1#include <linux/clocksource.h>
2#include <linux/clockchips.h>
3#include <linux/errno.h>
4#include <linux/hpet.h>
5#include <linux/init.h>
6#include <linux/sysdev.h>
7#include <linux/pm.h>
8
9#include <asm/hpet.h>
10#include <asm/io.h>
11
12extern struct clock_event_device *global_clock_event;
13
14#define HPET_MASK	CLOCKSOURCE_MASK(32)
15#define HPET_SHIFT	22
16
17/* FSEC = 10^-15 NSEC = 10^-9 */
18#define FSEC_PER_NSEC	1000000
19
20/*
21 * HPET address is set in acpi/boot.c, when an ACPI entry exists
22 */
23unsigned long hpet_address;
24static void __iomem * hpet_virt_address;
25
26static inline unsigned long hpet_readl(unsigned long a)
27{
28	return readl(hpet_virt_address + a);
29}
30
31static inline void hpet_writel(unsigned long d, unsigned long a)
32{
33	writel(d, hpet_virt_address + a);
34}
35
36/*
37 * HPET command line enable / disable
38 */
39static int boot_hpet_disable;
40
41static int __init hpet_setup(char* str)
42{
43	if (str) {
44		if (!strncmp("disable", str, 7))
45			boot_hpet_disable = 1;
46	}
47	return 1;
48}
49__setup("hpet=", hpet_setup);
50
51static inline int is_hpet_capable(void)
52{
53	return (!boot_hpet_disable && hpet_address);
54}
55
56/*
57 * HPET timer interrupt enable / disable
58 */
59static int hpet_legacy_int_enabled;
60
61/**
62 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
63 */
64int is_hpet_enabled(void)
65{
66	return is_hpet_capable() && hpet_legacy_int_enabled;
67}
68
69/*
70 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
71 * timer 0 and timer 1 in case of RTC emulation.
72 */
73#ifdef CONFIG_HPET
74static void hpet_reserve_platform_timers(unsigned long id)
75{
76	struct hpet __iomem *hpet = hpet_virt_address;
77	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
78	unsigned int nrtimers, i;
79	struct hpet_data hd;
80
81	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
82
83	memset(&hd, 0, sizeof (hd));
84	hd.hd_phys_address = hpet_address;
85	hd.hd_address = hpet_virt_address;
86	hd.hd_nirqs = nrtimers;
87	hd.hd_flags = HPET_DATA_PLATFORM;
88	hpet_reserve_timer(&hd, 0);
89
90#ifdef CONFIG_HPET_EMULATE_RTC
91	hpet_reserve_timer(&hd, 1);
92#endif
93
94	hd.hd_irq[0] = HPET_LEGACY_8254;
95	hd.hd_irq[1] = HPET_LEGACY_RTC;
96
97	for (i = 2; i < nrtimers; timer++, i++)
98		hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
99			Tn_INT_ROUTE_CNF_SHIFT;
100
101	hpet_alloc(&hd);
102
103}
104#else
105static void hpet_reserve_platform_timers(unsigned long id) { }
106#endif
107
108/*
109 * Common hpet info
110 */
111static unsigned long hpet_period;
112
113static void hpet_set_mode(enum clock_event_mode mode,
114			  struct clock_event_device *evt);
115static int hpet_next_event(unsigned long delta,
116			   struct clock_event_device *evt);
117
118/*
119 * The hpet clock event device
120 */
121static struct clock_event_device hpet_clockevent = {
122	.name		= "hpet",
123	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
124	.set_mode	= hpet_set_mode,
125	.set_next_event = hpet_next_event,
126	.shift		= 32,
127	.irq		= 0,
128};
129
130static void hpet_start_counter(void)
131{
132	unsigned long cfg = hpet_readl(HPET_CFG);
133
134	cfg &= ~HPET_CFG_ENABLE;
135	hpet_writel(cfg, HPET_CFG);
136	hpet_writel(0, HPET_COUNTER);
137	hpet_writel(0, HPET_COUNTER + 4);
138	cfg |= HPET_CFG_ENABLE;
139	hpet_writel(cfg, HPET_CFG);
140}
141
142static void hpet_enable_int(void)
143{
144	unsigned long cfg = hpet_readl(HPET_CFG);
145
146	cfg |= HPET_CFG_LEGACY;
147	hpet_writel(cfg, HPET_CFG);
148	hpet_legacy_int_enabled = 1;
149}
150
151static void hpet_set_mode(enum clock_event_mode mode,
152			  struct clock_event_device *evt)
153{
154	unsigned long cfg, cmp, now;
155	uint64_t delta;
156
157	switch(mode) {
158	case CLOCK_EVT_MODE_PERIODIC:
159		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
160		delta >>= hpet_clockevent.shift;
161		now = hpet_readl(HPET_COUNTER);
162		cmp = now + (unsigned long) delta;
163		cfg = hpet_readl(HPET_T0_CFG);
164		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
165		       HPET_TN_SETVAL | HPET_TN_32BIT;
166		hpet_writel(cfg, HPET_T0_CFG);
167		/*
168		 * The first write after writing TN_SETVAL to the
169		 * config register sets the counter value, the second
170		 * write sets the period.
171		 */
172		hpet_writel(cmp, HPET_T0_CMP);
173		udelay(1);
174		hpet_writel((unsigned long) delta, HPET_T0_CMP);
175		break;
176
177	case CLOCK_EVT_MODE_ONESHOT:
178		cfg = hpet_readl(HPET_T0_CFG);
179		cfg &= ~HPET_TN_PERIODIC;
180		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
181		hpet_writel(cfg, HPET_T0_CFG);
182		break;
183
184	case CLOCK_EVT_MODE_UNUSED:
185	case CLOCK_EVT_MODE_SHUTDOWN:
186		cfg = hpet_readl(HPET_T0_CFG);
187		cfg &= ~HPET_TN_ENABLE;
188		hpet_writel(cfg, HPET_T0_CFG);
189		break;
190	}
191}
192
193static int hpet_next_event(unsigned long delta,
194			   struct clock_event_device *evt)
195{
196	unsigned long cnt;
197
198	cnt = hpet_readl(HPET_COUNTER);
199	cnt += delta;
200	hpet_writel(cnt, HPET_T0_CMP);
201
202	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
203}
204
205/*
206 * Clock source related code
207 */
208static cycle_t read_hpet(void)
209{
210	return (cycle_t)hpet_readl(HPET_COUNTER);
211}
212
213static struct clocksource clocksource_hpet = {
214	.name		= "hpet",
215	.rating		= 250,
216	.read		= read_hpet,
217	.mask		= HPET_MASK,
218	.shift		= HPET_SHIFT,
219	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
220};
221
222/*
223 * Try to setup the HPET timer
224 */
225int __init hpet_enable(void)
226{
227	unsigned long id;
228	uint64_t hpet_freq;
229	u64 tmp;
230
231	if (!is_hpet_capable())
232		return 0;
233
234	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
235
236	/*
237	 * Read the period and check for a sane value:
238	 */
239	hpet_period = hpet_readl(HPET_PERIOD);
240	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
241		goto out_nohpet;
242
243	/*
244	 * The period is a femto seconds value. We need to calculate the
245	 * scaled math multiplication factor for nanosecond to hpet tick
246	 * conversion.
247	 */
248	hpet_freq = 1000000000000000ULL;
249	do_div(hpet_freq, hpet_period);
250	hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
251				      NSEC_PER_SEC, 32);
252	/* Calculate the min / max delta */
253	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
254							   &hpet_clockevent);
255	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
256							   &hpet_clockevent);
257
258	/*
259	 * Read the HPET ID register to retrieve the IRQ routing
260	 * information and the number of channels
261	 */
262	id = hpet_readl(HPET_ID);
263
264#ifdef CONFIG_HPET_EMULATE_RTC
265	/*
266	 * The legacy routing mode needs at least two channels, tick timer
267	 * and the rtc emulation channel.
268	 */
269	if (!(id & HPET_ID_NUMBER))
270		goto out_nohpet;
271#endif
272
273	/* Start the counter */
274	hpet_start_counter();
275
276	/* Initialize and register HPET clocksource
277	 *
278	 * hpet period is in femto seconds per cycle
279	 * so we need to convert this to ns/cyc units
280	 * aproximated by mult/2^shift
281	 *
282	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
283	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
284	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
285	 *  (fsec/cyc << shift)/1000000 = mult
286	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
287	 */
288	tmp = (u64)hpet_period << HPET_SHIFT;
289	do_div(tmp, FSEC_PER_NSEC);
290	clocksource_hpet.mult = (u32)tmp;
291
292	clocksource_register(&clocksource_hpet);
293
294
295	if (id & HPET_ID_LEGSUP) {
296		hpet_enable_int();
297		hpet_reserve_platform_timers(id);
298		/*
299		 * Start hpet with the boot cpu mask and make it
300		 * global after the IO_APIC has been initialized.
301		 */
302		hpet_clockevent.cpumask =cpumask_of_cpu(0);
303		clockevents_register_device(&hpet_clockevent);
304		global_clock_event = &hpet_clockevent;
305		return 1;
306	}
307	return 0;
308
309out_nohpet:
310	iounmap(hpet_virt_address);
311	hpet_virt_address = NULL;
312	boot_hpet_disable = 1;
313	return 0;
314}
315
316
317#ifdef CONFIG_HPET_EMULATE_RTC
318
319/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
320 * is enabled, we support RTC interrupt functionality in software.
321 * RTC has 3 kinds of interrupts:
322 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
323 *    is updated
324 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
325 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
326 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
327 * (1) and (2) above are implemented using polling at a frequency of
328 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
329 * overhead. (DEFAULT_RTC_INT_FREQ)
330 * For (3), we use interrupts at 64Hz or user specified periodic
331 * frequency, whichever is higher.
332 */
333#include <linux/mc146818rtc.h>
334#include <linux/rtc.h>
335
336#define DEFAULT_RTC_INT_FREQ	64
337#define DEFAULT_RTC_SHIFT	6
338#define RTC_NUM_INTS		1
339
340static unsigned long hpet_rtc_flags;
341static unsigned long hpet_prev_update_sec;
342static struct rtc_time hpet_alarm_time;
343static unsigned long hpet_pie_count;
344static unsigned long hpet_t1_cmp;
345static unsigned long hpet_default_delta;
346static unsigned long hpet_pie_delta;
347static unsigned long hpet_pie_limit;
348
349/*
350 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
351 * is not supported by all HPET implementations for timer 1.
352 *
353 * hpet_rtc_timer_init() is called when the rtc is initialized.
354 */
355int hpet_rtc_timer_init(void)
356{
357	unsigned long cfg, cnt, delta, flags;
358
359	if (!is_hpet_enabled())
360		return 0;
361
362	if (!hpet_default_delta) {
363		uint64_t clc;
364
365		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
366		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
367		hpet_default_delta = (unsigned long) clc;
368	}
369
370	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
371		delta = hpet_default_delta;
372	else
373		delta = hpet_pie_delta;
374
375	local_irq_save(flags);
376
377	cnt = delta + hpet_readl(HPET_COUNTER);
378	hpet_writel(cnt, HPET_T1_CMP);
379	hpet_t1_cmp = cnt;
380
381	cfg = hpet_readl(HPET_T1_CFG);
382	cfg &= ~HPET_TN_PERIODIC;
383	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
384	hpet_writel(cfg, HPET_T1_CFG);
385
386	local_irq_restore(flags);
387
388	return 1;
389}
390
391/*
392 * The functions below are called from rtc driver.
393 * Return 0 if HPET is not being used.
394 * Otherwise do the necessary changes and return 1.
395 */
396int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
397{
398	if (!is_hpet_enabled())
399		return 0;
400
401	hpet_rtc_flags &= ~bit_mask;
402	return 1;
403}
404
405int hpet_set_rtc_irq_bit(unsigned long bit_mask)
406{
407	unsigned long oldbits = hpet_rtc_flags;
408
409	if (!is_hpet_enabled())
410		return 0;
411
412	hpet_rtc_flags |= bit_mask;
413
414	if (!oldbits)
415		hpet_rtc_timer_init();
416
417	return 1;
418}
419
420int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
421			unsigned char sec)
422{
423	if (!is_hpet_enabled())
424		return 0;
425
426	hpet_alarm_time.tm_hour = hrs;
427	hpet_alarm_time.tm_min = min;
428	hpet_alarm_time.tm_sec = sec;
429
430	return 1;
431}
432
433int hpet_set_periodic_freq(unsigned long freq)
434{
435	uint64_t clc;
436
437	if (!is_hpet_enabled())
438		return 0;
439
440	if (freq <= DEFAULT_RTC_INT_FREQ)
441		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
442	else {
443		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
444		do_div(clc, freq);
445		clc >>= hpet_clockevent.shift;
446		hpet_pie_delta = (unsigned long) clc;
447	}
448	return 1;
449}
450
451int hpet_rtc_dropped_irq(void)
452{
453	return is_hpet_enabled();
454}
455
456static void hpet_rtc_timer_reinit(void)
457{
458	unsigned long cfg, delta;
459	int lost_ints = -1;
460
461	if (unlikely(!hpet_rtc_flags)) {
462		cfg = hpet_readl(HPET_T1_CFG);
463		cfg &= ~HPET_TN_ENABLE;
464		hpet_writel(cfg, HPET_T1_CFG);
465		return;
466	}
467
468	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
469		delta = hpet_default_delta;
470	else
471		delta = hpet_pie_delta;
472
473	/*
474	 * Increment the comparator value until we are ahead of the
475	 * current count.
476	 */
477	do {
478		hpet_t1_cmp += delta;
479		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
480		lost_ints++;
481	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
482
483	if (lost_ints) {
484		if (hpet_rtc_flags & RTC_PIE)
485			hpet_pie_count += lost_ints;
486		if (printk_ratelimit())
487			printk(KERN_WARNING "rtc: lost %d interrupts\n",
488				lost_ints);
489	}
490}
491
492irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
493{
494	struct rtc_time curr_time;
495	unsigned long rtc_int_flag = 0;
496
497	hpet_rtc_timer_reinit();
498
499	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
500		rtc_get_rtc_time(&curr_time);
501
502	if (hpet_rtc_flags & RTC_UIE &&
503	    curr_time.tm_sec != hpet_prev_update_sec) {
504		rtc_int_flag = RTC_UF;
505		hpet_prev_update_sec = curr_time.tm_sec;
506	}
507
508	if (hpet_rtc_flags & RTC_PIE &&
509	    ++hpet_pie_count >= hpet_pie_limit) {
510		rtc_int_flag |= RTC_PF;
511		hpet_pie_count = 0;
512	}
513
514	if (hpet_rtc_flags & RTC_PIE &&
515	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
516	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
517	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
518			rtc_int_flag |= RTC_AF;
519
520	if (rtc_int_flag) {
521		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
522		rtc_interrupt(rtc_int_flag, dev_id);
523	}
524	return IRQ_HANDLED;
525}
526#endif
527
528
529/*
530 * Suspend/resume part
531 */
532
533#ifdef CONFIG_PM
534
535static int hpet_suspend(struct sys_device *sys_device, pm_message_t state)
536{
537	unsigned long cfg = hpet_readl(HPET_CFG);
538
539	cfg &= ~(HPET_CFG_ENABLE|HPET_CFG_LEGACY);
540	hpet_writel(cfg, HPET_CFG);
541
542	return 0;
543}
544
545static int hpet_resume(struct sys_device *sys_device)
546{
547	unsigned int id;
548
549	hpet_start_counter();
550
551	id = hpet_readl(HPET_ID);
552
553	if (id & HPET_ID_LEGSUP)
554		hpet_enable_int();
555
556	return 0;
557}
558
559static struct sysdev_class hpet_class = {
560	set_kset_name("hpet"),
561	.suspend	= hpet_suspend,
562	.resume		= hpet_resume,
563};
564
565static struct sys_device hpet_device = {
566	.id		= 0,
567	.cls		= &hpet_class,
568};
569
570
571static __init int hpet_register_sysfs(void)
572{
573	int err;
574
575	if (!is_hpet_capable())
576		return 0;
577
578	err = sysdev_class_register(&hpet_class);
579
580	if (!err) {
581		err = sysdev_register(&hpet_device);
582		if (err)
583			sysdev_class_unregister(&hpet_class);
584	}
585
586	return err;
587}
588
589device_initcall(hpet_register_sysfs);
590
591#endif
592