1/*
2 * SN2 Platform specific SMP Support
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/spinlock.h>
14#include <linux/threads.h>
15#include <linux/sched.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h>
18#include <linux/irq.h>
19#include <linux/mmzone.h>
20#include <linux/module.h>
21#include <linux/bitops.h>
22#include <linux/nodemask.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25
26#include <asm/processor.h>
27#include <asm/irq.h>
28#include <asm/sal.h>
29#include <asm/system.h>
30#include <asm/delay.h>
31#include <asm/io.h>
32#include <asm/smp.h>
33#include <asm/tlb.h>
34#include <asm/numa.h>
35#include <asm/hw_irq.h>
36#include <asm/current.h>
37#include <asm/sn/sn_cpuid.h>
38#include <asm/sn/sn_sal.h>
39#include <asm/sn/addrs.h>
40#include <asm/sn/shub_mmr.h>
41#include <asm/sn/nodepda.h>
42#include <asm/sn/rw_mmr.h>
43
44DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46
47static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48
49/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
50static int sn2_flush_opt = 0;
51
52extern unsigned long
53sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
54			       volatile unsigned long *, unsigned long,
55			       volatile unsigned long *, unsigned long);
56void
57sn2_ptc_deadlock_recovery(short *, short, short, int,
58			  volatile unsigned long *, unsigned long,
59			  volatile unsigned long *, unsigned long);
60
61/*
62 * Note: some is the following is captured here to make degugging easier
63 * (the macros make more sense if you see the debug patch - not posted)
64 */
65#define sn2_ptctest	0
66#define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
67#define max_active_pio(sh1)		((sh1) ? 32 : 7)
68#define reset_max_active_on_deadlock()	1
69#define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
70
71struct ptc_stats {
72	unsigned long ptc_l;
73	unsigned long change_rid;
74	unsigned long shub_ptc_flushes;
75	unsigned long nodes_flushed;
76	unsigned long deadlocks;
77	unsigned long deadlocks2;
78	unsigned long lock_itc_clocks;
79	unsigned long shub_itc_clocks;
80	unsigned long shub_itc_clocks_max;
81	unsigned long shub_ptc_flushes_not_my_mm;
82	unsigned long shub_ipi_flushes;
83	unsigned long shub_ipi_flushes_itc_clocks;
84};
85
86#define sn2_ptctest	0
87
88static inline unsigned long wait_piowc(void)
89{
90	volatile unsigned long *piows;
91	unsigned long zeroval, ws;
92
93	piows = pda->pio_write_status_addr;
94	zeroval = pda->pio_write_status_val;
95	do {
96		cpu_relax();
97	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
98	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
99}
100
101/**
102 * sn_migrate - SN-specific task migration actions
103 * @task: Task being migrated to new CPU
104 *
105 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
106 * Context switching user threads which have memory-mapped MMIO may cause
107 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
108 * from the previous CPU's Shub before execution resumes on the new CPU.
109 */
110void sn_migrate(struct task_struct *task)
111{
112	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
113	volatile unsigned long *adr = last_pda->pio_write_status_addr;
114	unsigned long val = last_pda->pio_write_status_val;
115
116	/* Drain PIO writes from old CPU's Shub */
117	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
118			!= val))
119		cpu_relax();
120}
121
122void sn_tlb_migrate_finish(struct mm_struct *mm)
123{
124	/* flush_tlb_mm is inefficient if more than 1 users of mm */
125	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
126		flush_tlb_mm(mm);
127}
128
129static void
130sn2_ipi_flush_all_tlb(struct mm_struct *mm)
131{
132	unsigned long itc;
133
134	itc = ia64_get_itc();
135	smp_flush_tlb_cpumask(mm->cpu_vm_mask);
136	itc = ia64_get_itc() - itc;
137	__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
138	__get_cpu_var(ptcstats).shub_ipi_flushes++;
139}
140
141/**
142 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
143 * @mm: mm_struct containing virtual address range
144 * @start: start of virtual address range
145 * @end: end of virtual address range
146 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
147 *
148 * Purges the translation caches of all processors of the given virtual address
149 * range.
150 *
151 * Note:
152 * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
153 * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
154 * 	  cpus in cpu_vm_mask.
155 *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
156 *	  process is purging its own virtual address range, then only the
157 *	  local TLB needs to be flushed. This flushing can be done using
158 *	  ptc.l. This is the common case & avoids the global spinlock.
159 *	- if multiple cpus have loaded the context, then flushing has to be
160 *	  done with ptc.g/MMRs under protection of the global ptc_lock.
161 */
162
163void
164sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
165		     unsigned long end, unsigned long nbits)
166{
167	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
168	int mymm = (mm == current->active_mm && mm == current->mm);
169	int use_cpu_ptcga;
170	volatile unsigned long *ptc0, *ptc1;
171	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
172	short nasids[MAX_NUMNODES], nix;
173	nodemask_t nodes_flushed;
174	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
175
176	if (flush_opt > 2) {
177		sn2_ipi_flush_all_tlb(mm);
178		return;
179	}
180
181	nodes_clear(nodes_flushed);
182	i = 0;
183
184	for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
185		cnode = cpu_to_node(cpu);
186		node_set(cnode, nodes_flushed);
187		lcpu = cpu;
188		i++;
189	}
190
191	if (i == 0)
192		return;
193
194	preempt_disable();
195
196	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
197		do {
198			ia64_ptcl(start, nbits << 2);
199			start += (1UL << nbits);
200		} while (start < end);
201		ia64_srlz_i();
202		__get_cpu_var(ptcstats).ptc_l++;
203		preempt_enable();
204		return;
205	}
206
207	if (atomic_read(&mm->mm_users) == 1 && mymm) {
208		flush_tlb_mm(mm);
209		__get_cpu_var(ptcstats).change_rid++;
210		preempt_enable();
211		return;
212	}
213
214	if (flush_opt == 2) {
215		sn2_ipi_flush_all_tlb(mm);
216		preempt_enable();
217		return;
218	}
219
220	itc = ia64_get_itc();
221	nix = 0;
222	for_each_node_mask(cnode, nodes_flushed)
223		nasids[nix++] = cnodeid_to_nasid(cnode);
224
225	rr_value = (mm->context << 3) | REGION_NUMBER(start);
226
227	shub1 = is_shub1();
228	if (shub1) {
229		data0 = (1UL << SH1_PTC_0_A_SHFT) |
230		    	(nbits << SH1_PTC_0_PS_SHFT) |
231			(rr_value << SH1_PTC_0_RID_SHFT) |
232		    	(1UL << SH1_PTC_0_START_SHFT);
233		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
234		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
235	} else {
236		data0 = (1UL << SH2_PTC_A_SHFT) |
237			(nbits << SH2_PTC_PS_SHFT) |
238		    	(1UL << SH2_PTC_START_SHFT);
239		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
240			(rr_value << SH2_PTC_RID_SHFT));
241		ptc1 = NULL;
242	}
243
244
245	mynasid = get_nasid();
246	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
247	max_active = max_active_pio(shub1);
248
249	itc = ia64_get_itc();
250	spin_lock_irqsave(PTC_LOCK(shub1), flags);
251	itc2 = ia64_get_itc();
252
253	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
254	__get_cpu_var(ptcstats).shub_ptc_flushes++;
255	__get_cpu_var(ptcstats).nodes_flushed += nix;
256	if (!mymm)
257		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
258
259	if (use_cpu_ptcga && !mymm) {
260		old_rr = ia64_get_rr(start);
261		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
262		ia64_srlz_d();
263	}
264
265	wait_piowc();
266	do {
267		if (shub1)
268			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
269		else
270			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
271		deadlock = 0;
272		active = 0;
273		for (ibegin = 0, i = 0; i < nix; i++) {
274			nasid = nasids[i];
275			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
276				ia64_ptcga(start, nbits << 2);
277				ia64_srlz_i();
278			} else {
279				ptc0 = CHANGE_NASID(nasid, ptc0);
280				if (ptc1)
281					ptc1 = CHANGE_NASID(nasid, ptc1);
282				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
283				active++;
284			}
285			if (active >= max_active || i == (nix - 1)) {
286				if ((deadlock = wait_piowc())) {
287					if (flush_opt == 1)
288						goto done;
289					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
290					if (reset_max_active_on_deadlock())
291						max_active = 1;
292				}
293				active = 0;
294				ibegin = i + 1;
295			}
296		}
297		start += (1UL << nbits);
298	} while (start < end);
299
300done:
301	itc2 = ia64_get_itc() - itc2;
302	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
303	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
304		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
305
306	if (old_rr) {
307		ia64_set_rr(start, old_rr);
308		ia64_srlz_d();
309	}
310
311	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
312
313	if (flush_opt == 1 && deadlock) {
314		__get_cpu_var(ptcstats).deadlocks++;
315		sn2_ipi_flush_all_tlb(mm);
316	}
317
318	preempt_enable();
319}
320
321/*
322 * sn2_ptc_deadlock_recovery
323 *
324 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
325 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
326 * coded in assembly language.
327 */
328
329void
330sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
331			  volatile unsigned long *ptc0, unsigned long data0,
332			  volatile unsigned long *ptc1, unsigned long data1)
333{
334	short nasid, i;
335	unsigned long *piows, zeroval, n;
336
337	__get_cpu_var(ptcstats).deadlocks++;
338
339	piows = (unsigned long *) pda->pio_write_status_addr;
340	zeroval = pda->pio_write_status_val;
341
342
343	for (i=ib; i <= ie; i++) {
344		nasid = nasids[i];
345		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
346			continue;
347		ptc0 = CHANGE_NASID(nasid, ptc0);
348		if (ptc1)
349			ptc1 = CHANGE_NASID(nasid, ptc1);
350
351		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
352		__get_cpu_var(ptcstats).deadlocks2 += n;
353	}
354
355}
356
357/**
358 * sn_send_IPI_phys - send an IPI to a Nasid and slice
359 * @nasid: nasid to receive the interrupt (may be outside partition)
360 * @physid: physical cpuid to receive the interrupt.
361 * @vector: command to send
362 * @delivery_mode: delivery mechanism
363 *
364 * Sends an IPI (interprocessor interrupt) to the processor specified by
365 * @physid
366 *
367 * @delivery_mode can be one of the following
368 *
369 * %IA64_IPI_DM_INT - pend an interrupt
370 * %IA64_IPI_DM_PMI - pend a PMI
371 * %IA64_IPI_DM_NMI - pend an NMI
372 * %IA64_IPI_DM_INIT - pend an INIT interrupt
373 */
374void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
375{
376	long val;
377	unsigned long flags = 0;
378	volatile long *p;
379
380	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
381	val = (1UL << SH_IPI_INT_SEND_SHFT) |
382	    (physid << SH_IPI_INT_PID_SHFT) |
383	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
384	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
385	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
386
387	mb();
388	if (enable_shub_wars_1_1()) {
389		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
390	}
391	pio_phys_write_mmr(p, val);
392	if (enable_shub_wars_1_1()) {
393		wait_piowc();
394		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
395	}
396
397}
398
399EXPORT_SYMBOL(sn_send_IPI_phys);
400
401/**
402 * sn2_send_IPI - send an IPI to a processor
403 * @cpuid: target of the IPI
404 * @vector: command to send
405 * @delivery_mode: delivery mechanism
406 * @redirect: redirect the IPI?
407 *
408 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
409 * @cpuid.  @vector specifies the command to send, while @delivery_mode can
410 * be one of the following
411 *
412 * %IA64_IPI_DM_INT - pend an interrupt
413 * %IA64_IPI_DM_PMI - pend a PMI
414 * %IA64_IPI_DM_NMI - pend an NMI
415 * %IA64_IPI_DM_INIT - pend an INIT interrupt
416 */
417void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
418{
419	long physid;
420	int nasid;
421
422	physid = cpu_physical_id(cpuid);
423	nasid = cpuid_to_nasid(cpuid);
424
425	/* the following is used only when starting cpus at boot time */
426	if (unlikely(nasid == -1))
427		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
428
429	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
430}
431
432#ifdef CONFIG_PROC_FS
433
434#define PTC_BASENAME	"sgi_sn/ptc_statistics"
435
436static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
437{
438	if (*offset < NR_CPUS)
439		return offset;
440	return NULL;
441}
442
443static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
444{
445	(*offset)++;
446	if (*offset < NR_CPUS)
447		return offset;
448	return NULL;
449}
450
451static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
452{
453}
454
455static int sn2_ptc_seq_show(struct seq_file *file, void *data)
456{
457	struct ptc_stats *stat;
458	int cpu;
459
460	cpu = *(loff_t *) data;
461
462	if (!cpu) {
463		seq_printf(file,
464			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
465		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
466	}
467
468	if (cpu < NR_CPUS && cpu_online(cpu)) {
469		stat = &per_cpu(ptcstats, cpu);
470		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
471				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
472				stat->deadlocks,
473				1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
474				1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
475				1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
476				stat->shub_ptc_flushes_not_my_mm,
477				stat->deadlocks2,
478				stat->shub_ipi_flushes,
479				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec);
480	}
481	return 0;
482}
483
484static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
485{
486	int cpu;
487	char optstr[64];
488
489	if (copy_from_user(optstr, user, count))
490		return -EFAULT;
491	optstr[count - 1] = '\0';
492	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
493
494	for_each_online_cpu(cpu)
495		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
496
497	return count;
498}
499
500static struct seq_operations sn2_ptc_seq_ops = {
501	.start = sn2_ptc_seq_start,
502	.next = sn2_ptc_seq_next,
503	.stop = sn2_ptc_seq_stop,
504	.show = sn2_ptc_seq_show
505};
506
507static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
508{
509	return seq_open(file, &sn2_ptc_seq_ops);
510}
511
512static const struct file_operations proc_sn2_ptc_operations = {
513	.open = sn2_ptc_proc_open,
514	.read = seq_read,
515	.write = sn2_ptc_proc_write,
516	.llseek = seq_lseek,
517	.release = seq_release,
518};
519
520static struct proc_dir_entry *proc_sn2_ptc;
521
522static int __init sn2_ptc_init(void)
523{
524	if (!ia64_platform_is("sn2"))
525		return 0;
526
527	if (!(proc_sn2_ptc = create_proc_entry(PTC_BASENAME, 0444, NULL))) {
528		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
529		return -EINVAL;
530	}
531	proc_sn2_ptc->proc_fops = &proc_sn2_ptc_operations;
532	spin_lock_init(&sn2_global_ptc_lock);
533	return 0;
534}
535
536static void __exit sn2_ptc_exit(void)
537{
538	remove_proc_entry(PTC_BASENAME, NULL);
539}
540
541module_init(sn2_ptc_init);
542module_exit(sn2_ptc_exit);
543#endif /* CONFIG_PROC_FS */
544