1/* Elgamal.c  -  Elgamal Public Key encryption
2 * Copyright (C) 1998, 2000, 2001, 2002, 2003,
3 *               2008  Free Software Foundation, Inc.
4 *
5 * This file is part of Libgcrypt.
6 *
7 * Libgcrypt is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as
9 * published by the Free Software Foundation; either version 2.1 of
10 * the License, or (at your option) any later version.
11 *
12 * Libgcrypt is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
19 *
20 * For a description of the algorithm, see:
21 *   Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
22 *   ISBN 0-471-11709-9. Pages 476 ff.
23 */
24
25#include <config.h>
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include "g10lib.h"
30#include "mpi.h"
31#include "cipher.h"
32
33typedef struct
34{
35  gcry_mpi_t p;	    /* prime */
36  gcry_mpi_t g;	    /* group generator */
37  gcry_mpi_t y;	    /* g^x mod p */
38} ELG_public_key;
39
40
41typedef struct
42{
43  gcry_mpi_t p;	    /* prime */
44  gcry_mpi_t g;	    /* group generator */
45  gcry_mpi_t y;	    /* g^x mod p */
46  gcry_mpi_t x;	    /* secret exponent */
47} ELG_secret_key;
48
49
50static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
51static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k);
52static void generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors);
53static int  check_secret_key (ELG_secret_key *sk);
54static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
55                        ELG_public_key *pkey);
56static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
57                     ELG_secret_key *skey);
58static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
59                  ELG_secret_key *skey);
60static int  verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
61                    ELG_public_key *pkey);
62
63
64static void (*progress_cb) (void *, const char *, int, int, int);
65static void *progress_cb_data;
66
67void
68_gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
69                                            int, int, int),
70				void *cb_data)
71{
72  progress_cb = cb;
73  progress_cb_data = cb_data;
74}
75
76
77static void
78progress (int c)
79{
80  if (progress_cb)
81    progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
82}
83
84
85/****************
86 * Michael Wiener's table on subgroup sizes to match field sizes.
87 * (floating around somewhere, probably based on the paper from
88 * Eurocrypt 96, page 332)
89 */
90static unsigned int
91wiener_map( unsigned int n )
92{
93  static struct { unsigned int p_n, q_n; } t[] =
94    { /*   p	  q	 attack cost */
95      {  512, 119 },	/* 9 x 10^17 */
96      {  768, 145 },	/* 6 x 10^21 */
97      { 1024, 165 },	/* 7 x 10^24 */
98      { 1280, 183 },	/* 3 x 10^27 */
99      { 1536, 198 },	/* 7 x 10^29 */
100      { 1792, 212 },	/* 9 x 10^31 */
101      { 2048, 225 },	/* 8 x 10^33 */
102      { 2304, 237 },	/* 5 x 10^35 */
103      { 2560, 249 },	/* 3 x 10^37 */
104      { 2816, 259 },	/* 1 x 10^39 */
105      { 3072, 269 },	/* 3 x 10^40 */
106      { 3328, 279 },	/* 8 x 10^41 */
107      { 3584, 288 },	/* 2 x 10^43 */
108      { 3840, 296 },	/* 4 x 10^44 */
109      { 4096, 305 },	/* 7 x 10^45 */
110      { 4352, 313 },	/* 1 x 10^47 */
111      { 4608, 320 },	/* 2 x 10^48 */
112      { 4864, 328 },	/* 2 x 10^49 */
113      { 5120, 335 },	/* 3 x 10^50 */
114      { 0, 0 }
115    };
116  int i;
117
118  for(i=0; t[i].p_n; i++ )
119    {
120      if( n <= t[i].p_n )
121        return t[i].q_n;
122    }
123  /* Not in table - use an arbitrary high number. */
124  return  n / 8 + 200;
125}
126
127static int
128test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
129{
130  ELG_public_key pk;
131  gcry_mpi_t test = gcry_mpi_new ( 0 );
132  gcry_mpi_t out1_a = gcry_mpi_new ( nbits );
133  gcry_mpi_t out1_b = gcry_mpi_new ( nbits );
134  gcry_mpi_t out2 = gcry_mpi_new ( nbits );
135  int failed = 0;
136
137  pk.p = sk->p;
138  pk.g = sk->g;
139  pk.y = sk->y;
140
141  gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
142
143  do_encrypt ( out1_a, out1_b, test, &pk );
144  decrypt ( out2, out1_a, out1_b, sk );
145  if ( mpi_cmp( test, out2 ) )
146    failed |= 1;
147
148  sign ( out1_a, out1_b, test, sk );
149  if ( !verify( out1_a, out1_b, test, &pk ) )
150    failed |= 2;
151
152  gcry_mpi_release ( test );
153  gcry_mpi_release ( out1_a );
154  gcry_mpi_release ( out1_b );
155  gcry_mpi_release ( out2 );
156
157  if (failed && !nodie)
158    log_fatal ("Elgamal test key for %s %s failed\n",
159               (failed & 1)? "encrypt+decrypt":"",
160               (failed & 2)? "sign+verify":"");
161  if (failed && DBG_CIPHER)
162    log_debug ("Elgamal test key for %s %s failed\n",
163               (failed & 1)? "encrypt+decrypt":"",
164               (failed & 2)? "sign+verify":"");
165
166  return failed;
167}
168
169
170/****************
171 * Generate a random secret exponent k from prime p, so that k is
172 * relatively prime to p-1.  With SMALL_K set, k will be selected for
173 * better encryption performance - this must never be used signing!
174 */
175static gcry_mpi_t
176gen_k( gcry_mpi_t p, int small_k )
177{
178  gcry_mpi_t k = mpi_alloc_secure( 0 );
179  gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
180  gcry_mpi_t p_1 = mpi_copy(p);
181  unsigned int orig_nbits = mpi_get_nbits(p);
182  unsigned int nbits, nbytes;
183  char *rndbuf = NULL;
184
185  if (small_k)
186    {
187      /* Using a k much lesser than p is sufficient for encryption and
188       * it greatly improves the encryption performance.  We use
189       * Wiener's table and add a large safety margin. */
190      nbits = wiener_map( orig_nbits ) * 3 / 2;
191      if( nbits >= orig_nbits )
192        BUG();
193    }
194  else
195    nbits = orig_nbits;
196
197
198  nbytes = (nbits+7)/8;
199  if( DBG_CIPHER )
200    log_debug("choosing a random k ");
201  mpi_sub_ui( p_1, p, 1);
202  for(;;)
203    {
204      if( !rndbuf || nbits < 32 )
205        {
206          gcry_free(rndbuf);
207          rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
208        }
209      else
210        {
211          /* Change only some of the higher bits.  We could improve
212             this by directly requesting more memory at the first call
213             to get_random_bytes() and use this the here maybe it is
214             easier to do this directly in random.c Anyway, it is
215             highly inlikely that we will ever reach this code. */
216          char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
217          memcpy( rndbuf, pp, 4 );
218          gcry_free(pp);
219	}
220      _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
221
222      for(;;)
223        {
224          if( !(mpi_cmp( k, p_1 ) < 0) )  /* check: k < (p-1) */
225            {
226              if( DBG_CIPHER )
227                progress('+');
228              break; /* no  */
229            }
230          if( !(mpi_cmp_ui( k, 0 ) > 0) )  /* check: k > 0 */
231            {
232              if( DBG_CIPHER )
233                progress('-');
234              break; /* no */
235            }
236          if (gcry_mpi_gcd( temp, k, p_1 ))
237            goto found;  /* okay, k is relative prime to (p-1) */
238          mpi_add_ui( k, k, 1 );
239          if( DBG_CIPHER )
240            progress('.');
241	}
242    }
243 found:
244  gcry_free(rndbuf);
245  if( DBG_CIPHER )
246    progress('\n');
247  mpi_free(p_1);
248  mpi_free(temp);
249
250  return k;
251}
252
253/****************
254 * Generate a key pair with a key of size NBITS
255 * Returns: 2 structures filled with all needed values
256 *	    and an array with n-1 factors of (p-1)
257 */
258static void
259generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
260{
261  gcry_mpi_t p;    /* the prime */
262  gcry_mpi_t p_min1;
263  gcry_mpi_t g;
264  gcry_mpi_t x;    /* the secret exponent */
265  gcry_mpi_t y;
266  unsigned int qbits;
267  unsigned int xbits;
268  byte *rndbuf;
269
270  p_min1 = gcry_mpi_new ( nbits );
271  qbits = wiener_map( nbits );
272  if( qbits & 1 ) /* better have a even one */
273    qbits++;
274  g = mpi_alloc(1);
275  p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors );
276  mpi_sub_ui(p_min1, p, 1);
277
278
279  /* Select a random number which has these properties:
280   *	 0 < x < p-1
281   * This must be a very good random number because this is the
282   * secret part.  The prime is public and may be shared anyway,
283   * so a random generator level of 1 is used for the prime.
284   *
285   * I don't see a reason to have a x of about the same size
286   * as the p.  It should be sufficient to have one about the size
287   * of q or the later used k plus a large safety margin. Decryption
288   * will be much faster with such an x.
289   */
290  xbits = qbits * 3 / 2;
291  if( xbits >= nbits )
292    BUG();
293  x = gcry_mpi_snew ( xbits );
294  if( DBG_CIPHER )
295    log_debug("choosing a random x of size %u", xbits );
296  rndbuf = NULL;
297  do
298    {
299      if( DBG_CIPHER )
300        progress('.');
301      if( rndbuf )
302        { /* Change only some of the higher bits */
303          if( xbits < 16 ) /* should never happen ... */
304            {
305              gcry_free(rndbuf);
306              rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
307                                                 GCRY_VERY_STRONG_RANDOM );
308            }
309          else
310            {
311              char *r = gcry_random_bytes_secure( 2,
312                                                  GCRY_VERY_STRONG_RANDOM );
313              memcpy(rndbuf, r, 2 );
314              gcry_free(r);
315            }
316	}
317      else
318        {
319          rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
320                                             GCRY_VERY_STRONG_RANDOM );
321	}
322      _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
323      mpi_clear_highbit( x, xbits+1 );
324    }
325  while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
326  gcry_free(rndbuf);
327
328  y = gcry_mpi_new (nbits);
329  gcry_mpi_powm( y, g, x, p );
330
331  if( DBG_CIPHER )
332    {
333      progress('\n');
334      log_mpidump("elg  p= ", p );
335      log_mpidump("elg  g= ", g );
336      log_mpidump("elg  y= ", y );
337      log_mpidump("elg  x= ", x );
338    }
339
340  /* Copy the stuff to the key structures */
341  sk->p = p;
342  sk->g = g;
343  sk->y = y;
344  sk->x = x;
345
346  gcry_mpi_release ( p_min1 );
347
348  /* Now we can test our keys (this should never fail!) */
349  test_keys ( sk, nbits - 64, 0 );
350}
351
352
353/* Generate a key pair with a key of size NBITS not using a random
354   value for the secret key but the one given as X.  This is useful to
355   implement a passphrase based decryption for a public key based
356   encryption.  It has appliactions in backup systems.
357
358   Returns: A structure filled with all needed values and an array
359 	    with n-1 factors of (p-1).  */
360static gcry_err_code_t
361generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
362                  gcry_mpi_t **ret_factors )
363{
364  gcry_mpi_t p;      /* The prime.  */
365  gcry_mpi_t p_min1; /* The prime minus 1.  */
366  gcry_mpi_t g;      /* The generator.  */
367  gcry_mpi_t y;      /* g^x mod p.  */
368  unsigned int qbits;
369  unsigned int xbits;
370
371  sk->p = NULL;
372  sk->g = NULL;
373  sk->y = NULL;
374  sk->x = NULL;
375
376  /* Do a quick check to see whether X is suitable.  */
377  xbits = mpi_get_nbits (x);
378  if ( xbits < 64 || xbits >= nbits )
379    return GPG_ERR_INV_VALUE;
380
381  p_min1 = gcry_mpi_new ( nbits );
382  qbits  = wiener_map ( nbits );
383  if ( (qbits & 1) ) /* Better have an even one.  */
384    qbits++;
385  g = mpi_alloc (1);
386  p = _gcry_generate_elg_prime ( 0, nbits, qbits, g, ret_factors );
387  mpi_sub_ui (p_min1, p, 1);
388
389  if (DBG_CIPHER)
390    log_debug ("using a supplied x of size %u", xbits );
391  if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
392    {
393      gcry_mpi_release ( p_min1 );
394      gcry_mpi_release ( p );
395      gcry_mpi_release ( g );
396      return GPG_ERR_INV_VALUE;
397    }
398
399  y = gcry_mpi_new (nbits);
400  gcry_mpi_powm ( y, g, x, p );
401
402  if ( DBG_CIPHER )
403    {
404      progress ('\n');
405      log_mpidump ("elg  p= ", p );
406      log_mpidump ("elg  g= ", g );
407      log_mpidump ("elg  y= ", y );
408      log_mpidump ("elg  x= ", x );
409    }
410
411  /* Copy the stuff to the key structures */
412  sk->p = p;
413  sk->g = g;
414  sk->y = y;
415  sk->x = gcry_mpi_copy (x);
416
417  gcry_mpi_release ( p_min1 );
418
419  /* Now we can test our keys. */
420  if ( test_keys ( sk, nbits - 64, 1 ) )
421    {
422      gcry_mpi_release ( sk->p ); sk->p = NULL;
423      gcry_mpi_release ( sk->g ); sk->g = NULL;
424      gcry_mpi_release ( sk->y ); sk->y = NULL;
425      gcry_mpi_release ( sk->x ); sk->x = NULL;
426      return GPG_ERR_BAD_SECKEY;
427    }
428
429  return 0;
430}
431
432
433/****************
434 * Test whether the secret key is valid.
435 * Returns: if this is a valid key.
436 */
437static int
438check_secret_key( ELG_secret_key *sk )
439{
440  int rc;
441  gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
442
443  gcry_mpi_powm( y, sk->g, sk->x, sk->p );
444  rc = !mpi_cmp( y, sk->y );
445  mpi_free( y );
446  return rc;
447}
448
449
450static void
451do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
452{
453  gcry_mpi_t k;
454
455  /* Note: maybe we should change the interface, so that it
456   * is possible to check that input is < p and return an
457   * error code.
458   */
459
460  k = gen_k( pkey->p, 1 );
461  gcry_mpi_powm( a, pkey->g, k, pkey->p );
462  /* b = (y^k * input) mod p
463   *	 = ((y^k mod p) * (input mod p)) mod p
464   * and because input is < p
465   *	 = ((y^k mod p) * input) mod p
466   */
467  gcry_mpi_powm( b, pkey->y, k, pkey->p );
468  gcry_mpi_mulm( b, b, input, pkey->p );
469#if 0
470  if( DBG_CIPHER )
471    {
472      log_mpidump("elg encrypted y= ", pkey->y);
473      log_mpidump("elg encrypted p= ", pkey->p);
474      log_mpidump("elg encrypted k= ", k);
475      log_mpidump("elg encrypted M= ", input);
476      log_mpidump("elg encrypted a= ", a);
477      log_mpidump("elg encrypted b= ", b);
478    }
479#endif
480  mpi_free(k);
481}
482
483
484
485
486static void
487decrypt(gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
488{
489  gcry_mpi_t t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
490
491  /* output = b/(a^x) mod p */
492  gcry_mpi_powm( t1, a, skey->x, skey->p );
493  mpi_invm( t1, t1, skey->p );
494  mpi_mulm( output, b, t1, skey->p );
495#if 0
496  if( DBG_CIPHER )
497    {
498      log_mpidump("elg decrypted x= ", skey->x);
499      log_mpidump("elg decrypted p= ", skey->p);
500      log_mpidump("elg decrypted a= ", a);
501      log_mpidump("elg decrypted b= ", b);
502      log_mpidump("elg decrypted M= ", output);
503    }
504#endif
505  mpi_free(t1);
506}
507
508
509/****************
510 * Make an Elgamal signature out of INPUT
511 */
512
513static void
514sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
515{
516    gcry_mpi_t k;
517    gcry_mpi_t t   = mpi_alloc( mpi_get_nlimbs(a) );
518    gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
519    gcry_mpi_t p_1 = mpi_copy(skey->p);
520
521   /*
522    * b = (t * inv) mod (p-1)
523    * b = (t * inv(k,(p-1),(p-1)) mod (p-1)
524    * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
525    *
526    */
527    mpi_sub_ui(p_1, p_1, 1);
528    k = gen_k( skey->p, 0 /* no small K ! */ );
529    gcry_mpi_powm( a, skey->g, k, skey->p );
530    mpi_mul(t, skey->x, a );
531    mpi_subm(t, input, t, p_1 );
532    mpi_invm(inv, k, p_1 );
533    mpi_mulm(b, t, inv, p_1 );
534
535#if 0
536    if( DBG_CIPHER )
537      {
538	log_mpidump("elg sign p= ", skey->p);
539	log_mpidump("elg sign g= ", skey->g);
540	log_mpidump("elg sign y= ", skey->y);
541	log_mpidump("elg sign x= ", skey->x);
542	log_mpidump("elg sign k= ", k);
543	log_mpidump("elg sign M= ", input);
544	log_mpidump("elg sign a= ", a);
545	log_mpidump("elg sign b= ", b);
546      }
547#endif
548    mpi_free(k);
549    mpi_free(t);
550    mpi_free(inv);
551    mpi_free(p_1);
552}
553
554
555/****************
556 * Returns true if the signature composed of A and B is valid.
557 */
558static int
559verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
560{
561  int rc;
562  gcry_mpi_t t1;
563  gcry_mpi_t t2;
564  gcry_mpi_t base[4];
565  gcry_mpi_t ex[4];
566
567  if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
568    return 0; /* assertion	0 < a < p  failed */
569
570  t1 = mpi_alloc( mpi_get_nlimbs(a) );
571  t2 = mpi_alloc( mpi_get_nlimbs(a) );
572
573#if 0
574  /* t1 = (y^a mod p) * (a^b mod p) mod p */
575  gcry_mpi_powm( t1, pkey->y, a, pkey->p );
576  gcry_mpi_powm( t2, a, b, pkey->p );
577  mpi_mulm( t1, t1, t2, pkey->p );
578
579  /* t2 = g ^ input mod p */
580  gcry_mpi_powm( t2, pkey->g, input, pkey->p );
581
582  rc = !mpi_cmp( t1, t2 );
583#elif 0
584  /* t1 = (y^a mod p) * (a^b mod p) mod p */
585  base[0] = pkey->y; ex[0] = a;
586  base[1] = a;       ex[1] = b;
587  base[2] = NULL;    ex[2] = NULL;
588  mpi_mulpowm( t1, base, ex, pkey->p );
589
590  /* t2 = g ^ input mod p */
591  gcry_mpi_powm( t2, pkey->g, input, pkey->p );
592
593  rc = !mpi_cmp( t1, t2 );
594#else
595  /* t1 = g ^ - input * y ^ a * a ^ b  mod p */
596  mpi_invm(t2, pkey->g, pkey->p );
597  base[0] = t2     ; ex[0] = input;
598  base[1] = pkey->y; ex[1] = a;
599  base[2] = a;       ex[2] = b;
600  base[3] = NULL;    ex[3] = NULL;
601  mpi_mulpowm( t1, base, ex, pkey->p );
602  rc = !mpi_cmp_ui( t1, 1 );
603
604#endif
605
606  mpi_free(t1);
607  mpi_free(t2);
608  return rc;
609}
610
611/*********************************************
612 **************  interface  ******************
613 *********************************************/
614
615static gpg_err_code_t
616elg_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
617                  const gcry_sexp_t genparms,
618                  gcry_mpi_t *skey, gcry_mpi_t **retfactors,
619                  gcry_sexp_t *r_extrainfo)
620{
621  gpg_err_code_t ec;
622  ELG_secret_key sk;
623  gcry_mpi_t xvalue = NULL;
624  gcry_sexp_t l1;
625
626  (void)algo;
627  (void)evalue;
628  (void)r_extrainfo;
629
630  if (genparms)
631    {
632      /* Parse the optional xvalue element. */
633      l1 = gcry_sexp_find_token (genparms, "xvalue", 0);
634      if (l1)
635        {
636          xvalue = gcry_sexp_nth_mpi (l1, 1, 0);
637          gcry_sexp_release (l1);
638          if (!xvalue)
639            return GPG_ERR_BAD_MPI;
640        }
641    }
642
643  if (xvalue)
644    ec = generate_using_x (&sk, nbits, xvalue, retfactors);
645  else
646    {
647      generate (&sk, nbits, retfactors);
648      ec = 0;
649    }
650
651  skey[0] = sk.p;
652  skey[1] = sk.g;
653  skey[2] = sk.y;
654  skey[3] = sk.x;
655
656  return ec;
657}
658
659
660static gcry_err_code_t
661elg_generate (int algo, unsigned int nbits, unsigned long evalue,
662              gcry_mpi_t *skey, gcry_mpi_t **retfactors)
663{
664  ELG_secret_key sk;
665
666  (void)algo;
667  (void)evalue;
668
669  generate (&sk, nbits, retfactors);
670  skey[0] = sk.p;
671  skey[1] = sk.g;
672  skey[2] = sk.y;
673  skey[3] = sk.x;
674
675  return GPG_ERR_NO_ERROR;
676}
677
678
679static gcry_err_code_t
680elg_check_secret_key (int algo, gcry_mpi_t *skey)
681{
682  gcry_err_code_t err = GPG_ERR_NO_ERROR;
683  ELG_secret_key sk;
684
685  (void)algo;
686
687  if ((! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
688    err = GPG_ERR_BAD_MPI;
689  else
690    {
691      sk.p = skey[0];
692      sk.g = skey[1];
693      sk.y = skey[2];
694      sk.x = skey[3];
695
696      if (! check_secret_key (&sk))
697	err = GPG_ERR_BAD_SECKEY;
698    }
699
700  return err;
701}
702
703
704static gcry_err_code_t
705elg_encrypt (int algo, gcry_mpi_t *resarr,
706             gcry_mpi_t data, gcry_mpi_t *pkey, int flags)
707{
708  gcry_err_code_t err = GPG_ERR_NO_ERROR;
709  ELG_public_key pk;
710
711  (void)algo;
712  (void)flags;
713
714  if ((! data) || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
715    err = GPG_ERR_BAD_MPI;
716  else
717    {
718      pk.p = pkey[0];
719      pk.g = pkey[1];
720      pk.y = pkey[2];
721      resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.p));
722      resarr[1] = mpi_alloc (mpi_get_nlimbs (pk.p));
723      do_encrypt (resarr[0], resarr[1], data, &pk);
724    }
725  return err;
726}
727
728
729static gcry_err_code_t
730elg_decrypt (int algo, gcry_mpi_t *result,
731             gcry_mpi_t *data, gcry_mpi_t *skey, int flags)
732{
733  gcry_err_code_t err = GPG_ERR_NO_ERROR;
734  ELG_secret_key sk;
735
736  (void)algo;
737  (void)flags;
738
739  if ((! data[0]) || (! data[1])
740      || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
741    err = GPG_ERR_BAD_MPI;
742  else
743    {
744      sk.p = skey[0];
745      sk.g = skey[1];
746      sk.y = skey[2];
747      sk.x = skey[3];
748      *result = mpi_alloc_secure (mpi_get_nlimbs (sk.p));
749      decrypt (*result, data[0], data[1], &sk);
750    }
751  return err;
752}
753
754
755static gcry_err_code_t
756elg_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
757{
758  gcry_err_code_t err = GPG_ERR_NO_ERROR;
759  ELG_secret_key sk;
760
761  (void)algo;
762
763  if ((! data)
764      || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
765    err = GPG_ERR_BAD_MPI;
766  else
767    {
768      sk.p = skey[0];
769      sk.g = skey[1];
770      sk.y = skey[2];
771      sk.x = skey[3];
772      resarr[0] = mpi_alloc (mpi_get_nlimbs (sk.p));
773      resarr[1] = mpi_alloc (mpi_get_nlimbs (sk.p));
774      sign (resarr[0], resarr[1], data, &sk);
775    }
776
777  return err;
778}
779
780
781static gcry_err_code_t
782elg_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
783            int (*cmp) (void *, gcry_mpi_t), void *opaquev)
784{
785  gcry_err_code_t err = GPG_ERR_NO_ERROR;
786  ELG_public_key pk;
787
788  (void)algo;
789  (void)cmp;
790  (void)opaquev;
791
792  if ((! data[0]) || (! data[1]) || (! hash)
793      || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
794    err = GPG_ERR_BAD_MPI;
795  else
796    {
797      pk.p = pkey[0];
798      pk.g = pkey[1];
799      pk.y = pkey[2];
800      if (! verify (data[0], data[1], hash, &pk))
801	err = GPG_ERR_BAD_SIGNATURE;
802    }
803
804  return err;
805}
806
807
808static unsigned int
809elg_get_nbits (int algo, gcry_mpi_t *pkey)
810{
811  (void)algo;
812
813  return mpi_get_nbits (pkey[0]);
814}
815
816
817static const char *elg_names[] =
818  {
819    "elg",
820    "openpgp-elg",
821    "openpgp-elg-sig",
822    NULL,
823  };
824
825
826gcry_pk_spec_t _gcry_pubkey_spec_elg =
827  {
828    "ELG", elg_names,
829    "pgy", "pgyx", "ab", "rs", "pgy",
830    GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
831    elg_generate,
832    elg_check_secret_key,
833    elg_encrypt,
834    elg_decrypt,
835    elg_sign,
836    elg_verify,
837    elg_get_nbits
838  };
839
840pk_extra_spec_t _gcry_pubkey_extraspec_elg =
841  {
842    NULL,
843    elg_generate_ext,
844    NULL
845  };
846