						\
58	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
59	    cpu_relax();				\
60	}						\
61	if (unlikely(_c)) yield();			\
62	else break;					\
63    } while (_c);					\
64  }
65
66#define POLL_WHILE_FALSE(_c) 	POLL_WHILE_TRUE(!(_c))
67
68static inline void acquire_spu_lock(struct spu *spu)
69{
70	/* Save, Step 1:
71	 * Restore, Step 1:
72	 *    Acquire SPU-specific mutual exclusion lock.
73	 *    TBD.
74	 */
75}
76
77static inline void release_spu_lock(struct spu *spu)
78{
79	/* Restore, Step 76:
80	 *    Release SPU-specific mutual exclusion lock.
81	 *    TBD.
82	 */
83}
84
85static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
86{
87	struct spu_problem __iomem *prob = spu->problem;
88	u32 isolate_state;
89
90	/* Save, Step 2:
91	 * Save, Step 6:
92	 *     If SPU_Status[E,L,IS] any field is '1', this
93	 *     SPU is in isolate state and cannot be context
94	 *     saved at this time.
95	 */
96	isolate_state = SPU_STATUS_ISOLATED_STATE |
97	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
98	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
99}
100
101static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
102{
103	/* Save, Step 3:
104	 * Restore, Step 2:
105	 *     Save INT_Mask_class0 in CSA.
106	 *     Write INT_MASK_class0 with value of 0.
107	 *     Save INT_Mask_class1 in CSA.
108	 *     Write INT_MASK_class1 with value of 0.
109	 *     Save INT_Mask_class2 in CSA.
110	 *     Write INT_MASK_class2 with value of 0.
111	 */
112	spin_lock_irq(&spu->register_lock);
113	if (csa) {
114		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
115		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
116		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
117	}
118	spu_int_mask_set(spu, 0, 0ul);
119	spu_int_mask_set(spu, 1, 0ul);
120	spu_int_mask_set(spu, 2, 0ul);
121	eieio();
122	spin_unlock_irq(&spu->register_lock);
123}
124
125static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
126{
127	/* Save, Step 4:
128	 * Restore, Step 25.
129	 *    Set a software watchdog timer, which specifies the
130	 *    maximum allowable time for a context save sequence.
131	 *
132	 *    For present, this implementation will not set a global
133	 *    watchdog timer, as virtualization & variable system load
134	 *    may cause unpredictable execution times.
135	 */
136}
137
138static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
139{
140	/* Save, Step 5:
141	 * Restore, Step 3:
142	 *     Inhibit user-space access (if provided) to this
143	 *     SPU by unmapping the virtual pages assigned to
144	 *     the SPU memory-mapped I/O (MMIO) for problem
145	 *     state. TBD.
146	 */
147}
148
149static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
150{
151	/* Save, Step 7:
152	 * Restore, Step 5:
153	 *     Set a software context switch pending flag.
154	 */
155	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
156	mb();
157}
158
159static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
160{
161	struct spu_priv2 __iomem *priv2 = spu->priv2;
162
163	/* Save, Step 8:
164	 *     Suspend DMA and save MFC_CNTL.
165	 */
166	switch (in_be64(&priv2->mfc_control_RW) &
167	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
168	case MFC_CNTL_SUSPEND_IN_PROGRESS:
169		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
170				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
171				 MFC_CNTL_SUSPEND_COMPLETE);
172		/* fall through */
173	case MFC_CNTL_SUSPEND_COMPLETE:
174		if (csa) {
175			csa->priv2.mfc_control_RW =
176				in_be64(&priv2->mfc_control_RW) |
177				MFC_CNTL_SUSPEND_DMA_QUEUE;
178		}
179		break;
180	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
181		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
182		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
183				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
184				 MFC_CNTL_SUSPEND_COMPLETE);
185		if (csa) {
186			csa->priv2.mfc_control_RW =
187				in_be64(&priv2->mfc_control_RW) &
188				~MFC_CNTL_SUSPEND_DMA_QUEUE;
189		}
190		break;
191	}
192}
193
194static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
195{
196	struct spu_problem __iomem *prob = spu->problem;
197
198	/* Save, Step 9:
199	 *     Save SPU_Runcntl in the CSA.  This value contains
200	 *     the "Application Desired State".
201	 */
202	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
203}
204
205static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
206{
207	/* Save, Step 10:
208	 *     Save MFC_SR1 in the CSA.
209	 */
210	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
211}
212
213static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
214{
215	struct spu_problem __iomem *prob = spu->problem;
216
217	/* Save, Step 11:
218	 *     Read SPU_Status[R], and save to CSA.
219	 */
220	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
221		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
222	} else {
223		u32 stopped;
224
225		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
226		eieio();
227		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
228				SPU_STATUS_RUNNING);
229		stopped =
230		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
231		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
232		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
233			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
234		else
235			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
236	}
237}
238
239static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
240{
241	struct spu_priv2 __iomem *priv2 = spu->priv2;
242
243	/* Save, Step 12:
244	 *     Read MFC_CNTL[Ds].  Update saved copy of
245	 *     CSA.MFC_CNTL[Ds].
246	 */
247	if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
248		csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
249		csa->suspend_time = get_cycles();
250		out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
251		eieio();
252		csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
253		eieio();
254	} else {
255		csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
256	}
257}
258
259static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
260{
261	struct spu_priv2 __iomem *priv2 = spu->priv2;
262
263	/* Save, Step 13:
264	 *     Write MFC_CNTL[Dh] set to a '1' to halt
265	 *     the decrementer.
266	 */
267	out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
268	eieio();
269}
270
271static inline void save_timebase(struct spu_state *csa, struct spu *spu)
272{
273	/* Save, Step 14:
274	 *    Read PPE Timebase High and Timebase low registers
275	 *    and save in CSA.  TBD.
276	 */
277	csa->suspend_time = get_cycles();
278}
279
280static inline void remove_other_spu_access(struct spu_state *csa,
281					   struct spu *spu)
282{
283	/* Save, Step 15:
284	 *     Remove other SPU access to this SPU by unmapping
285	 *     this SPU's pages from their address space.  TBD.
286	 */
287}
288
289static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
290{
291	struct spu_problem __iomem *prob = spu->problem;
292
293	/* Save, Step 16:
294	 * Restore, Step 11.
295	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
296	 *     for a value of 0.
297	 */
298	out_be64(&prob->spc_mssync_RW, 1UL);
299	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
300}
301
302static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
303{
304	/* Save, Step 17:
305	 * Restore, Step 12.
306	 * Restore, Step 48.
307	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
308	 *     Then issue a PPE sync instruction.
309	 */
310	spu_tlb_invalidate(spu);
311	mb();
312}
313
314static inline void handle_pending_interrupts(struct spu_state *csa,
315					     struct spu *spu)
316{
317	/* Save, Step 18:
318	 *     Handle any pending interrupts from this SPU
319	 *     here.  This is OS or hypervisor specific.  One
320	 *     option is to re-enable interrupts to handle any
321	 *     pending interrupts, with the interrupt handlers
322	 *     recognizing the software Context Switch Pending
323	 *     flag, to ensure the SPU execution or MFC command
324	 *     queue is not restarted.  TBD.
325	 */
326}
327
328static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
329{
330	struct spu_priv2 __iomem *priv2 = spu->priv2;
331	int i;
332
333	/* Save, Step 19:
334	 *     If MFC_Cntl[Se]=0 then save
335	 *     MFC command queues.
336	 */
337	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
338		for (i = 0; i < 8; i++) {
339			csa->priv2.puq[i].mfc_cq_data0_RW =
340			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
341			csa->priv2.puq[i].mfc_cq_data1_RW =
342			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
343			csa->priv2.puq[i].mfc_cq_data2_RW =
344			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
345			csa->priv2.puq[i].mfc_cq_data3_RW =
346			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
347		}
348		for (i = 0; i < 16; i++) {
349			csa->priv2.spuq[i].mfc_cq_data0_RW =
350			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
351			csa->priv2.spuq[i].mfc_cq_data1_RW =
352			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
353			csa->priv2.spuq[i].mfc_cq_data2_RW =
354			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
355			csa->priv2.spuq[i].mfc_cq_data3_RW =
356			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
357		}
358	}
359}
360
361static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
362{
363	struct spu_problem __iomem *prob = spu->problem;
364
365	/* Save, Step 20:
366	 *     Save the PPU_QueryMask register
367	 *     in the CSA.
368	 */
369	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
370}
371
372static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
373{
374	struct spu_problem __iomem *prob = spu->problem;
375
376	/* Save, Step 21:
377	 *     Save the PPU_QueryType register
378	 *     in the CSA.
379	 */
380	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
381}
382
383static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
384{
385	struct spu_priv2 __iomem *priv2 = spu->priv2;
386
387	/* Save, Step 22:
388	 *     Save the MFC_CSR_TSQ register
389	 *     in the LSCSA.
390	 */
391	csa->priv2.spu_tag_status_query_RW =
392	    in_be64(&priv2->spu_tag_status_query_RW);
393}
394
395static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
396{
397	struct spu_priv2 __iomem *priv2 = spu->priv2;
398
399	/* Save, Step 23:
400	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
401	 *     registers in the CSA.
402	 */
403	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
404	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
405}
406
407static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
408{
409	struct spu_priv2 __iomem *priv2 = spu->priv2;
410
411	/* Save, Step 24:
412	 *     Save the MFC_CSR_ATO register in
413	 *     the CSA.
414	 */
415	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
416}
417
418static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
419{
420	/* Save, Step 25:
421	 *     Save the MFC_TCLASS_ID register in
422	 *     the CSA.
423	 */
424	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
425}
426
427static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
428{
429	/* Save, Step 26:
430	 * Restore, Step 23.
431	 *     Write the MFC_TCLASS_ID register with
432	 *     the value 0x10000000.
433	 */
434	spu_mfc_tclass_id_set(spu, 0x10000000);
435	eieio();
436}
437
438static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
439{
440	struct spu_priv2 __iomem *priv2 = spu->priv2;
441
442	/* Save, Step 27:
443	 * Restore, Step 14.
444	 *     Write MFC_CNTL[Pc]=1 (purge queue).
445	 */
446	out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
447	eieio();
448}
449
450static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
451{
452	struct spu_priv2 __iomem *priv2 = spu->priv2;
453
454	/* Save, Step 28:
455	 *     Poll MFC_CNTL[Ps] until value '11' is read
456	 *     (purge complete).
457	 */
458	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
459			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
460			 MFC_CNTL_PURGE_DMA_COMPLETE);
461}
462
463static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
464{
465	/* Save, Step 30:
466	 * Restore, Step 18:
467	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
468	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
469	 *     OS specific environment.
470	 *
471	 *     Implementation note: The SPU-side code
472	 *     for save/restore is privileged, so the
473	 *     MFC_SR1[Pr] bit is not set.
474	 *
475	 */
476	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
477			      MFC_STATE1_RELOCATE_MASK |
478			      MFC_STATE1_BUS_TLBIE_MASK));
479}
480
481static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
482{
483	struct spu_problem __iomem *prob = spu->problem;
484
485	/* Save, Step 31:
486	 *     Save SPU_NPC in the CSA.
487	 */
488	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
489}
490
491static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
492{
493	struct spu_priv2 __iomem *priv2 = spu->priv2;
494
495	/* Save, Step 32:
496	 *     Save SPU_PrivCntl in the CSA.
497	 */
498	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
499}
500
501static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
502{
503	struct spu_priv2 __iomem *priv2 = spu->priv2;
504
505	/* Save, Step 33:
506	 * Restore, Step 16:
507	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
508	 */
509	out_be64(&priv2->spu_privcntl_RW, 0UL);
510	eieio();
511}
512
513static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
514{
515	struct spu_priv2 __iomem *priv2 = spu->priv2;
516
517	/* Save, Step 34:
518	 *     Save SPU_LSLR in the CSA.
519	 */
520	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
521}
522
523static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
524{
525	struct spu_priv2 __iomem *priv2 = spu->priv2;
526
527	/* Save, Step 35:
528	 * Restore, Step 17.
529	 *     Reset SPU_LSLR.
530	 */
531	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
532	eieio();
533}
534
535static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
536{
537	struct spu_priv2 __iomem *priv2 = spu->priv2;
538
539	/* Save, Step 36:
540	 *     Save SPU_Cfg in the CSA.
541	 */
542	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
543}
544
545static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
546{
547	/* Save, Step 37:
548	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
549	 *     Not performed by this implementation.
550	 */
551}
552
553static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
554{
555	/* Save, Step 38:
556	 *     Save RA_GROUP_ID register and the
557	 *     RA_ENABLE reigster in the CSA.
558	 */
559	csa->priv1.resource_allocation_groupID_RW =
560		spu_resource_allocation_groupID_get(spu);
561	csa->priv1.resource_allocation_enable_RW =
562		spu_resource_allocation_enable_get(spu);
563}
564
565static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
566{
567	struct spu_problem __iomem *prob = spu->problem;
568
569	/* Save, Step 39:
570	 *     Save MB_Stat register in the CSA.
571	 */
572	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
573}
574
575static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
576{
577	struct spu_problem __iomem *prob = spu->problem;
578
579	/* Save, Step 40:
580	 *     Save the PPU_MB register in the CSA.
581	 */
582	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
583}
584
585static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
586{
587	struct spu_priv2 __iomem *priv2 = spu->priv2;
588
589	/* Save, Step 41:
590	 *     Save the PPUINT_MB register in the CSA.
591	 */
592	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
593}
594
595static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
596{
597	struct spu_priv2 __iomem *priv2 = spu->priv2;
598	u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
599	int i;
600
601	/* Save, Step 42:
602	 */
603
604	/* Save CH 1, without channel count */
605	out_be64(&priv2->spu_chnlcntptr_RW, 1);
606	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
607
608	/* Save the following CH: [0,3,4,24,25,27] */
609	for (i = 0; i < 7; i++) {
610		idx = ch_indices[i];
611		out_be64(&priv2->spu_chnlcntptr_RW, idx);
612		eieio();
613		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
614		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
615		out_be64(&priv2->spu_chnldata_RW, 0UL);
616		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
617		eieio();
618	}
619}
620
621static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
622{
623	struct spu_priv2 __iomem *priv2 = spu->priv2;
624	int i;
625
626	/* Save, Step 43:
627	 *     Save SPU Read Mailbox Channel.
628	 */
629	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
630	eieio();
631	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
632	for (i = 0; i < 4; i++) {
633		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
634	}
635	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
636	eieio();
637}
638
639static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
640{
641	struct spu_priv2 __iomem *priv2 = spu->priv2;
642
643	/* Save, Step 44:
644	 *     Save MFC_CMD Channel.
645	 */
646	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
647	eieio();
648	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
649	eieio();
650}
651
652static inline void reset_ch(struct spu_state *csa, struct spu *spu)
653{
654	struct spu_priv2 __iomem *priv2 = spu->priv2;
655	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
656	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
657	u64 idx;
658	int i;
659
660	/* Save, Step 45:
661	 *     Reset the following CH: [21, 23, 28, 30]
662	 */
663	for (i = 0; i < 4; i++) {
664		idx = ch_indices[i];
665		out_be64(&priv2->spu_chnlcntptr_RW, idx);
666		eieio();
667		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
668		eieio();
669	}
670}
671
672static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
673{
674	struct spu_priv2 __iomem *priv2 = spu->priv2;
675
676	/* Save, Step 46:
677	 * Restore, Step 25.
678	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
679	 */
680	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
681}
682
683static inline void get_kernel_slb(u64 ea, u64 slb[2])
684{
685	u64 llp;
686
687	if (REGION_ID(ea) == KERNEL_REGION_ID)
688		llp = mmu_psize_defs[mmu_linear_psize].sllp;
689	else
690		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
691	slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
692		SLB_VSID_KERNEL | llp;
693	slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
694}
695
696static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
697{
698	struct spu_priv2 __iomem *priv2 = spu->priv2;
699
700	out_be64(&priv2->slb_index_W, slbe);
701	eieio();
702	out_be64(&priv2->slb_vsid_RW, slb[0]);
703	out_be64(&priv2->slb_esid_RW, slb[1]);
704	eieio();
705}
706
707static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
708{
709	u64 code_slb[2];
710	u64 lscsa_slb[2];
711
712	/* Save, Step 47:
713	 * Restore, Step 30.
714	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
715	 *     register, then initialize SLB_VSID and SLB_ESID
716	 *     to provide access to SPU context save code and
717	 *     LSCSA.
718	 *
719	 *     This implementation places both the context
720	 *     switch code and LSCSA in kernel address space.
721	 *
722	 *     Further this implementation assumes that the
723	 *     MFC_SR1[R]=1 (in other words, assume that
724	 *     translation is desired by OS environment).
725	 */
726	spu_invalidate_slbs(spu);
727	get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
728	get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
729	load_mfc_slb(spu, code_slb, 0);
730	if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
731		load_mfc_slb(spu, lscsa_slb, 1);
732}
733
734static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
735{
736	/* Save, Step 48:
737	 * Restore, Step 23.
738	 *     Change the software context switch pending flag
739	 *     to context switch active.
740	 */
741	set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
742	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
743	mb();
744}
745
746static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
747{
748	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
749	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
750
751	/* Save, Step 49:
752	 * Restore, Step 22:
753	 *     Reset and then enable interrupts, as
754	 *     needed by OS.
755	 *
756	 *     This implementation enables only class1
757	 *     (translation) interrupts.
758	 */
759	spin_lock_irq(&spu->register_lock);
760	spu_int_stat_clear(spu, 0, ~0ul);
761	spu_int_stat_clear(spu, 1, ~0ul);
762	spu_int_stat_clear(spu, 2, ~0ul);
763	spu_int_mask_set(spu, 0, 0ul);
764	spu_int_mask_set(spu, 1, class1_mask);
765	spu_int_mask_set(spu, 2, 0ul);
766	spin_unlock_irq(&spu->register_lock);
767}
768
769static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
770			       unsigned int ls_offset, unsigned int size,
771			       unsigned int tag, unsigned int rclass,
772			       unsigned int cmd)
773{
774	struct spu_problem __iomem *prob = spu->problem;
775	union mfc_tag_size_class_cmd command;
776	unsigned int transfer_size;
777	volatile unsigned int status = 0x0;
778
779	while (size > 0) {
780		transfer_size =
781		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
782		command.u.mfc_size = transfer_size;
783		command.u.mfc_tag = tag;
784		command.u.mfc_rclassid = rclass;
785		command.u.mfc_cmd = cmd;
786		do {
787			out_be32(&prob->mfc_lsa_W, ls_offset);
788			out_be64(&prob->mfc_ea_W, ea);
789			out_be64(&prob->mfc_union_W.all64, command.all64);
790			status =
791			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
792			if (unlikely(status & 0x2)) {
793				cpu_relax();
794			}
795		} while (status & 0x3);
796		size -= transfer_size;
797		ea += transfer_size;
798		ls_offset += transfer_size;
799	}
800	return 0;
801}
802
803static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
804{
805	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
806	unsigned int ls_offset = 0x0;
807	unsigned int size = 16384;
808	unsigned int tag = 0;
809	unsigned int rclass = 0;
810	unsigned int cmd = MFC_PUT_CMD;
811
812	/* Save, Step 50:
813	 *     Issue a DMA command to copy the first 16K bytes
814	 *     of local storage to the CSA.
815	 */
816	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
817}
818
819static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
820{
821	struct spu_problem __iomem *prob = spu->problem;
822
823	/* Save, Step 51:
824	 * Restore, Step 31.
825	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
826	 *     point address of context save code in local
827	 *     storage.
828	 *
829	 *     This implementation uses SPU-side save/restore
830	 *     programs with entry points at LSA of 0.
831	 */
832	out_be32(&prob->spu_npc_RW, 0);
833	eieio();
834}
835
836static inline void set_signot1(struct spu_state *csa, struct spu *spu)
837{
838	struct spu_problem __iomem *prob = spu->problem;
839	union {
840		u64 ull;
841		u32 ui[2];
842	} addr64;
843
844	/* Save, Step 52:
845	 * Restore, Step 32:
846	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
847	 *    of the CSA.LSCSA effective address.
848	 */
849	addr64.ull = (u64) csa->lscsa;
850	out_be32(&prob->signal_notify1, addr64.ui[0]);
851	eieio();
852}
853
854static inline void set_signot2(struct spu_state *csa, struct spu *spu)
855{
856	struct spu_problem __iomem *prob = spu->problem;
857	union {
858		u64 ull;
859		u32 ui[2];
860	} addr64;
861
862	/* Save, Step 53:
863	 * Restore, Step 33:
864	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
865	 *    of the CSA.LSCSA effective address.
866	 */
867	addr64.ull = (u64) csa->lscsa;
868	out_be32(&prob->signal_notify2, addr64.ui[1]);
869	eieio();
870}
871
872static inline void send_save_code(struct spu_state *csa, struct spu *spu)
873{
874	unsigned long addr = (unsigned long)&spu_save_code[0];
875	unsigned int ls_offset = 0x0;
876	unsigned int size = sizeof(spu_save_code);
877	unsigned int tag = 0;
878	unsigned int rclass = 0;
879	unsigned int cmd = MFC_GETFS_CMD;
880
881	/* Save, Step 54:
882	 *     Issue a DMA command to copy context save code
883	 *     to local storage and start SPU.
884	 */
885	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
886}
887
888static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
889{
890	struct spu_problem __iomem *prob = spu->problem;
891
892	/* Save, Step 55:
893	 * Restore, Step 38.
894	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
895	 *     and issue eieio instruction.
896	 */
897	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
898	eieio();
899}
900
901static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
902{
903	struct spu_problem __iomem *prob = spu->problem;
904	u32 mask = MFC_TAGID_TO_TAGMASK(0);
905	unsigned long flags;
906
907	/* Save, Step 56:
908	 * Restore, Step 39.
909	 * Restore, Step 39.
910	 * Restore, Step 46.
911	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
912	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
913	 *     Complete Interrupt.  Write INT_Stat_Class0 or
914	 *     INT_Stat_Class2 with value of 'handled'.
915	 */
916	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
917
918	local_irq_save(flags);
919	spu_int_stat_clear(spu, 0, ~(0ul));
920	spu_int_stat_clear(spu, 2, ~(0ul));
921	local_irq_restore(flags);
922}
923
924static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
925{
926	struct spu_problem __iomem *prob = spu->problem;
927	unsigned long flags;
928
929	/* Save, Step 57:
930	 * Restore, Step 40.
931	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
932	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
933	 *     or INT_Stat_class2 with value of handled.
934	 */
935	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
936
937	local_irq_save(flags);
938	spu_int_stat_clear(spu, 0, ~(0ul));
939	spu_int_stat_clear(spu, 2, ~(0ul));
940	local_irq_restore(flags);
941}
942
943static inline int check_save_status(struct spu_state *csa, struct spu *spu)
944{
945	struct spu_problem __iomem *prob = spu->problem;
946	u32 complete;
947
948	/* Save, Step 54:
949	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
950	 *     context save succeeded, otherwise context save
951	 *     failed.
952	 */
953	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
954		    SPU_STATUS_STOPPED_BY_STOP);
955	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
956}
957
958static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
959{
960	/* Restore, Step 4:
961	 *    If required, notify the "using application" that
962	 *    the SPU task has been terminated.  TBD.
963	 */
964}
965
966static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
967{
968	struct spu_priv2 __iomem *priv2 = spu->priv2;
969
970	/* Restore, Step 7:
971	 * Restore, Step 47.
972	 *     Write MFC_Cntl[Dh,Sc]='1','1' to suspend
973	 *     the queue and halt the decrementer.
974	 */
975	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
976		 MFC_CNTL_DECREMENTER_HALTED);
977	eieio();
978}
979
980static inline void wait_suspend_mfc_complete(struct spu_state *csa,
981					     struct spu *spu)
982{
983	struct spu_priv2 __iomem *priv2 = spu->priv2;
984
985	/* Restore, Step 8:
986	 * Restore, Step 47.
987	 *     Poll MFC_CNTL[Ss] until 11 is returned.
988	 */
989	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
990			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
991			 MFC_CNTL_SUSPEND_COMPLETE);
992}
993
994static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
995{
996	struct spu_problem __iomem *prob = spu->problem;
997
998	/* Restore, Step 9:
999	 *    If SPU_Status[R]=1, stop SPU execution
1000	 *    and wait for stop to complete.
1001	 *
1002	 *    Returns       1 if SPU_Status[R]=1 on entry.
1003	 *                  0 otherwise
1004	 */
1005	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1006		if (in_be32(&prob->spu_status_R) &
1007		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1008			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1009					SPU_STATUS_RUNNING);
1010		}
1011		if ((in_be32(&prob->spu_status_R) &
1012		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1013		    || (in_be32(&prob->spu_status_R) &
1014			SPU_STATUS_ISOLATED_STATE)) {
1015			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1016			eieio();
1017			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1018					SPU_STATUS_RUNNING);
1019			out_be32(&prob->spu_runcntl_RW, 0x2);
1020			eieio();
1021			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1022					SPU_STATUS_RUNNING);
1023		}
1024		if (in_be32(&prob->spu_status_R) &
1025		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1026			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1027			eieio();
1028			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1029					SPU_STATUS_RUNNING);
1030		}
1031		return 1;
1032	}
1033	return 0;
1034}
1035
1036static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1037{
1038	struct spu_problem __iomem *prob = spu->problem;
1039
1040	/* Restore, Step 10:
1041	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1042	 *    release SPU from isolate state.
1043	 */
1044	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1045		if (in_be32(&prob->spu_status_R) &
1046		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1047			spu_mfc_sr1_set(spu,
1048					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1049			eieio();
1050			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1051			eieio();
1052			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1053					SPU_STATUS_RUNNING);
1054		}
1055		if ((in_be32(&prob->spu_status_R) &
1056		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1057		    || (in_be32(&prob->spu_status_R) &
1058			SPU_STATUS_ISOLATED_STATE)) {
1059			spu_mfc_sr1_set(spu,
1060					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1061			eieio();
1062			out_be32(&prob->spu_runcntl_RW, 0x2);
1063			eieio();
1064			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1065					SPU_STATUS_RUNNING);
1066		}
1067	}
1068}
1069
1070static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1071{
1072	struct spu_priv2 __iomem *priv2 = spu->priv2;
1073	u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1074	u64 idx;
1075	int i;
1076
1077	/* Restore, Step 20:
1078	 */
1079
1080	/* Reset CH 1 */
1081	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1082	out_be64(&priv2->spu_chnldata_RW, 0UL);
1083
1084	/* Reset the following CH: [0,3,4,24,25,27] */
1085	for (i = 0; i < 7; i++) {
1086		idx = ch_indices[i];
1087		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1088		eieio();
1089		out_be64(&priv2->spu_chnldata_RW, 0UL);
1090		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1091		eieio();
1092	}
1093}
1094
1095static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1096{
1097	struct spu_priv2 __iomem *priv2 = spu->priv2;
1098	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1099	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1100	u64 idx;
1101	int i;
1102
1103	/* Restore, Step 21:
1104	 *     Reset the following CH: [21, 23, 28, 29, 30]
1105	 */
1106	for (i = 0; i < 5; i++) {
1107		idx = ch_indices[i];
1108		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1109		eieio();
1110		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1111		eieio();
1112	}
1113}
1114
1115static inline void setup_spu_status_part1(struct spu_state *csa,
1116					  struct spu *spu)
1117{
1118	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1119	u32 status_I = SPU_STATUS_INVALID_INSTR;
1120	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1121	u32 status_S = SPU_STATUS_SINGLE_STEP;
1122	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1123	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1124	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1125	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1126	u32 status_code;
1127
1128	/* Restore, Step 27:
1129	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1130	 *     instruction sequence to the end of the SPU based restore
1131	 *     code (after the "context restored" stop and signal) to
1132	 *     restore the correct SPU status.
1133	 *
1134	 *     NOTE: Rather than modifying the SPU executable, we
1135	 *     instead add a new 'stopped_status' field to the
1136	 *     LSCSA.  The SPU-side restore reads this field and
1137	 *     takes the appropriate action when exiting.
1138	 */
1139
1140	status_code =
1141	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1142	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1143
1144		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1145		 * by Stop and Signal instruction, followed by 'br -4'.
1146		 *
1147		 */
1148		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1149		csa->lscsa->stopped_status.slot[1] = status_code;
1150
1151	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1152
1153		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1154		 * by Stop and Signal instruction, followed by
1155		 * 'br -4'.
1156		 */
1157		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1158		csa->lscsa->stopped_status.slot[1] = status_code;
1159
1160	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1161
1162		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1163		 * followed by 'br -4'.
1164		 */
1165		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1166		csa->lscsa->stopped_status.slot[1] = status_code;
1167
1168	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1169
1170		/* SPU_Status[S,I]=1 - Illegal instruction followed
1171		 * by 'br -4'.
1172		 */
1173		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1174		csa->lscsa->stopped_status.slot[1] = status_code;
1175
1176	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1177
1178		/* SPU_Status[P]=1 - Stop and Signal instruction
1179		 * followed by 'br -4'.
1180		 */
1181		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1182		csa->lscsa->stopped_status.slot[1] = status_code;
1183
1184	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1185
1186		/* SPU_Status[H]=1 - Halt Conditional, followed
1187		 * by 'br -4'.
1188		 */
1189		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1190
1191	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1192
1193		/* SPU_Status[S]=1 - Two nop instructions.
1194		 */
1195		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1196
1197	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1198
1199		/* SPU_Status[I]=1 - Illegal instruction followed
1200		 * by 'br -4'.
1201		 */
1202		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1203
1204	}
1205}
1206
1207static inline void setup_spu_status_part2(struct spu_state *csa,
1208					  struct spu *spu)
1209{
1210	u32 mask;
1211
1212	/* Restore, Step 28:
1213	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1214	 *     add a 'br *' instruction to the end of
1215	 *     the SPU based restore code.
1216	 *
1217	 *     NOTE: Rather than modifying the SPU executable, we
1218	 *     instead add a new 'stopped_status' field to the
1219	 *     LSCSA.  The SPU-side restore reads this field and
1220	 *     takes the appropriate action when exiting.
1221	 */
1222	mask = SPU_STATUS_INVALID_INSTR |
1223	    SPU_STATUS_SINGLE_STEP |
1224	    SPU_STATUS_STOPPED_BY_HALT |
1225	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1226	if (!(csa->prob.spu_status_R & mask)) {
1227		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1228	}
1229}
1230
1231static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1232{
1233	/* Restore, Step 29:
1234	 *     Restore RA_GROUP_ID register and the
1235	 *     RA_ENABLE reigster from the CSA.
1236	 */
1237	spu_resource_allocation_groupID_set(spu,
1238			csa->priv1.resource_allocation_groupID_RW);
1239	spu_resource_allocation_enable_set(spu,
1240			csa->priv1.resource_allocation_enable_RW);
1241}
1242
1243static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1244{
1245	unsigned long addr = (unsigned long)&spu_restore_code[0];
1246	unsigned int ls_offset = 0x0;
1247	unsigned int size = sizeof(spu_restore_code);
1248	unsigned int tag = 0;
1249	unsigned int rclass = 0;
1250	unsigned int cmd = MFC_GETFS_CMD;
1251
1252	/* Restore, Step 37:
1253	 *     Issue MFC DMA command to copy context
1254	 *     restore code to local storage.
1255	 */
1256	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1257}
1258
1259static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1260{
1261	/* Restore, Step 34:
1262	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1263	 *     running) then adjust decrementer, set
1264	 *     decrementer running status in LSCSA,
1265	 *     and set decrementer "wrapped" status
1266	 *     in LSCSA.
1267	 */
1268	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1269		cycles_t resume_time = get_cycles();
1270		cycles_t delta_time = resume_time - csa->suspend_time;
1271
1272		csa->lscsa->decr.slot[0] -= delta_time;
1273	}
1274}
1275
1276static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1277{
1278	/* Restore, Step 35:
1279	 *     Copy the CSA.PU_MB data into the LSCSA.
1280	 */
1281	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1282}
1283
1284static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1285{
1286	/* Restore, Step 36:
1287	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1288	 */
1289	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1290}
1291
1292static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1293{
1294	struct spu_problem __iomem *prob = spu->problem;
1295	u32 complete;
1296
1297	/* Restore, Step 40:
1298	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1299	 *     context restore succeeded, otherwise context restore
1300	 *     failed.
1301	 */
1302	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1303		    SPU_STATUS_STOPPED_BY_STOP);
1304	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1305}
1306
1307static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1308{
1309	struct spu_priv2 __iomem *priv2 = spu->priv2;
1310
1311	/* Restore, Step 41:
1312	 *     Restore SPU_PrivCntl from the CSA.
1313	 */
1314	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1315	eieio();
1316}
1317
1318static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1319{
1320	struct spu_problem __iomem *prob = spu->problem;
1321	u32 mask;
1322
1323	/* Restore, Step 42:
1324	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1325	 *     restore the error or single step state.
1326	 */
1327	mask = SPU_STATUS_INVALID_INSTR |
1328	    SPU_STATUS_SINGLE_STEP |
1329	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1330	if (csa->prob.spu_status_R & mask) {
1331		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1332		eieio();
1333		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1334				SPU_STATUS_RUNNING);
1335	}
1336}
1337
1338static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1339{
1340	struct spu_problem __iomem *prob = spu->problem;
1341	u32 mask;
1342
1343	/* Restore, Step 43:
1344	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1345	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1346	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1347	 *     for SPU_Status[R]=0.
1348	 */
1349	mask = SPU_STATUS_INVALID_INSTR |
1350	    SPU_STATUS_SINGLE_STEP |
1351	    SPU_STATUS_STOPPED_BY_HALT |
1352	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1353	if (!(csa->prob.spu_status_R & mask)) {
1354		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1355		eieio();
1356		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1357				 SPU_STATUS_RUNNING);
1358		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1359		eieio();
1360		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1361				SPU_STATUS_RUNNING);
1362	}
1363}
1364
1365static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1366{
1367	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1368	unsigned int ls_offset = 0x0;
1369	unsigned int size = 16384;
1370	unsigned int tag = 0;
1371	unsigned int rclass = 0;
1372	unsigned int cmd = MFC_GET_CMD;
1373
1374	/* Restore, Step 44:
1375	 *     Issue a DMA command to restore the first
1376	 *     16kb of local storage from CSA.
1377	 */
1378	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1379}
1380
1381static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1382{
1383	/* Restore, Step 49:
1384	 *     Write INT_MASK_class0 with value of 0.
1385	 *     Write INT_MASK_class1 with value of 0.
1386	 *     Write INT_MASK_class2 with value of 0.
1387	 *     Write INT_STAT_class0 with value of -1.
1388	 *     Write INT_STAT_class1 with value of -1.
1389	 *     Write INT_STAT_class2 with value of -1.
1390	 */
1391	spin_lock_irq(&spu->register_lock);
1392	spu_int_mask_set(spu, 0, 0ul);
1393	spu_int_mask_set(spu, 1, 0ul);
1394	spu_int_mask_set(spu, 2, 0ul);
1395	spu_int_stat_clear(spu, 0, ~0ul);
1396	spu_int_stat_clear(spu, 1, ~0ul);
1397	spu_int_stat_clear(spu, 2, ~0ul);
1398	spin_unlock_irq(&spu->register_lock);
1399}
1400
1401static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1402{
1403	struct spu_priv2 __iomem *priv2 = spu->priv2;
1404	int i;
1405
1406	/* Restore, Step 50:
1407	 *     If MFC_Cntl[Se]!=0 then restore
1408	 *     MFC command queues.
1409	 */
1410	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1411		for (i = 0; i < 8; i++) {
1412			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1413				 csa->priv2.puq[i].mfc_cq_data0_RW);
1414			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1415				 csa->priv2.puq[i].mfc_cq_data1_RW);
1416			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1417				 csa->priv2.puq[i].mfc_cq_data2_RW);
1418			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1419				 csa->priv2.puq[i].mfc_cq_data3_RW);
1420		}
1421		for (i = 0; i < 16; i++) {
1422			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1423				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1424			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1425				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1426			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1427				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1428			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1429				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1430		}
1431	}
1432	eieio();
1433}
1434
1435static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1436{
1437	struct spu_problem __iomem *prob = spu->problem;
1438
1439	/* Restore, Step 51:
1440	 *     Restore the PPU_QueryMask register from CSA.
1441	 */
1442	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1443	eieio();
1444}
1445
1446static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1447{
1448	struct spu_problem __iomem *prob = spu->problem;
1449
1450	/* Restore, Step 52:
1451	 *     Restore the PPU_QueryType register from CSA.
1452	 */
1453	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1454	eieio();
1455}
1456
1457static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1458{
1459	struct spu_priv2 __iomem *priv2 = spu->priv2;
1460
1461	/* Restore, Step 53:
1462	 *     Restore the MFC_CSR_TSQ register from CSA.
1463	 */
1464	out_be64(&priv2->spu_tag_status_query_RW,
1465		 csa->priv2.spu_tag_status_query_RW);
1466	eieio();
1467}
1468
1469static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1470{
1471	struct spu_priv2 __iomem *priv2 = spu->priv2;
1472
1473	/* Restore, Step 54:
1474	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1475	 *     registers from CSA.
1476	 */
1477	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1478	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1479	eieio();
1480}
1481
1482static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1483{
1484	struct spu_priv2 __iomem *priv2 = spu->priv2;
1485
1486	/* Restore, Step 55:
1487	 *     Restore the MFC_CSR_ATO register from CSA.
1488	 */
1489	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1490}
1491
1492static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1493{
1494	/* Restore, Step 56:
1495	 *     Restore the MFC_TCLASS_ID register from CSA.
1496	 */
1497	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1498	eieio();
1499}
1500
1501static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1502{
1503	u64 ch0_cnt, ch0_data;
1504	u64 ch1_data;
1505
1506	/* Restore, Step 57:
1507	 *    Set the Lock Line Reservation Lost Event by:
1508	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1509	 *      2. If CSA.SPU_Channel_0_Count=0 and
1510	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1511	 *         CSA.SPU_Event_Status[Lr]=0 then set
1512	 *         CSA.SPU_Event_Status_Count=1.
1513	 */
1514	ch0_cnt = csa->spu_chnlcnt_RW[0];
1515	ch0_data = csa->spu_chnldata_RW[0];
1516	ch1_data = csa->spu_chnldata_RW[1];
1517	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1518	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1519	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1520		csa->spu_chnlcnt_RW[0] = 1;
1521	}
1522}
1523
1524static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1525{
1526	/* Restore, Step 58:
1527	 *     If the status of the CSA software decrementer
1528	 *     "wrapped" flag is set, OR in a '1' to
1529	 *     CSA.SPU_Event_Status[Tm].
1530	 */
1531	if (csa->lscsa->decr_status.slot[0] == 1) {
1532		csa->spu_chnldata_RW[0] |= 0x20;
1533	}
1534	if ((csa->lscsa->decr_status.slot[0] == 1) &&
1535	    (csa->spu_chnlcnt_RW[0] == 0 &&
1536	     ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1537	     ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1538		csa->spu_chnlcnt_RW[0] = 1;
1539	}
1540}
1541
1542static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1543{
1544	struct spu_priv2 __iomem *priv2 = spu->priv2;
1545	u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1546	int i;
1547
1548	/* Restore, Step 59:
1549	 */
1550
1551	/* Restore CH 1 without count */
1552	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1553	out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1554
1555	/* Restore the following CH: [0,3,4,24,25,27] */
1556	for (i = 0; i < 7; i++) {
1557		idx = ch_indices[i];
1558		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1559		eieio();
1560		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1561		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1562		eieio();
1563	}
1564}
1565
1566static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1567{
1568	struct spu_priv2 __iomem *priv2 = spu->priv2;
1569	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1570	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1571	u64 idx;
1572	int i;
1573
1574	/* Restore, Step 60:
1575	 *     Restore the following CH: [9,21,23].
1576	 */
1577	ch_counts[0] = 1UL;
1578	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1579	ch_counts[2] = 1UL;
1580	for (i = 0; i < 3; i++) {
1581		idx = ch_indices[i];
1582		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1583		eieio();
1584		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1585		eieio();
1586	}
1587}
1588
1589static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1590{
1591	struct spu_priv2 __iomem *priv2 = spu->priv2;
1592
1593	/* Restore, Step 61:
1594	 *     Restore the SPU_LSLR register from CSA.
1595	 */
1596	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1597	eieio();
1598}
1599
1600static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1601{
1602	struct spu_priv2 __iomem *priv2 = spu->priv2;
1603
1604	/* Restore, Step 62:
1605	 *     Restore the SPU_Cfg register from CSA.
1606	 */
1607	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1608	eieio();
1609}
1610
1611static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1612{
1613	/* Restore, Step 63:
1614	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1615	 *     Not performed by this implementation.
1616	 */
1617}
1618
1619static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1620{
1621	struct spu_problem __iomem *prob = spu->problem;
1622
1623	/* Restore, Step 64:
1624	 *     Restore SPU_NPC from CSA.
1625	 */
1626	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1627	eieio();
1628}
1629
1630static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1631{
1632	struct spu_priv2 __iomem *priv2 = spu->priv2;
1633	int i;
1634
1635	/* Restore, Step 65:
1636	 *     Restore MFC_RdSPU_MB from CSA.
1637	 */
1638	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1639	eieio();
1640	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1641	for (i = 0; i < 4; i++) {
1642		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1643	}
1644	eieio();
1645}
1646
1647static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1648{
1649	struct spu_problem __iomem *prob = spu->problem;
1650	u32 dummy = 0;
1651
1652	/* Restore, Step 66:
1653	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1654	 *     read from the PPU_MB register.
1655	 */
1656	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1657		dummy = in_be32(&prob->pu_mb_R);
1658		eieio();
1659	}
1660}
1661
1662static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1663{
1664	struct spu_priv2 __iomem *priv2 = spu->priv2;
1665	u64 dummy = 0UL;
1666
1667	/* Restore, Step 66:
1668	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1669	 *     read from the PPUINT_MB register.
1670	 */
1671	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1672		dummy = in_be64(&priv2->puint_mb_R);
1673		eieio();
1674		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1675		eieio();
1676	}
1677}
1678
1679static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1680{
1681	/* Restore, Step 69:
1682	 *     Restore the MFC_SR1 register from CSA.
1683	 */
1684	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1685	eieio();
1686}
1687
1688static inline void restore_other_spu_access(struct spu_state *csa,
1689					    struct spu *spu)
1690{
1691	/* Restore, Step 70:
1692	 *     Restore other SPU mappings to this SPU. TBD.
1693	 */
1694}
1695
1696static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1697{
1698	struct spu_problem __iomem *prob = spu->problem;
1699
1700	/* Restore, Step 71:
1701	 *     If CSA.SPU_Status[R]=1 then write
1702	 *     SPU_RunCntl[R0R1]='01'.
1703	 */
1704	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1705		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1706		eieio();
1707	}
1708}
1709
1710static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1711{
1712	struct spu_priv2 __iomem *priv2 = spu->priv2;
1713
1714	/* Restore, Step 72:
1715	 *    Restore the MFC_CNTL register for the CSA.
1716	 */
1717	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1718	eieio();
1719	if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1720		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1721		eieio();
1722	}
1723}
1724
1725static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1726{
1727	/* Restore, Step 73:
1728	 *     Enable user-space access (if provided) to this
1729	 *     SPU by mapping the virtual pages assigned to
1730	 *     the SPU memory-mapped I/O (MMIO) for problem
1731	 *     state. TBD.
1732	 */
1733}
1734
1735static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1736{
1737	/* Restore, Step 74:
1738	 *     Reset the "context switch active" flag.
1739	 */
1740	clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1741	mb();
1742}
1743
1744static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1745{
1746	/* Restore, Step 75:
1747	 *     Re-enable SPU interrupts.
1748	 */
1749	spin_lock_irq(&spu->register_lock);
1750	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1751	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1752	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1753	spin_unlock_irq(&spu->register_lock);
1754}
1755
1756static int quiece_spu(struct spu_state *prev, struct spu *spu)
1757{
1758	/*
1759	 * Combined steps 2-18 of SPU context save sequence, which
1760	 * quiesce the SPU state (disable SPU execution, MFC command
1761	 * queues, decrementer, SPU interrupts, etc.).
1762	 *
1763	 * Returns      0 on success.
1764	 *              2 if failed step 2.
1765	 *              6 if failed step 6.
1766	 */
1767
1768	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1769		return 2;
1770	}
1771	disable_interrupts(prev, spu);	        /* Step 3. */
1772	set_watchdog_timer(prev, spu);	        /* Step 4. */
1773	inhibit_user_access(prev, spu);	        /* Step 5. */
1774	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1775		return 6;
1776	}
1777	set_switch_pending(prev, spu);	        /* Step 7. */
1778	save_mfc_cntl(prev, spu);		/* Step 8. */
1779	save_spu_runcntl(prev, spu);	        /* Step 9. */
1780	save_mfc_sr1(prev, spu);	        /* Step 10. */
1781	save_spu_status(prev, spu);	        /* Step 11. */
1782	save_mfc_decr(prev, spu);	        /* Step 12. */
1783	halt_mfc_decr(prev, spu);	        /* Step 13. */
1784	save_timebase(prev, spu);		/* Step 14. */
1785	remove_other_spu_access(prev, spu);	/* Step 15. */
1786	do_mfc_mssync(prev, spu);	        /* Step 16. */
1787	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1788	handle_pending_interrupts(prev, spu);	/* Step 18. */
1789
1790	return 0;
1791}
1792
1793static void save_csa(struct spu_state *prev, struct spu *spu)
1794{
1795	/*
1796	 * Combine steps 19-44 of SPU context save sequence, which
1797	 * save regions of the privileged & problem state areas.
1798	 */
1799
1800	save_mfc_queues(prev, spu);	/* Step 19. */
1801	save_ppu_querymask(prev, spu);	/* Step 20. */
1802	save_ppu_querytype(prev, spu);	/* Step 21. */
1803	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1804	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1805	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1806	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1807	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1808	purge_mfc_queue(prev, spu);	/* Step 27. */
1809	wait_purge_complete(prev, spu);	/* Step 28. */
1810	setup_mfc_sr1(prev, spu);	/* Step 30. */
1811	save_spu_npc(prev, spu);	/* Step 31. */
1812	save_spu_privcntl(prev, spu);	/* Step 32. */
1813	reset_spu_privcntl(prev, spu);	/* Step 33. */
1814	save_spu_lslr(prev, spu);	/* Step 34. */
1815	reset_spu_lslr(prev, spu);	/* Step 35. */
1816	save_spu_cfg(prev, spu);	/* Step 36. */
1817	save_pm_trace(prev, spu);	/* Step 37. */
1818	save_mfc_rag(prev, spu);	/* Step 38. */
1819	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1820	save_ppu_mb(prev, spu);	        /* Step 40. */
1821	save_ppuint_mb(prev, spu);	/* Step 41. */
1822	save_ch_part1(prev, spu);	/* Step 42. */
1823	save_spu_mb(prev, spu);	        /* Step 43. */
1824	save_mfc_cmd(prev, spu);	/* Step 44. */
1825	reset_ch(prev, spu);	        /* Step 45. */
1826}
1827
1828static void save_lscsa(struct spu_state *prev, struct spu *spu)
1829{
1830	/*
1831	 * Perform steps 46-57 of SPU context save sequence,
1832	 * which save regions of the local store and register
1833	 * file.
1834	 */
1835
1836	resume_mfc_queue(prev, spu);	/* Step 46. */
1837	setup_mfc_slbs(prev, spu);	/* Step 47. */
1838	set_switch_active(prev, spu);	/* Step 48. */
1839	enable_interrupts(prev, spu);	/* Step 49. */
1840	save_ls_16kb(prev, spu);	/* Step 50. */
1841	set_spu_npc(prev, spu);	        /* Step 51. */
1842	set_signot1(prev, spu);		/* Step 52. */
1843	set_signot2(prev, spu);		/* Step 53. */
1844	send_save_code(prev, spu);	/* Step 54. */
1845	set_ppu_querymask(prev, spu);	/* Step 55. */
1846	wait_tag_complete(prev, spu);	/* Step 56. */
1847	wait_spu_stopped(prev, spu);	/* Step 57. */
1848}
1849
1850static void force_spu_isolate_exit(struct spu *spu)
1851{
1852	struct spu_problem __iomem *prob = spu->problem;
1853	struct spu_priv2 __iomem *priv2 = spu->priv2;
1854
1855	/* Stop SPE execution and wait for completion. */
1856	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1857	iobarrier_rw();
1858	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1859
1860	/* Restart SPE master runcntl. */
1861	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1862	iobarrier_w();
1863
1864	/* Initiate isolate exit request and wait for completion. */
1865	out_be64(&priv2->spu_privcntl_RW, 4LL);
1866	iobarrier_w();
1867	out_be32(&prob->spu_runcntl_RW, 2);
1868	iobarrier_rw();
1869	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1870				& SPU_STATUS_STOPPED_BY_STOP));
1871
1872	/* Reset load request to normal. */
1873	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1874	iobarrier_w();
1875}
1876
1877/**
1878 * stop_spu_isolate
1879 *	Check SPU run-control state and force isolated
1880 *	exit function as necessary.
1881 */
1882static void stop_spu_isolate(struct spu *spu)
1883{
1884	struct spu_problem __iomem *prob = spu->problem;
1885
1886	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1887		/* The SPU is in isolated state; the only way
1888		 * to get it out is to perform an isolated
1889		 * exit (clean) operation.
1890		 */
1891		force_spu_isolate_exit(spu);
1892	}
1893}
1894
1895static void harvest(struct spu_state *prev, struct spu *spu)
1896{
1897	/*
1898	 * Perform steps 2-25 of SPU context restore sequence,
1899	 * which resets an SPU either after a failed save, or
1900	 * when using SPU for first time.
1901	 */
1902
1903	disable_interrupts(prev, spu);	        /* Step 2.  */
1904	inhibit_user_access(prev, spu);	        /* Step 3.  */
1905	terminate_spu_app(prev, spu);	        /* Step 4.  */
1906	set_switch_pending(prev, spu);	        /* Step 5.  */
1907	stop_spu_isolate(spu);			/* NEW.     */
1908	remove_other_spu_access(prev, spu);	/* Step 6.  */
1909	suspend_mfc(prev, spu);	                /* Step 7.  */
1910	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1911	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1912		clear_spu_status(prev, spu);	/* Step 10. */
1913	do_mfc_mssync(prev, spu);	        /* Step 11. */
1914	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1915	handle_pending_interrupts(prev, spu);	/* Step 13. */
1916	purge_mfc_queue(prev, spu);	        /* Step 14. */
1917	wait_purge_complete(prev, spu);	        /* Step 15. */
1918	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1919	reset_spu_lslr(prev, spu);              /* Step 17. */
1920	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1921	spu_invalidate_slbs(spu);        	/* Step 19. */
1922	reset_ch_part1(prev, spu);	        /* Step 20. */
1923	reset_ch_part2(prev, spu);	        /* Step 21. */
1924	enable_interrupts(prev, spu);	        /* Step 22. */
1925	set_switch_active(prev, spu);	        /* Step 23. */
1926	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1927	resume_mfc_queue(prev, spu);	        /* Step 25. */
1928}
1929
1930static void restore_lscsa(struct spu_state *next, struct spu *spu)
1931{
1932	/*
1933	 * Perform steps 26-40 of SPU context restore sequence,
1934	 * which restores regions of the local store and register
1935	 * file.
1936	 */
1937
1938	set_watchdog_timer(next, spu);	        /* Step 26. */
1939	setup_spu_status_part1(next, spu);	/* Step 27. */
1940	setup_spu_status_part2(next, spu);	/* Step 28. */
1941	restore_mfc_rag(next, spu);	        /* Step 29. */
1942	setup_mfc_slbs(next, spu);	        /* Step 30. */
1943	set_spu_npc(next, spu);	                /* Step 31. */
1944	set_signot1(next, spu);	                /* Step 32. */
1945	set_signot2(next, spu);	                /* Step 33. */
1946	setup_decr(next, spu);	                /* Step 34. */
1947	setup_ppu_mb(next, spu);	        /* Step 35. */
1948	setup_ppuint_mb(next, spu);	        /* Step 36. */
1949	send_restore_code(next, spu);	        /* Step 37. */
1950	set_ppu_querymask(next, spu);	        /* Step 38. */
1951	wait_tag_complete(next, spu);	        /* Step 39. */
1952	wait_spu_stopped(next, spu);	        /* Step 40. */
1953}
1954
1955static void restore_csa(struct spu_state *next, struct spu *spu)
1956{
1957	/*
1958	 * Combine steps 41-76 of SPU context restore sequence, which
1959	 * restore regions of the privileged & problem state areas.
1960	 */
1961
1962	restore_spu_privcntl(next, spu);	/* Step 41. */
1963	restore_status_part1(next, spu);	/* Step 42. */
1964	restore_status_part2(next, spu);	/* Step 43. */
1965	restore_ls_16kb(next, spu);	        /* Step 44. */
1966	wait_tag_complete(next, spu);	        /* Step 45. */
1967	suspend_mfc(next, spu);	                /* Step 46. */
1968	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
1969	issue_mfc_tlbie(next, spu);	        /* Step 48. */
1970	clear_interrupts(next, spu);	        /* Step 49. */
1971	restore_mfc_queues(next, spu);	        /* Step 50. */
1972	restore_ppu_querymask(next, spu);	/* Step 51. */
1973	restore_ppu_querytype(next, spu);	/* Step 52. */
1974	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
1975	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
1976	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
1977	restore_mfc_tclass_id(next, spu);	/* Step 56. */
1978	set_llr_event(next, spu);	        /* Step 57. */
1979	restore_decr_wrapped(next, spu);	/* Step 58. */
1980	restore_ch_part1(next, spu);	        /* Step 59. */
1981	restore_ch_part2(next, spu);	        /* Step 60. */
1982	restore_spu_lslr(next, spu);	        /* Step 61. */
1983	restore_spu_cfg(next, spu);	        /* Step 62. */
1984	restore_pm_trace(next, spu);	        /* Step 63. */
1985	restore_spu_npc(next, spu);	        /* Step 64. */
1986	restore_spu_mb(next, spu);	        /* Step 65. */
1987	check_ppu_mb_stat(next, spu);	        /* Step 66. */
1988	check_ppuint_mb_stat(next, spu);	/* Step 67. */
1989	spu_invalidate_slbs(spu);		/* Modified Step 68. */
1990	restore_mfc_sr1(next, spu);	        /* Step 69. */
1991	restore_other_spu_access(next, spu);	/* Step 70. */
1992	restore_spu_runcntl(next, spu);	        /* Step 71. */
1993	restore_mfc_cntl(next, spu);	        /* Step 72. */
1994	enable_user_access(next, spu);	        /* Step 73. */
1995	reset_switch_active(next, spu);	        /* Step 74. */
1996	reenable_interrupts(next, spu);	        /* Step 75. */
1997}
1998
1999static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2000{
2001	int rc;
2002
2003	/*
2004	 * SPU context save can be broken into three phases:
2005	 *
2006	 *     (a) quiesce [steps 2-16].
2007	 *     (b) save of CSA, performed by PPE [steps 17-42]
2008	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2009	 *
2010	 * Returns      0 on success.
2011	 *              2,6 if failed to quiece SPU
2012	 *              53 if SPU-side of save failed.
2013	 */
2014
2015	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2016	switch (rc) {
2017	default:
2018	case 2:
2019	case 6:
2020		harvest(prev, spu);
2021		return rc;
2022		break;
2023	case 0:
2024		break;
2025	}
2026	save_csa(prev, spu);	                /* Steps 17-43. */
2027	save_lscsa(prev, spu);	                /* Steps 44-53. */
2028	return check_save_status(prev, spu);	/* Step 54.     */
2029}
2030
2031static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2032{
2033	int rc;
2034
2035	/*
2036	 * SPU context restore can be broken into three phases:
2037	 *
2038	 *    (a) harvest (or reset) SPU [steps 2-24].
2039	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2040	 *    (c) restore CSA [steps 41-76], performed by PPE.
2041	 *
2042	 * The 'harvest' step is not performed here, but rather
2043	 * as needed below.
2044	 */
2045
2046	restore_lscsa(next, spu);	        /* Steps 24-39. */
2047	rc = check_restore_status(next, spu);	/* Step 40.     */
2048	switch (rc) {
2049	default:
2050		/* Failed. Return now. */
2051		return rc;
2052		break;
2053	case 0:
2054		/* Fall through to next step. */
2055		break;
2056	}
2057	restore_csa(next, spu);
2058
2059	return 0;
2060}
2061
2062/**
2063 * spu_save - SPU context save, with locking.
2064 * @prev: pointer to SPU context save area, to be saved.
2065 * @spu: pointer to SPU iomem structure.
2066 *
2067 * Acquire locks, perform the save operation then return.
2068 */
2069int spu_save(struct spu_state *prev, struct spu *spu)
2070{
2071	int rc;
2072
2073	acquire_spu_lock(spu);	        /* Step 1.     */
2074	prev->dar = spu->dar;
2075	prev->dsisr = spu->dsisr;
2076	spu->dar = 0;
2077	spu->dsisr = 0;
2078	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2079	release_spu_lock(spu);
2080	if (rc != 0 && rc != 2 && rc != 6) {
2081		panic("%s failed on SPU[%d], rc=%d.\n",
2082		      __func__, spu->number, rc);
2083	}
2084	return 0;
2085}
2086EXPORT_SYMBOL_GPL(spu_save);
2087
2088/**
2089 * spu_restore - SPU context restore, with harvest and locking.
2090 * @new: pointer to SPU context save area, to be restored.
2091 * @spu: pointer to SPU iomem structure.
2092 *
2093 * Perform harvest + restore, as we may not be coming
2094 * from a previous successful save operation, and the
2095 * hardware state is unknown.
2096 */
2097int spu_restore(struct spu_state *new, struct spu *spu)
2098{
2099	int rc;
2100
2101	acquire_spu_lock(spu);
2102	harvest(NULL, spu);
2103	spu->slb_replace = 0;
2104	new->dar = 0;
2105	new->dsisr = 0;
2106	spu->class_0_pending = 0;
2107	rc = __do_spu_restore(new, spu);
2108	release_spu_lock(spu);
2109	if (rc) {
2110		panic("%s failed on SPU[%d] rc=%d.\n",
2111		       __func__, spu->number, rc);
2112	}
2113	return rc;
2114}
2115EXPORT_SYMBOL_GPL(spu_restore);
2116
2117/**
2118 * spu_harvest - SPU harvest (reset) operation
2119 * @spu: pointer to SPU iomem structure.
2120 *
2121 * Perform SPU harvest (reset) operation.
2122 */
2123void spu_harvest(struct spu *spu)
2124{
2125	acquire_spu_lock(spu);
2126	harvest(NULL, spu);
2127	release_spu_lock(spu);
2128}
2129
2130static void init_prob(struct spu_state *csa)
2131{
2132	csa->spu_chnlcnt_RW[9] = 1;
2133	csa->spu_chnlcnt_RW[21] = 16;
2134	csa->spu_chnlcnt_RW[23] = 1;
2135	csa->spu_chnlcnt_RW[28] = 1;
2136	csa->spu_chnlcnt_RW[30] = 1;
2137	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2138	csa->prob.mb_stat_R = 0x000400;
2139}
2140
2141static void init_priv1(struct spu_state *csa)
2142{
2143	/* Enable decode, relocate, tlbie response, master runcntl. */
2144	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2145	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2146	    MFC_STATE1_PROBLEM_STATE_MASK |
2147	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2148
2149	/* Enable OS-specific set of interrupts. */
2150	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2151	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2152	    CLASS0_ENABLE_SPU_ERROR_INTR;
2153	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2154	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2155	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2156	    CLASS2_ENABLE_SPU_HALT_INTR |
2157	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2158}
2159
2160static void init_priv2(struct spu_state *csa)
2161{
2162	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2163	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2164	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2165	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2166}
2167
2168/**
2169 * spu_alloc_csa - allocate and initialize an SPU context save area.
2170 *
2171 * Allocate and initialize the contents of an SPU context save area.
2172 * This includes enabling address translation, interrupt masks, etc.,
2173 * as appropriate for the given OS environment.
2174 *
2175 * Note that storage for the 'lscsa' is allocated separately,
2176 * as it is by far the largest of the context save regions,
2177 * and may need to be pinned or otherwise specially aligned.
2178 */
2179int spu_init_csa(struct spu_state *csa)
2180{
2181	int rc;
2182
2183	if (!csa)
2184		return -EINVAL;
2185	memset(csa, 0, sizeof(struct spu_state));
2186
2187	rc = spu_alloc_lscsa(csa);
2188	if (rc)
2189		return rc;
2190
2191	spin_lock_init(&csa->register_lock);
2192
2193	init_prob(csa);
2194	init_priv1(csa);
2195	init_priv2(csa);
2196
2197	return 0;
2198}
2199EXPORT_SYMBOL_GPL(spu_init_csa);
2200
2201void spu_fini_csa(struct spu_state *csa)
2202{
2203	spu_free_lscsa(csa);
2204}
2205EXPORT_SYMBOL_GPL(spu_fini_csa);
2206