• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/sound/soc/fsl/
1/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7 * under the terms of the GNU General Public License version 2.  This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
10 *
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
14 */
15
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/gfp.h>
23
24#include <sound/core.h>
25#include <sound/pcm.h>
26#include <sound/pcm_params.h>
27#include <sound/soc.h>
28
29#include <asm/io.h>
30
31#include "fsl_dma.h"
32
33/*
34 * The formats that the DMA controller supports, which is anything
35 * that is 8, 16, or 32 bits.
36 */
37#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
38			    SNDRV_PCM_FMTBIT_U8 	| \
39			    SNDRV_PCM_FMTBIT_S16_LE     | \
40			    SNDRV_PCM_FMTBIT_S16_BE     | \
41			    SNDRV_PCM_FMTBIT_U16_LE     | \
42			    SNDRV_PCM_FMTBIT_U16_BE     | \
43			    SNDRV_PCM_FMTBIT_S24_LE     | \
44			    SNDRV_PCM_FMTBIT_S24_BE     | \
45			    SNDRV_PCM_FMTBIT_U24_LE     | \
46			    SNDRV_PCM_FMTBIT_U24_BE     | \
47			    SNDRV_PCM_FMTBIT_S32_LE     | \
48			    SNDRV_PCM_FMTBIT_S32_BE     | \
49			    SNDRV_PCM_FMTBIT_U32_LE     | \
50			    SNDRV_PCM_FMTBIT_U32_BE)
51
52#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53			  SNDRV_PCM_RATE_CONTINUOUS)
54
55/* DMA global data.  This structure is used by fsl_dma_open() to determine
56 * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
57 * not allow the machine driver to provide this information to the PCM
58 * driver in advance, and there's no way to differentiate between the two
59 * DMA controllers.  So for now, this driver only supports one SSI device
60 * using two DMA channels.  We cannot support multiple DMA devices.
61 *
62 * ssi_stx_phys: bus address of SSI STX register
63 * ssi_srx_phys: bus address of SSI SRX register
64 * dma_channel: pointer to the DMA channel's registers
65 * irq: IRQ for this DMA channel
66 * assigned: set to 1 if that DMA channel is assigned to a substream
67 */
68static struct {
69	dma_addr_t ssi_stx_phys;
70	dma_addr_t ssi_srx_phys;
71	struct ccsr_dma_channel __iomem *dma_channel[2];
72	unsigned int irq[2];
73	unsigned int assigned[2];
74} dma_global_data;
75
76/*
77 * The number of DMA links to use.  Two is the bare minimum, but if you
78 * have really small links you might need more.
79 */
80#define NUM_DMA_LINKS   2
81
82/** fsl_dma_private: p-substream DMA data
83 *
84 * Each substream has a 1-to-1 association with a DMA channel.
85 *
86 * The link[] array is first because it needs to be aligned on a 32-byte
87 * boundary, so putting it first will ensure alignment without padding the
88 * structure.
89 *
90 * @link[]: array of link descriptors
91 * @controller_id: which DMA controller (0, 1, ...)
92 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93 * @dma_channel: pointer to the DMA channel's registers
94 * @irq: IRQ for this DMA channel
95 * @substream: pointer to the substream object, needed by the ISR
96 * @ssi_sxx_phys: bus address of the STX or SRX register to use
97 * @ld_buf_phys: physical address of the LD buffer
98 * @current_link: index into link[] of the link currently being processed
99 * @dma_buf_phys: physical address of the DMA buffer
100 * @dma_buf_next: physical address of the next period to process
101 * @dma_buf_end: physical address of the byte after the end of the DMA
102 * @buffer period_size: the size of a single period
103 * @num_periods: the number of periods in the DMA buffer
104 */
105struct fsl_dma_private {
106	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
107	unsigned int controller_id;
108	unsigned int channel_id;
109	struct ccsr_dma_channel __iomem *dma_channel;
110	unsigned int irq;
111	struct snd_pcm_substream *substream;
112	dma_addr_t ssi_sxx_phys;
113	dma_addr_t ld_buf_phys;
114	unsigned int current_link;
115	dma_addr_t dma_buf_phys;
116	dma_addr_t dma_buf_next;
117	dma_addr_t dma_buf_end;
118	size_t period_size;
119	unsigned int num_periods;
120};
121
122/**
123 * fsl_dma_hardare: define characteristics of the PCM hardware.
124 *
125 * The PCM hardware is the Freescale DMA controller.  This structure defines
126 * the capabilities of that hardware.
127 *
128 * Since the sampling rate and data format are not controlled by the DMA
129 * controller, we specify no limits for those values.  The only exception is
130 * period_bytes_min, which is set to a reasonably low value to prevent the
131 * DMA controller from generating too many interrupts per second.
132 *
133 * Since each link descriptor has a 32-bit byte count field, we set
134 * period_bytes_max to the largest 32-bit number.  We also have no maximum
135 * number of periods.
136 *
137 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
138 * limitation in the SSI driver requires the sample rates for playback and
139 * capture to be the same.
140 */
141static const struct snd_pcm_hardware fsl_dma_hardware = {
142
143	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
144				  SNDRV_PCM_INFO_MMAP |
145				  SNDRV_PCM_INFO_MMAP_VALID |
146				  SNDRV_PCM_INFO_JOINT_DUPLEX |
147				  SNDRV_PCM_INFO_PAUSE,
148	.formats		= FSLDMA_PCM_FORMATS,
149	.rates  		= FSLDMA_PCM_RATES,
150	.rate_min       	= 5512,
151	.rate_max       	= 192000,
152	.period_bytes_min       = 512,  	/* A reasonable limit */
153	.period_bytes_max       = (u32) -1,
154	.periods_min    	= NUM_DMA_LINKS,
155	.periods_max    	= (unsigned int) -1,
156	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
157};
158
159/**
160 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
161 *
162 * This function should be called by the ISR whenever the DMA controller
163 * halts data transfer.
164 */
165static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
166{
167	unsigned long flags;
168
169	snd_pcm_stream_lock_irqsave(substream, flags);
170
171	if (snd_pcm_running(substream))
172		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173
174	snd_pcm_stream_unlock_irqrestore(substream, flags);
175}
176
177/**
178 * fsl_dma_update_pointers - update LD pointers to point to the next period
179 *
180 * As each period is completed, this function changes the the link
181 * descriptor pointers for that period to point to the next period.
182 */
183static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
184{
185	struct fsl_dma_link_descriptor *link =
186		&dma_private->link[dma_private->current_link];
187
188	/* Update our link descriptors to point to the next period */
189	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
190		link->source_addr =
191			cpu_to_be32(dma_private->dma_buf_next);
192	else
193		link->dest_addr =
194			cpu_to_be32(dma_private->dma_buf_next);
195
196	/* Update our variables for next time */
197	dma_private->dma_buf_next += dma_private->period_size;
198
199	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
200		dma_private->dma_buf_next = dma_private->dma_buf_phys;
201
202	if (++dma_private->current_link >= NUM_DMA_LINKS)
203		dma_private->current_link = 0;
204}
205
206/**
207 * fsl_dma_isr: interrupt handler for the DMA controller
208 *
209 * @irq: IRQ of the DMA channel
210 * @dev_id: pointer to the dma_private structure for this DMA channel
211 */
212static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
213{
214	struct fsl_dma_private *dma_private = dev_id;
215	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
216	irqreturn_t ret = IRQ_NONE;
217	u32 sr, sr2 = 0;
218
219	/* We got an interrupt, so read the status register to see what we
220	   were interrupted for.
221	 */
222	sr = in_be32(&dma_channel->sr);
223
224	if (sr & CCSR_DMA_SR_TE) {
225		dev_err(dma_private->substream->pcm->card->dev,
226			"DMA transmit error (controller=%u channel=%u irq=%u\n",
227			dma_private->controller_id,
228			dma_private->channel_id, irq);
229		fsl_dma_abort_stream(dma_private->substream);
230		sr2 |= CCSR_DMA_SR_TE;
231		ret = IRQ_HANDLED;
232	}
233
234	if (sr & CCSR_DMA_SR_CH)
235		ret = IRQ_HANDLED;
236
237	if (sr & CCSR_DMA_SR_PE) {
238		dev_err(dma_private->substream->pcm->card->dev,
239			"DMA%u programming error (channel=%u irq=%u)\n",
240			dma_private->controller_id,
241			dma_private->channel_id, irq);
242		fsl_dma_abort_stream(dma_private->substream);
243		sr2 |= CCSR_DMA_SR_PE;
244		ret = IRQ_HANDLED;
245	}
246
247	if (sr & CCSR_DMA_SR_EOLNI) {
248		sr2 |= CCSR_DMA_SR_EOLNI;
249		ret = IRQ_HANDLED;
250	}
251
252	if (sr & CCSR_DMA_SR_CB)
253		ret = IRQ_HANDLED;
254
255	if (sr & CCSR_DMA_SR_EOSI) {
256		struct snd_pcm_substream *substream = dma_private->substream;
257
258		/* Tell ALSA we completed a period. */
259		snd_pcm_period_elapsed(substream);
260
261		/*
262		 * Update our link descriptors to point to the next period. We
263		 * only need to do this if the number of periods is not equal to
264		 * the number of links.
265		 */
266		if (dma_private->num_periods != NUM_DMA_LINKS)
267			fsl_dma_update_pointers(dma_private);
268
269		sr2 |= CCSR_DMA_SR_EOSI;
270		ret = IRQ_HANDLED;
271	}
272
273	if (sr & CCSR_DMA_SR_EOLSI) {
274		sr2 |= CCSR_DMA_SR_EOLSI;
275		ret = IRQ_HANDLED;
276	}
277
278	/* Clear the bits that we set */
279	if (sr2)
280		out_be32(&dma_channel->sr, sr2);
281
282	return ret;
283}
284
285/**
286 * fsl_dma_new: initialize this PCM driver.
287 *
288 * This function is called when the codec driver calls snd_soc_new_pcms(),
289 * once for each .dai_link in the machine driver's snd_soc_card
290 * structure.
291 */
292static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
293	struct snd_pcm *pcm)
294{
295	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
296	int ret;
297
298	if (!card->dev->dma_mask)
299		card->dev->dma_mask = &fsl_dma_dmamask;
300
301	if (!card->dev->coherent_dma_mask)
302		card->dev->coherent_dma_mask = fsl_dma_dmamask;
303
304	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
305		fsl_dma_hardware.buffer_bytes_max,
306		&pcm->streams[0].substream->dma_buffer);
307	if (ret) {
308		dev_err(card->dev,
309			"Can't allocate playback DMA buffer (size=%u)\n",
310			fsl_dma_hardware.buffer_bytes_max);
311		return -ENOMEM;
312	}
313
314	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
315		fsl_dma_hardware.buffer_bytes_max,
316		&pcm->streams[1].substream->dma_buffer);
317	if (ret) {
318		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
319		dev_err(card->dev,
320			"Can't allocate capture DMA buffer (size=%u)\n",
321			fsl_dma_hardware.buffer_bytes_max);
322		return -ENOMEM;
323	}
324
325	return 0;
326}
327
328/**
329 * fsl_dma_open: open a new substream.
330 *
331 * Each substream has its own DMA buffer.
332 *
333 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
334 * descriptors that ping-pong from one period to the next.  For example, if
335 * there are six periods and two link descriptors, this is how they look
336 * before playback starts:
337 *
338 *      	   The last link descriptor
339 *   ____________  points back to the first
340 *  |   	 |
341 *  V   	 |
342 *  ___    ___   |
343 * |   |->|   |->|
344 * |___|  |___|
345 *   |      |
346 *   |      |
347 *   V      V
348 *  _________________________________________
349 * |      |      |      |      |      |      |  The DMA buffer is
350 * |      |      |      |      |      |      |    divided into 6 parts
351 * |______|______|______|______|______|______|
352 *
353 * and here's how they look after the first period is finished playing:
354 *
355 *   ____________
356 *  |   	 |
357 *  V   	 |
358 *  ___    ___   |
359 * |   |->|   |->|
360 * |___|  |___|
361 *   |      |
362 *   |______________
363 *          |       |
364 *          V       V
365 *  _________________________________________
366 * |      |      |      |      |      |      |
367 * |      |      |      |      |      |      |
368 * |______|______|______|______|______|______|
369 *
370 * The first link descriptor now points to the third period.  The DMA
371 * controller is currently playing the second period.  When it finishes, it
372 * will jump back to the first descriptor and play the third period.
373 *
374 * There are four reasons we do this:
375 *
376 * 1. The only way to get the DMA controller to automatically restart the
377 *    transfer when it gets to the end of the buffer is to use chaining
378 *    mode.  Basic direct mode doesn't offer that feature.
379 * 2. We need to receive an interrupt at the end of every period.  The DMA
380 *    controller can generate an interrupt at the end of every link transfer
381 *    (aka segment).  Making each period into a DMA segment will give us the
382 *    interrupts we need.
383 * 3. By creating only two link descriptors, regardless of the number of
384 *    periods, we do not need to reallocate the link descriptors if the
385 *    number of periods changes.
386 * 4. All of the audio data is still stored in a single, contiguous DMA
387 *    buffer, which is what ALSA expects.  We're just dividing it into
388 *    contiguous parts, and creating a link descriptor for each one.
389 */
390static int fsl_dma_open(struct snd_pcm_substream *substream)
391{
392	struct snd_pcm_runtime *runtime = substream->runtime;
393	struct fsl_dma_private *dma_private;
394	struct ccsr_dma_channel __iomem *dma_channel;
395	dma_addr_t ld_buf_phys;
396	u64 temp_link;  	/* Pointer to next link descriptor */
397	u32 mr;
398	unsigned int channel;
399	int ret = 0;
400	unsigned int i;
401
402	/*
403	 * Reject any DMA buffer whose size is not a multiple of the period
404	 * size.  We need to make sure that the DMA buffer can be evenly divided
405	 * into periods.
406	 */
407	ret = snd_pcm_hw_constraint_integer(runtime,
408		SNDRV_PCM_HW_PARAM_PERIODS);
409	if (ret < 0) {
410		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
411		return ret;
412	}
413
414	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
415
416	if (dma_global_data.assigned[channel]) {
417		dev_err(substream->pcm->card->dev,
418			"DMA channel already assigned\n");
419		return -EBUSY;
420	}
421
422	dma_private = dma_alloc_coherent(substream->pcm->card->dev,
423		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
424	if (!dma_private) {
425		dev_err(substream->pcm->card->dev,
426			"can't allocate DMA private data\n");
427		return -ENOMEM;
428	}
429	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
430		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
431	else
432		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
433
434	dma_private->dma_channel = dma_global_data.dma_channel[channel];
435	dma_private->irq = dma_global_data.irq[channel];
436	dma_private->substream = substream;
437	dma_private->ld_buf_phys = ld_buf_phys;
438	dma_private->dma_buf_phys = substream->dma_buffer.addr;
439
440	/* We only support one DMA controller for now */
441	dma_private->controller_id = 0;
442	dma_private->channel_id = channel;
443
444	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
445	if (ret) {
446		dev_err(substream->pcm->card->dev,
447			"can't register ISR for IRQ %u (ret=%i)\n",
448			dma_private->irq, ret);
449		dma_free_coherent(substream->pcm->card->dev,
450			sizeof(struct fsl_dma_private),
451			dma_private, dma_private->ld_buf_phys);
452		return ret;
453	}
454
455	dma_global_data.assigned[channel] = 1;
456
457	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
458	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
459	runtime->private_data = dma_private;
460
461	/* Program the fixed DMA controller parameters */
462
463	dma_channel = dma_private->dma_channel;
464
465	temp_link = dma_private->ld_buf_phys +
466		sizeof(struct fsl_dma_link_descriptor);
467
468	for (i = 0; i < NUM_DMA_LINKS; i++) {
469		dma_private->link[i].next = cpu_to_be64(temp_link);
470
471		temp_link += sizeof(struct fsl_dma_link_descriptor);
472	}
473	/* The last link descriptor points to the first */
474	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
475
476	/* Tell the DMA controller where the first link descriptor is */
477	out_be32(&dma_channel->clndar,
478		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
479	out_be32(&dma_channel->eclndar,
480		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
481
482	/* The manual says the BCR must be clear before enabling EMP */
483	out_be32(&dma_channel->bcr, 0);
484
485	/*
486	 * Program the mode register for interrupts, external master control,
487	 * and source/destination hold.  Also clear the Channel Abort bit.
488	 */
489	mr = in_be32(&dma_channel->mr) &
490		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
491
492	/*
493	 * We want External Master Start and External Master Pause enabled,
494	 * because the SSI is controlling the DMA controller.  We want the DMA
495	 * controller to be set up in advance, and then we signal only the SSI
496	 * to start transferring.
497	 *
498	 * We want End-Of-Segment Interrupts enabled, because this will generate
499	 * an interrupt at the end of each segment (each link descriptor
500	 * represents one segment).  Each DMA segment is the same thing as an
501	 * ALSA period, so this is how we get an interrupt at the end of every
502	 * period.
503	 *
504	 * We want Error Interrupt enabled, so that we can get an error if
505	 * the DMA controller is mis-programmed somehow.
506	 */
507	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
508		CCSR_DMA_MR_EMS_EN;
509
510	/* For playback, we want the destination address to be held.  For
511	   capture, set the source address to be held. */
512	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
513		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
514
515	out_be32(&dma_channel->mr, mr);
516
517	return 0;
518}
519
520/**
521 * fsl_dma_hw_params: continue initializing the DMA links
522 *
523 * This function obtains hardware parameters about the opened stream and
524 * programs the DMA controller accordingly.
525 *
526 * One drawback of big-endian is that when copying integers of different
527 * sizes to a fixed-sized register, the address to which the integer must be
528 * copied is dependent on the size of the integer.
529 *
530 * For example, if P is the address of a 32-bit register, and X is a 32-bit
531 * integer, then X should be copied to address P.  However, if X is a 16-bit
532 * integer, then it should be copied to P+2.  If X is an 8-bit register,
533 * then it should be copied to P+3.
534 *
535 * So for playback of 8-bit samples, the DMA controller must transfer single
536 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
537 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
538 *
539 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
540 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
541 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
542 * 24-bit data must be padded to 32 bits.
543 */
544static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
545	struct snd_pcm_hw_params *hw_params)
546{
547	struct snd_pcm_runtime *runtime = substream->runtime;
548	struct fsl_dma_private *dma_private = runtime->private_data;
549
550	/* Number of bits per sample */
551	unsigned int sample_size =
552		snd_pcm_format_physical_width(params_format(hw_params));
553
554	/* Number of bytes per frame */
555	unsigned int frame_size = 2 * (sample_size / 8);
556
557	/* Bus address of SSI STX register */
558	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
559
560	/* Size of the DMA buffer, in bytes */
561	size_t buffer_size = params_buffer_bytes(hw_params);
562
563	/* Number of bytes per period */
564	size_t period_size = params_period_bytes(hw_params);
565
566	/* Pointer to next period */
567	dma_addr_t temp_addr = substream->dma_buffer.addr;
568
569	/* Pointer to DMA controller */
570	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
571
572	u32 mr; /* DMA Mode Register */
573
574	unsigned int i;
575
576	/* Initialize our DMA tracking variables */
577	dma_private->period_size = period_size;
578	dma_private->num_periods = params_periods(hw_params);
579	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
580	dma_private->dma_buf_next = dma_private->dma_buf_phys +
581		(NUM_DMA_LINKS * period_size);
582
583	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
584		/* This happens if the number of periods == NUM_DMA_LINKS */
585		dma_private->dma_buf_next = dma_private->dma_buf_phys;
586
587	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
588		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
589
590	/* Due to a quirk of the SSI's STX register, the target address
591	 * for the DMA operations depends on the sample size.  So we calculate
592	 * that offset here.  While we're at it, also tell the DMA controller
593	 * how much data to transfer per sample.
594	 */
595	switch (sample_size) {
596	case 8:
597		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
598		ssi_sxx_phys += 3;
599		break;
600	case 16:
601		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
602		ssi_sxx_phys += 2;
603		break;
604	case 32:
605		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
606		break;
607	default:
608		/* We should never get here */
609		dev_err(substream->pcm->card->dev,
610			"unsupported sample size %u\n", sample_size);
611		return -EINVAL;
612	}
613
614	/*
615	 * BWC should always be a multiple of the frame size.  BWC determines
616	 * how many bytes are sent/received before the DMA controller checks the
617	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
618	 * hold three frames, so we want to send two frames at a time. For
619	 * capture, the receive FIFO is triggered when it contains one frame, so
620	 * we want to receive one frame at a time.
621	 */
622	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
623		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
624	else
625		mr |= CCSR_DMA_MR_BWC(frame_size);
626
627	out_be32(&dma_channel->mr, mr);
628
629	for (i = 0; i < NUM_DMA_LINKS; i++) {
630		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
631
632		link->count = cpu_to_be32(period_size);
633
634		/* Even though the DMA controller supports 36-bit addressing,
635		 * for simplicity we allow only 32-bit addresses for the audio
636		 * buffer itself.  This was enforced in fsl_dma_new() with the
637		 * DMA mask.
638		 *
639		 * The snoop bit tells the DMA controller whether it should tell
640		 * the ECM to snoop during a read or write to an address. For
641		 * audio, we use DMA to transfer data between memory and an I/O
642		 * device (the SSI's STX0 or SRX0 register). Snooping is only
643		 * needed if there is a cache, so we need to snoop memory
644		 * addresses only.  For playback, that means we snoop the source
645		 * but not the destination.  For capture, we snoop the
646		 * destination but not the source.
647		 *
648		 * Note that failing to snoop properly is unlikely to cause
649		 * cache incoherency if the period size is larger than the
650		 * size of L1 cache.  This is because filling in one period will
651		 * flush out the data for the previous period.  So if you
652		 * increased period_bytes_min to a large enough size, you might
653		 * get more performance by not snooping, and you'll still be
654		 * okay.
655		 */
656		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
657			link->source_addr = cpu_to_be32(temp_addr);
658			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
659
660			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
661			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
662		} else {
663			link->source_addr = cpu_to_be32(ssi_sxx_phys);
664			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
665
666			link->dest_addr = cpu_to_be32(temp_addr);
667			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
668		}
669
670		temp_addr += period_size;
671	}
672
673	return 0;
674}
675
676/**
677 * fsl_dma_pointer: determine the current position of the DMA transfer
678 *
679 * This function is called by ALSA when ALSA wants to know where in the
680 * stream buffer the hardware currently is.
681 *
682 * For playback, the SAR register contains the physical address of the most
683 * recent DMA transfer.  For capture, the value is in the DAR register.
684 *
685 * The base address of the buffer is stored in the source_addr field of the
686 * first link descriptor.
687 */
688static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
689{
690	struct snd_pcm_runtime *runtime = substream->runtime;
691	struct fsl_dma_private *dma_private = runtime->private_data;
692	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
693	dma_addr_t position;
694	snd_pcm_uframes_t frames;
695
696	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
697		position = in_be32(&dma_channel->sar);
698	else
699		position = in_be32(&dma_channel->dar);
700
701	/*
702	 * When capture is started, the SSI immediately starts to fill its FIFO.
703	 * This means that the DMA controller is not started until the FIFO is
704	 * full.  However, ALSA calls this function before that happens, when
705	 * MR.DAR is still zero.  In this case, just return zero to indicate
706	 * that nothing has been received yet.
707	 */
708	if (!position)
709		return 0;
710
711	if ((position < dma_private->dma_buf_phys) ||
712	    (position > dma_private->dma_buf_end)) {
713		dev_err(substream->pcm->card->dev,
714			"dma pointer is out of range, halting stream\n");
715		return SNDRV_PCM_POS_XRUN;
716	}
717
718	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
719
720	/*
721	 * If the current address is just past the end of the buffer, wrap it
722	 * around.
723	 */
724	if (frames == runtime->buffer_size)
725		frames = 0;
726
727	return frames;
728}
729
730/**
731 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
732 *
733 * Release the resources allocated in fsl_dma_hw_params() and de-program the
734 * registers.
735 *
736 * This function can be called multiple times.
737 */
738static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
739{
740	struct snd_pcm_runtime *runtime = substream->runtime;
741	struct fsl_dma_private *dma_private = runtime->private_data;
742
743	if (dma_private) {
744		struct ccsr_dma_channel __iomem *dma_channel;
745
746		dma_channel = dma_private->dma_channel;
747
748		/* Stop the DMA */
749		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
750		out_be32(&dma_channel->mr, 0);
751
752		/* Reset all the other registers */
753		out_be32(&dma_channel->sr, -1);
754		out_be32(&dma_channel->clndar, 0);
755		out_be32(&dma_channel->eclndar, 0);
756		out_be32(&dma_channel->satr, 0);
757		out_be32(&dma_channel->sar, 0);
758		out_be32(&dma_channel->datr, 0);
759		out_be32(&dma_channel->dar, 0);
760		out_be32(&dma_channel->bcr, 0);
761		out_be32(&dma_channel->nlndar, 0);
762		out_be32(&dma_channel->enlndar, 0);
763	}
764
765	return 0;
766}
767
768/**
769 * fsl_dma_close: close the stream.
770 */
771static int fsl_dma_close(struct snd_pcm_substream *substream)
772{
773	struct snd_pcm_runtime *runtime = substream->runtime;
774	struct fsl_dma_private *dma_private = runtime->private_data;
775	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
776
777	if (dma_private) {
778		if (dma_private->irq)
779			free_irq(dma_private->irq, dma_private);
780
781		if (dma_private->ld_buf_phys) {
782			dma_unmap_single(substream->pcm->card->dev,
783				dma_private->ld_buf_phys,
784				sizeof(dma_private->link), DMA_TO_DEVICE);
785		}
786
787		/* Deallocate the fsl_dma_private structure */
788		dma_free_coherent(substream->pcm->card->dev,
789			sizeof(struct fsl_dma_private),
790			dma_private, dma_private->ld_buf_phys);
791		substream->runtime->private_data = NULL;
792	}
793
794	dma_global_data.assigned[dir] = 0;
795
796	return 0;
797}
798
799/*
800 * Remove this PCM driver.
801 */
802static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
803{
804	struct snd_pcm_substream *substream;
805	unsigned int i;
806
807	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
808		substream = pcm->streams[i].substream;
809		if (substream) {
810			snd_dma_free_pages(&substream->dma_buffer);
811			substream->dma_buffer.area = NULL;
812			substream->dma_buffer.addr = 0;
813		}
814	}
815}
816
817static struct snd_pcm_ops fsl_dma_ops = {
818	.open   	= fsl_dma_open,
819	.close  	= fsl_dma_close,
820	.ioctl  	= snd_pcm_lib_ioctl,
821	.hw_params      = fsl_dma_hw_params,
822	.hw_free	= fsl_dma_hw_free,
823	.pointer	= fsl_dma_pointer,
824};
825
826struct snd_soc_platform fsl_soc_platform = {
827	.name   	= "fsl-dma",
828	.pcm_ops	= &fsl_dma_ops,
829	.pcm_new	= fsl_dma_new,
830	.pcm_free       = fsl_dma_free_dma_buffers,
831};
832EXPORT_SYMBOL_GPL(fsl_soc_platform);
833
834/**
835 * fsl_dma_configure: store the DMA parameters from the fabric driver.
836 *
837 * This function is called by the ASoC fabric driver to give us the DMA and
838 * SSI channel information.
839 *
840 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
841 * data when a substream is created, so for now we need to store this data
842 * into a global variable.  This means that we can only support one DMA
843 * controller, and hence only one SSI.
844 */
845int fsl_dma_configure(struct fsl_dma_info *dma_info)
846{
847	static int initialized;
848
849	/* We only support one DMA controller for now */
850	if (initialized)
851		return 0;
852
853	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
854	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
855	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
856	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
857	dma_global_data.irq[0] = dma_info->dma_irq[0];
858	dma_global_data.irq[1] = dma_info->dma_irq[1];
859	dma_global_data.assigned[0] = 0;
860	dma_global_data.assigned[1] = 0;
861
862	initialized = 1;
863	return 1;
864}
865EXPORT_SYMBOL_GPL(fsl_dma_configure);
866
867static int __init fsl_soc_platform_init(void)
868{
869	return snd_soc_register_platform(&fsl_soc_platform);
870}
871module_init(fsl_soc_platform_init);
872
873static void __exit fsl_soc_platform_exit(void)
874{
875	snd_soc_unregister_platform(&fsl_soc_platform);
876}
877module_exit(fsl_soc_platform_exit);
878
879MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
880MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
881MODULE_LICENSE("GPL");
882