1/*
2 *  linux/arch/parisc/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02  Alan Modra
9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
25#include <linux/clocksource.h>
26
27#include <asm/uaccess.h>
28#include <asm/io.h>
29#include <asm/irq.h>
30#include <asm/param.h>
31#include <asm/pdc.h>
32#include <asm/led.h>
33
34#include <linux/timex.h>
35
36static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
37
38/*
39 * We keep time on PA-RISC Linux by using the Interval Timer which is
40 * a pair of registers; one is read-only and one is write-only; both
41 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
42 * and increments by 1 every CPU clock tick.  The architecture only
43 * guarantees us a rate between 0.5 and 2, but all implementations use a
44 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
45 * 32 bits of the read-only register compare equal to the write-only
46 * register, it raises a maskable external interrupt.  Each processor has
47 * an Interval Timer of its own and they are not synchronised.
48 *
49 * We want to generate an interrupt every 1/HZ seconds.  So we program
50 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
51 * is programmed with the intended time of the next tick.  We can be
52 * held off for an arbitrarily long period of time by interrupts being
53 * disabled, so we may miss one or more ticks.
54 */
55irqreturn_t timer_interrupt(int irq, void *dev_id)
56{
57	unsigned long now;
58	unsigned long next_tick;
59	unsigned long cycles_elapsed, ticks_elapsed;
60	unsigned long cycles_remainder;
61	unsigned int cpu = smp_processor_id();
62	struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
63
64	/* gcc can optimize for "read-only" case with a local clocktick */
65	unsigned long cpt = clocktick;
66
67	profile_tick(CPU_PROFILING);
68
69	/* Initialize next_tick to the expected tick time. */
70	next_tick = cpuinfo->it_value;
71
72	/* Get current interval timer.
73	 * CR16 reads as 64 bits in CPU wide mode.
74	 * CR16 reads as 32 bits in CPU narrow mode.
75	 */
76	now = mfctl(16);
77
78	cycles_elapsed = now - next_tick;
79
80	if ((cycles_elapsed >> 5) < cpt) {
81		/* use "cheap" math (add/subtract) instead
82		 * of the more expensive div/mul method
83		 */
84		cycles_remainder = cycles_elapsed;
85		ticks_elapsed = 1;
86		while (cycles_remainder > cpt) {
87			cycles_remainder -= cpt;
88			ticks_elapsed++;
89		}
90	} else {
91		cycles_remainder = cycles_elapsed % cpt;
92		ticks_elapsed = 1 + cycles_elapsed / cpt;
93	}
94
95	/* Can we differentiate between "early CR16" (aka Scenario 1) and
96	 * "long delay" (aka Scenario 3)? I don't think so.
97	 *
98	 * We expected timer_interrupt to be delivered at least a few hundred
99	 * cycles after the IT fires. But it's arbitrary how much time passes
100	 * before we call it "late". I've picked one second.
101	 */
102	if (unlikely(ticks_elapsed > HZ)) {
103		/* Scenario 3: very long delay?  bad in any case */
104		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
105			" cycles %lX rem %lX "
106			" next/now %lX/%lX\n",
107			cpu,
108			cycles_elapsed, cycles_remainder,
109			next_tick, now );
110	}
111
112	/* convert from "division remainder" to "remainder of clock tick" */
113	cycles_remainder = cpt - cycles_remainder;
114
115	/* Determine when (in CR16 cycles) next IT interrupt will fire.
116	 * We want IT to fire modulo clocktick even if we miss/skip some.
117	 * But those interrupts don't in fact get delivered that regularly.
118	 */
119	next_tick = now + cycles_remainder;
120
121	cpuinfo->it_value = next_tick;
122
123	/* Skip one clocktick on purpose if we are likely to miss next_tick.
124	 * We want to avoid the new next_tick being less than CR16.
125	 * If that happened, itimer wouldn't fire until CR16 wrapped.
126	 * We'll catch the tick we missed on the tick after that.
127	 */
128	if (!(cycles_remainder >> 13))
129		next_tick += cpt;
130
131	/* Program the IT when to deliver the next interrupt. */
132	/* Only bottom 32-bits of next_tick are written to cr16.  */
133	mtctl(next_tick, 16);
134
135
136	/* Done mucking with unreliable delivery of interrupts.
137	 * Go do system house keeping.
138	 */
139
140	if (!--cpuinfo->prof_counter) {
141		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
142		update_process_times(user_mode(get_irq_regs()));
143	}
144
145	if (cpu == 0) {
146		write_seqlock(&xtime_lock);
147		do_timer(ticks_elapsed);
148		write_sequnlock(&xtime_lock);
149	}
150
151	return IRQ_HANDLED;
152}
153
154
155unsigned long profile_pc(struct pt_regs *regs)
156{
157	unsigned long pc = instruction_pointer(regs);
158
159	if (regs->gr[0] & PSW_N)
160		pc -= 4;
161
162#ifdef CONFIG_SMP
163	if (in_lock_functions(pc))
164		pc = regs->gr[2];
165#endif
166
167	return pc;
168}
169EXPORT_SYMBOL(profile_pc);
170
171
172/* clock source code */
173
174static cycle_t read_cr16(void)
175{
176	return get_cycles();
177}
178
179static struct clocksource clocksource_cr16 = {
180	.name			= "cr16",
181	.rating			= 300,
182	.read			= read_cr16,
183	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
184	.mult			= 0, /* to be set */
185	.shift			= 22,
186	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
187};
188
189#ifdef CONFIG_SMP
190int update_cr16_clocksource(void)
191{
192	int change = 0;
193
194	/* since the cr16 cycle counters are not synchronized across CPUs,
195	   we'll check if we should switch to a safe clocksource: */
196	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
197		clocksource_change_rating(&clocksource_cr16, 0);
198		change = 1;
199	}
200
201	return change;
202}
203#else
204int update_cr16_clocksource(void)
205{
206	return 0; /* no change */
207}
208#endif /*CONFIG_SMP*/
209
210void __init start_cpu_itimer(void)
211{
212	unsigned int cpu = smp_processor_id();
213	unsigned long next_tick = mfctl(16) + clocktick;
214
215	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
216
217	cpu_data[cpu].it_value = next_tick;
218}
219
220void __init time_init(void)
221{
222	static struct pdc_tod tod_data;
223	unsigned long current_cr16_khz;
224
225	clocktick = (100 * PAGE0->mem_10msec) / HZ;
226
227	start_cpu_itimer();	/* get CPU 0 started */
228
229	/* register at clocksource framework */
230	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
231	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
232						clocksource_cr16.shift);
233	clocksource_register(&clocksource_cr16);
234
235	if (pdc_tod_read(&tod_data) == 0) {
236		unsigned long flags;
237
238		write_seqlock_irqsave(&xtime_lock, flags);
239		xtime.tv_sec = tod_data.tod_sec;
240		xtime.tv_nsec = tod_data.tod_usec * 1000;
241		set_normalized_timespec(&wall_to_monotonic,
242		                        -xtime.tv_sec, -xtime.tv_nsec);
243		write_sequnlock_irqrestore(&xtime_lock, flags);
244	} else {
245		printk(KERN_ERR "Error reading tod clock\n");
246	        xtime.tv_sec = 0;
247		xtime.tv_nsec = 0;
248	}
249}
250