1#include <linux/kernel.h>
2#include <linux/types.h>
3#include <linux/init.h>
4#include <linux/bootmem.h>
5#include <linux/ioport.h>
6#include <linux/string.h>
7#include <linux/kexec.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/efi.h>
11#include <linux/pfn.h>
12#include <linux/uaccess.h>
13
14#include <asm/pgtable.h>
15#include <asm/page.h>
16#include <asm/e820.h>
17#include <asm/setup.h>
18
19#ifdef CONFIG_EFI
20int efi_enabled = 0;
21EXPORT_SYMBOL(efi_enabled);
22#endif
23
24struct e820map e820;
25struct change_member {
26	struct e820entry *pbios; /* pointer to original bios entry */
27	unsigned long long addr; /* address for this change point */
28};
29static struct change_member change_point_list[2*E820MAX] __initdata;
30static struct change_member *change_point[2*E820MAX] __initdata;
31static struct e820entry *overlap_list[E820MAX] __initdata;
32static struct e820entry new_bios[E820MAX] __initdata;
33/* For PCI or other memory-mapped resources */
34unsigned long pci_mem_start = 0x10000000;
35#ifdef CONFIG_PCI
36EXPORT_SYMBOL(pci_mem_start);
37#endif
38extern int user_defined_memmap;
39struct resource data_resource = {
40	.name	= "Kernel data",
41	.start	= 0,
42	.end	= 0,
43	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
44};
45
46struct resource code_resource = {
47	.name	= "Kernel code",
48	.start	= 0,
49	.end	= 0,
50	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
51};
52
53static struct resource system_rom_resource = {
54	.name	= "System ROM",
55	.start	= 0xf0000,
56	.end	= 0xfffff,
57	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
58};
59
60static struct resource extension_rom_resource = {
61	.name	= "Extension ROM",
62	.start	= 0xe0000,
63	.end	= 0xeffff,
64	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
65};
66
67static struct resource adapter_rom_resources[] = { {
68	.name 	= "Adapter ROM",
69	.start	= 0xc8000,
70	.end	= 0,
71	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
72}, {
73	.name 	= "Adapter ROM",
74	.start	= 0,
75	.end	= 0,
76	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
77}, {
78	.name 	= "Adapter ROM",
79	.start	= 0,
80	.end	= 0,
81	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
82}, {
83	.name 	= "Adapter ROM",
84	.start	= 0,
85	.end	= 0,
86	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
87}, {
88	.name 	= "Adapter ROM",
89	.start	= 0,
90	.end	= 0,
91	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
92}, {
93	.name 	= "Adapter ROM",
94	.start	= 0,
95	.end	= 0,
96	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
97} };
98
99static struct resource video_rom_resource = {
100	.name 	= "Video ROM",
101	.start	= 0xc0000,
102	.end	= 0xc7fff,
103	.flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
104};
105
106static struct resource video_ram_resource = {
107	.name	= "Video RAM area",
108	.start	= 0xa0000,
109	.end	= 0xbffff,
110	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
111};
112
113static struct resource standard_io_resources[] = { {
114	.name	= "dma1",
115	.start	= 0x0000,
116	.end	= 0x001f,
117	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
118}, {
119	.name	= "pic1",
120	.start	= 0x0020,
121	.end	= 0x0021,
122	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
123}, {
124	.name   = "timer0",
125	.start	= 0x0040,
126	.end    = 0x0043,
127	.flags  = IORESOURCE_BUSY | IORESOURCE_IO
128}, {
129	.name   = "timer1",
130	.start  = 0x0050,
131	.end    = 0x0053,
132	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
133}, {
134	.name	= "keyboard",
135	.start	= 0x0060,
136	.end	= 0x006f,
137	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
138}, {
139	.name	= "dma page reg",
140	.start	= 0x0080,
141	.end	= 0x008f,
142	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
143}, {
144	.name	= "pic2",
145	.start	= 0x00a0,
146	.end	= 0x00a1,
147	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
148}, {
149	.name	= "dma2",
150	.start	= 0x00c0,
151	.end	= 0x00df,
152	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
153}, {
154	.name	= "fpu",
155	.start	= 0x00f0,
156	.end	= 0x00ff,
157	.flags	= IORESOURCE_BUSY | IORESOURCE_IO
158} };
159
160#define ROMSIGNATURE 0xaa55
161
162static int __init romsignature(const unsigned char *rom)
163{
164	const unsigned short * const ptr = (const unsigned short *)rom;
165	unsigned short sig;
166
167	return probe_kernel_address(ptr, sig) == 0 && sig == ROMSIGNATURE;
168}
169
170static int __init romchecksum(const unsigned char *rom, unsigned long length)
171{
172	unsigned char sum, c;
173
174	for (sum = 0; length && probe_kernel_address(rom++, c) == 0; length--)
175		sum += c;
176	return !length && !sum;
177}
178
179static void __init probe_roms(void)
180{
181	const unsigned char *rom;
182	unsigned long start, length, upper;
183	unsigned char c;
184	int i;
185
186	/* video rom */
187	upper = adapter_rom_resources[0].start;
188	for (start = video_rom_resource.start; start < upper; start += 2048) {
189		rom = isa_bus_to_virt(start);
190		if (!romsignature(rom))
191			continue;
192
193		video_rom_resource.start = start;
194
195		if (probe_kernel_address(rom + 2, c) != 0)
196			continue;
197
198		/* 0 < length <= 0x7f * 512, historically */
199		length = c * 512;
200
201		/* if checksum okay, trust length byte */
202		if (length && romchecksum(rom, length))
203			video_rom_resource.end = start + length - 1;
204
205		request_resource(&iomem_resource, &video_rom_resource);
206		break;
207	}
208
209	start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
210	if (start < upper)
211		start = upper;
212
213	/* system rom */
214	request_resource(&iomem_resource, &system_rom_resource);
215	upper = system_rom_resource.start;
216
217	/* check for extension rom (ignore length byte!) */
218	rom = isa_bus_to_virt(extension_rom_resource.start);
219	if (romsignature(rom)) {
220		length = extension_rom_resource.end - extension_rom_resource.start + 1;
221		if (romchecksum(rom, length)) {
222			request_resource(&iomem_resource, &extension_rom_resource);
223			upper = extension_rom_resource.start;
224		}
225	}
226
227	/* check for adapter roms on 2k boundaries */
228	for (i = 0; i < ARRAY_SIZE(adapter_rom_resources) && start < upper; start += 2048) {
229		rom = isa_bus_to_virt(start);
230		if (!romsignature(rom))
231			continue;
232
233		if (probe_kernel_address(rom + 2, c) != 0)
234			continue;
235
236		/* 0 < length <= 0x7f * 512, historically */
237		length = c * 512;
238
239		/* but accept any length that fits if checksum okay */
240		if (!length || start + length > upper || !romchecksum(rom, length))
241			continue;
242
243		adapter_rom_resources[i].start = start;
244		adapter_rom_resources[i].end = start + length - 1;
245		request_resource(&iomem_resource, &adapter_rom_resources[i]);
246
247		start = adapter_rom_resources[i++].end & ~2047UL;
248	}
249}
250
251/*
252 * Request address space for all standard RAM and ROM resources
253 * and also for regions reported as reserved by the e820.
254 */
255static void __init
256legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
257{
258	int i;
259
260	probe_roms();
261	for (i = 0; i < e820.nr_map; i++) {
262		struct resource *res;
263#ifndef CONFIG_RESOURCES_64BIT
264		if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)
265			continue;
266#endif
267		res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
268		switch (e820.map[i].type) {
269		case E820_RAM:	res->name = "System RAM"; break;
270		case E820_ACPI:	res->name = "ACPI Tables"; break;
271		case E820_NVS:	res->name = "ACPI Non-volatile Storage"; break;
272		default:	res->name = "reserved";
273		}
274		res->start = e820.map[i].addr;
275		res->end = res->start + e820.map[i].size - 1;
276		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
277		if (request_resource(&iomem_resource, res)) {
278			kfree(res);
279			continue;
280		}
281		if (e820.map[i].type == E820_RAM) {
282			/*
283			 *  We don't know which RAM region contains kernel data,
284			 *  so we try it repeatedly and let the resource manager
285			 *  test it.
286			 */
287			request_resource(res, code_resource);
288			request_resource(res, data_resource);
289#ifdef CONFIG_KEXEC
290			request_resource(res, &crashk_res);
291#endif
292		}
293	}
294}
295
296/*
297 * Request address space for all standard resources
298 *
299 * This is called just before pcibios_init(), which is also a
300 * subsys_initcall, but is linked in later (in arch/i386/pci/common.c).
301 */
302static int __init request_standard_resources(void)
303{
304	int i;
305
306	printk("Setting up standard PCI resources\n");
307	if (efi_enabled)
308		efi_initialize_iomem_resources(&code_resource, &data_resource);
309	else
310		legacy_init_iomem_resources(&code_resource, &data_resource);
311
312	/* EFI systems may still have VGA */
313	request_resource(&iomem_resource, &video_ram_resource);
314
315	/* request I/O space for devices used on all i[345]86 PCs */
316	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
317		request_resource(&ioport_resource, &standard_io_resources[i]);
318	return 0;
319}
320
321subsys_initcall(request_standard_resources);
322
323void __init add_memory_region(unsigned long long start,
324			      unsigned long long size, int type)
325{
326	int x;
327
328	if (!efi_enabled) {
329       		x = e820.nr_map;
330
331		if (x == E820MAX) {
332		    printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
333		    return;
334		}
335
336		e820.map[x].addr = start;
337		e820.map[x].size = size;
338		e820.map[x].type = type;
339		e820.nr_map++;
340	}
341} /* add_memory_region */
342
343/*
344 * Sanitize the BIOS e820 map.
345 *
346 * Some e820 responses include overlapping entries.  The following
347 * replaces the original e820 map with a new one, removing overlaps.
348 *
349 */
350int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
351{
352	struct change_member *change_tmp;
353	unsigned long current_type, last_type;
354	unsigned long long last_addr;
355	int chgidx, still_changing;
356	int overlap_entries;
357	int new_bios_entry;
358	int old_nr, new_nr, chg_nr;
359	int i;
360
361	/*
362		Visually we're performing the following (1,2,3,4 = memory types)...
363
364		Sample memory map (w/overlaps):
365		   ____22__________________
366		   ______________________4_
367		   ____1111________________
368		   _44_____________________
369		   11111111________________
370		   ____________________33__
371		   ___________44___________
372		   __________33333_________
373		   ______________22________
374		   ___________________2222_
375		   _________111111111______
376		   _____________________11_
377		   _________________4______
378
379		Sanitized equivalent (no overlap):
380		   1_______________________
381		   _44_____________________
382		   ___1____________________
383		   ____22__________________
384		   ______11________________
385		   _________1______________
386		   __________3_____________
387		   ___________44___________
388		   _____________33_________
389		   _______________2________
390		   ________________1_______
391		   _________________4______
392		   ___________________2____
393		   ____________________33__
394		   ______________________4_
395	*/
396	/* if there's only one memory region, don't bother */
397	if (*pnr_map < 2) {
398		return -1;
399	}
400
401	old_nr = *pnr_map;
402
403	/* bail out if we find any unreasonable addresses in bios map */
404	for (i=0; i<old_nr; i++)
405		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) {
406			return -1;
407		}
408
409	/* create pointers for initial change-point information (for sorting) */
410	for (i=0; i < 2*old_nr; i++)
411		change_point[i] = &change_point_list[i];
412
413	/* record all known change-points (starting and ending addresses),
414	   omitting those that are for empty memory regions */
415	chgidx = 0;
416	for (i=0; i < old_nr; i++)	{
417		if (biosmap[i].size != 0) {
418			change_point[chgidx]->addr = biosmap[i].addr;
419			change_point[chgidx++]->pbios = &biosmap[i];
420			change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
421			change_point[chgidx++]->pbios = &biosmap[i];
422		}
423	}
424	chg_nr = chgidx;    	/* true number of change-points */
425
426	/* sort change-point list by memory addresses (low -> high) */
427	still_changing = 1;
428	while (still_changing)	{
429		still_changing = 0;
430		for (i=1; i < chg_nr; i++)  {
431			/* if <current_addr> > <last_addr>, swap */
432			/* or, if current=<start_addr> & last=<end_addr>, swap */
433			if ((change_point[i]->addr < change_point[i-1]->addr) ||
434				((change_point[i]->addr == change_point[i-1]->addr) &&
435				 (change_point[i]->addr == change_point[i]->pbios->addr) &&
436				 (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
437			   )
438			{
439				change_tmp = change_point[i];
440				change_point[i] = change_point[i-1];
441				change_point[i-1] = change_tmp;
442				still_changing=1;
443			}
444		}
445	}
446
447	/* create a new bios memory map, removing overlaps */
448	overlap_entries=0;	 /* number of entries in the overlap table */
449	new_bios_entry=0;	 /* index for creating new bios map entries */
450	last_type = 0;		 /* start with undefined memory type */
451	last_addr = 0;		 /* start with 0 as last starting address */
452	/* loop through change-points, determining affect on the new bios map */
453	for (chgidx=0; chgidx < chg_nr; chgidx++)
454	{
455		/* keep track of all overlapping bios entries */
456		if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
457		{
458			/* add map entry to overlap list (> 1 entry implies an overlap) */
459			overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
460		}
461		else
462		{
463			/* remove entry from list (order independent, so swap with last) */
464			for (i=0; i<overlap_entries; i++)
465			{
466				if (overlap_list[i] == change_point[chgidx]->pbios)
467					overlap_list[i] = overlap_list[overlap_entries-1];
468			}
469			overlap_entries--;
470		}
471		/* if there are overlapping entries, decide which "type" to use */
472		/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
473		current_type = 0;
474		for (i=0; i<overlap_entries; i++)
475			if (overlap_list[i]->type > current_type)
476				current_type = overlap_list[i]->type;
477		/* continue building up new bios map based on this information */
478		if (current_type != last_type)	{
479			if (last_type != 0)	 {
480				new_bios[new_bios_entry].size =
481					change_point[chgidx]->addr - last_addr;
482				/* move forward only if the new size was non-zero */
483				if (new_bios[new_bios_entry].size != 0)
484					if (++new_bios_entry >= E820MAX)
485						break; 	/* no more space left for new bios entries */
486			}
487			if (current_type != 0)	{
488				new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
489				new_bios[new_bios_entry].type = current_type;
490				last_addr=change_point[chgidx]->addr;
491			}
492			last_type = current_type;
493		}
494	}
495	new_nr = new_bios_entry;   /* retain count for new bios entries */
496
497	/* copy new bios mapping into original location */
498	memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
499	*pnr_map = new_nr;
500
501	return 0;
502}
503
504/*
505 * Copy the BIOS e820 map into a safe place.
506 *
507 * Sanity-check it while we're at it..
508 *
509 * If we're lucky and live on a modern system, the setup code
510 * will have given us a memory map that we can use to properly
511 * set up memory.  If we aren't, we'll fake a memory map.
512 *
513 * We check to see that the memory map contains at least 2 elements
514 * before we'll use it, because the detection code in setup.S may
515 * not be perfect and most every PC known to man has two memory
516 * regions: one from 0 to 640k, and one from 1mb up.  (The IBM
517 * thinkpad 560x, for example, does not cooperate with the memory
518 * detection code.)
519 */
520int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
521{
522	/* Only one memory region (or negative)? Ignore it */
523	if (nr_map < 2)
524		return -1;
525
526	do {
527		unsigned long long start = biosmap->addr;
528		unsigned long long size = biosmap->size;
529		unsigned long long end = start + size;
530		unsigned long type = biosmap->type;
531
532		/* Overflow in 64 bits? Ignore the memory map. */
533		if (start > end)
534			return -1;
535
536		/*
537		 * Some BIOSes claim RAM in the 640k - 1M region.
538		 * Not right. Fix it up.
539		 */
540		if (type == E820_RAM) {
541			if (start < 0x100000ULL && end > 0xA0000ULL) {
542				if (start < 0xA0000ULL)
543					add_memory_region(start, 0xA0000ULL-start, type);
544				if (end <= 0x100000ULL)
545					continue;
546				start = 0x100000ULL;
547				size = end - start;
548			}
549		}
550		add_memory_region(start, size, type);
551	} while (biosmap++,--nr_map);
552	return 0;
553}
554
555/*
556 * Callback for efi_memory_walk.
557 */
558static int __init
559efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
560{
561	unsigned long *max_pfn = arg, pfn;
562
563	if (start < end) {
564		pfn = PFN_UP(end -1);
565		if (pfn > *max_pfn)
566			*max_pfn = pfn;
567	}
568	return 0;
569}
570
571static int __init
572efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg)
573{
574	memory_present(0, PFN_UP(start), PFN_DOWN(end));
575	return 0;
576}
577
578/*
579 * Find the highest page frame number we have available
580 */
581void __init find_max_pfn(void)
582{
583	int i;
584
585	max_pfn = 0;
586	if (efi_enabled) {
587		efi_memmap_walk(efi_find_max_pfn, &max_pfn);
588		efi_memmap_walk(efi_memory_present_wrapper, NULL);
589		return;
590	}
591
592	for (i = 0; i < e820.nr_map; i++) {
593		unsigned long start, end;
594		/* RAM? */
595		if (e820.map[i].type != E820_RAM)
596			continue;
597		start = PFN_UP(e820.map[i].addr);
598		end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
599		if (start >= end)
600			continue;
601		if (end > max_pfn)
602			max_pfn = end;
603		memory_present(0, start, end);
604	}
605}
606
607/*
608 * Free all available memory for boot time allocation.  Used
609 * as a callback function by efi_memory_walk()
610 */
611
612static int __init
613free_available_memory(unsigned long start, unsigned long end, void *arg)
614{
615	/* check max_low_pfn */
616	if (start >= (max_low_pfn << PAGE_SHIFT))
617		return 0;
618	if (end >= (max_low_pfn << PAGE_SHIFT))
619		end = max_low_pfn << PAGE_SHIFT;
620	if (start < end)
621		free_bootmem(start, end - start);
622
623	return 0;
624}
625/*
626 * Register fully available low RAM pages with the bootmem allocator.
627 */
628void __init register_bootmem_low_pages(unsigned long max_low_pfn)
629{
630	int i;
631
632	if (efi_enabled) {
633		efi_memmap_walk(free_available_memory, NULL);
634		return;
635	}
636	for (i = 0; i < e820.nr_map; i++) {
637		unsigned long curr_pfn, last_pfn, size;
638		/*
639		 * Reserve usable low memory
640		 */
641		if (e820.map[i].type != E820_RAM)
642			continue;
643		/*
644		 * We are rounding up the start address of usable memory:
645		 */
646		curr_pfn = PFN_UP(e820.map[i].addr);
647		if (curr_pfn >= max_low_pfn)
648			continue;
649		/*
650		 * ... and at the end of the usable range downwards:
651		 */
652		last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
653
654		if (last_pfn > max_low_pfn)
655			last_pfn = max_low_pfn;
656
657		/*
658		 * .. finally, did all the rounding and playing
659		 * around just make the area go away?
660		 */
661		if (last_pfn <= curr_pfn)
662			continue;
663
664		size = last_pfn - curr_pfn;
665		free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
666	}
667}
668
669void __init e820_register_memory(void)
670{
671	unsigned long gapstart, gapsize, round;
672	unsigned long long last;
673	int i;
674
675	/*
676	 * Search for the bigest gap in the low 32 bits of the e820
677	 * memory space.
678	 */
679	last = 0x100000000ull;
680	gapstart = 0x10000000;
681	gapsize = 0x400000;
682	i = e820.nr_map;
683	while (--i >= 0) {
684		unsigned long long start = e820.map[i].addr;
685		unsigned long long end = start + e820.map[i].size;
686
687		/*
688		 * Since "last" is at most 4GB, we know we'll
689		 * fit in 32 bits if this condition is true
690		 */
691		if (last > end) {
692			unsigned long gap = last - end;
693
694			if (gap > gapsize) {
695				gapsize = gap;
696				gapstart = end;
697			}
698		}
699		if (start < last)
700			last = start;
701	}
702
703	/*
704	 * See how much we want to round up: start off with
705	 * rounding to the next 1MB area.
706	 */
707	round = 0x100000;
708	while ((gapsize >> 4) > round)
709		round += round;
710	/* Fun with two's complement */
711	pci_mem_start = (gapstart + round) & -round;
712
713	printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
714		pci_mem_start, gapstart, gapsize);
715}
716
717void __init print_memory_map(char *who)
718{
719	int i;
720
721	for (i = 0; i < e820.nr_map; i++) {
722		printk(" %s: %016Lx - %016Lx ", who,
723			e820.map[i].addr,
724			e820.map[i].addr + e820.map[i].size);
725		switch (e820.map[i].type) {
726		case E820_RAM:	printk("(usable)\n");
727				break;
728		case E820_RESERVED:
729				printk("(reserved)\n");
730				break;
731		case E820_ACPI:
732				printk("(ACPI data)\n");
733				break;
734		case E820_NVS:
735				printk("(ACPI NVS)\n");
736				break;
737		default:	printk("type %lu\n", e820.map[i].type);
738				break;
739		}
740	}
741}
742
743static __init __always_inline void efi_limit_regions(unsigned long long size)
744{
745	unsigned long long current_addr = 0;
746	efi_memory_desc_t *md, *next_md;
747	void *p, *p1;
748	int i, j;
749
750	j = 0;
751	p1 = memmap.map;
752	for (p = p1, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
753		md = p;
754		next_md = p1;
755		current_addr = md->phys_addr +
756			PFN_PHYS(md->num_pages);
757		if (is_available_memory(md)) {
758			if (md->phys_addr >= size) continue;
759			memcpy(next_md, md, memmap.desc_size);
760			if (current_addr >= size) {
761				next_md->num_pages -=
762					PFN_UP(current_addr-size);
763			}
764			p1 += memmap.desc_size;
765			next_md = p1;
766			j++;
767		} else if ((md->attribute & EFI_MEMORY_RUNTIME) ==
768			   EFI_MEMORY_RUNTIME) {
769			/* In order to make runtime services
770			 * available we have to include runtime
771			 * memory regions in memory map */
772			memcpy(next_md, md, memmap.desc_size);
773			p1 += memmap.desc_size;
774			next_md = p1;
775			j++;
776		}
777	}
778	memmap.nr_map = j;
779	memmap.map_end = memmap.map +
780		(memmap.nr_map * memmap.desc_size);
781}
782
783void __init limit_regions(unsigned long long size)
784{
785	unsigned long long current_addr;
786	int i;
787
788	print_memory_map("limit_regions start");
789	if (efi_enabled) {
790		efi_limit_regions(size);
791		return;
792	}
793	for (i = 0; i < e820.nr_map; i++) {
794		current_addr = e820.map[i].addr + e820.map[i].size;
795		if (current_addr < size)
796			continue;
797
798		if (e820.map[i].type != E820_RAM)
799			continue;
800
801		if (e820.map[i].addr >= size) {
802			/*
803			 * This region starts past the end of the
804			 * requested size, skip it completely.
805			 */
806			e820.nr_map = i;
807		} else {
808			e820.nr_map = i + 1;
809			e820.map[i].size -= current_addr - size;
810		}
811		print_memory_map("limit_regions endfor");
812		return;
813	}
814	print_memory_map("limit_regions endfunc");
815}
816
817/*
818 * This function checks if any part of the range <start,end> is mapped
819 * with type.
820 */
821int
822e820_any_mapped(u64 start, u64 end, unsigned type)
823{
824	int i;
825	for (i = 0; i < e820.nr_map; i++) {
826		const struct e820entry *ei = &e820.map[i];
827		if (type && ei->type != type)
828			continue;
829		if (ei->addr >= end || ei->addr + ei->size <= start)
830			continue;
831		return 1;
832	}
833	return 0;
834}
835EXPORT_SYMBOL_GPL(e820_any_mapped);
836
837 /*
838  * This function checks if the entire range <start,end> is mapped with type.
839  *
840  * Note: this function only works correct if the e820 table is sorted and
841  * not-overlapping, which is the case
842  */
843int __init
844e820_all_mapped(unsigned long s, unsigned long e, unsigned type)
845{
846	u64 start = s;
847	u64 end = e;
848	int i;
849	for (i = 0; i < e820.nr_map; i++) {
850		struct e820entry *ei = &e820.map[i];
851		if (type && ei->type != type)
852			continue;
853		/* is the region (part) in overlap with the current region ?*/
854		if (ei->addr >= end || ei->addr + ei->size <= start)
855			continue;
856		/* if the region is at the beginning of <start,end> we move
857		 * start to the end of the region since it's ok until there
858		 */
859		if (ei->addr <= start)
860			start = ei->addr + ei->size;
861		/* if start is now at or beyond end, we're done, full
862		 * coverage */
863		if (start >= end)
864			return 1; /* we're done */
865	}
866	return 0;
867}
868
869static int __init parse_memmap(char *arg)
870{
871	if (!arg)
872		return -EINVAL;
873
874	if (strcmp(arg, "exactmap") == 0) {
875#ifdef CONFIG_CRASH_DUMP
876		/* If we are doing a crash dump, we
877		 * still need to know the real mem
878		 * size before original memory map is
879		 * reset.
880		 */
881		find_max_pfn();
882		saved_max_pfn = max_pfn;
883#endif
884		e820.nr_map = 0;
885		user_defined_memmap = 1;
886	} else {
887		/* If the user specifies memory size, we
888		 * limit the BIOS-provided memory map to
889		 * that size. exactmap can be used to specify
890		 * the exact map. mem=number can be used to
891		 * trim the existing memory map.
892		 */
893		unsigned long long start_at, mem_size;
894
895		mem_size = memparse(arg, &arg);
896		if (*arg == '@') {
897			start_at = memparse(arg+1, &arg);
898			add_memory_region(start_at, mem_size, E820_RAM);
899		} else if (*arg == '#') {
900			start_at = memparse(arg+1, &arg);
901			add_memory_region(start_at, mem_size, E820_ACPI);
902		} else if (*arg == '$') {
903			start_at = memparse(arg+1, &arg);
904			add_memory_region(start_at, mem_size, E820_RESERVED);
905		} else {
906			limit_regions(mem_size);
907			user_defined_memmap = 1;
908		}
909	}
910	return 0;
911}
912early_param("memmap", parse_memmap);
913