• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/sound/core/oss/
1/*
2 *  Mu-Law conversion Plug-In Interface
3 *  Copyright (c) 1999 by Jaroslav Kysela <perex@perex.cz>
4 *                        Uros Bizjak <uros@kss-loka.si>
5 *
6 *  Based on reference implementation by Sun Microsystems, Inc.
7 *
8 *   This library is free software; you can redistribute it and/or modify
9 *   it under the terms of the GNU Library General Public License as
10 *   published by the Free Software Foundation; either version 2 of
11 *   the License, or (at your option) any later version.
12 *
13 *   This program is distributed in the hope that it will be useful,
14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *   GNU Library General Public License for more details.
17 *
18 *   You should have received a copy of the GNU Library General Public
19 *   License along with this library; if not, write to the Free Software
20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21 *
22 */
23
24#include <linux/time.h>
25#include <sound/core.h>
26#include <sound/pcm.h>
27#include "pcm_plugin.h"
28
29#define	SIGN_BIT	(0x80)		/* Sign bit for a u-law byte. */
30#define	QUANT_MASK	(0xf)		/* Quantization field mask. */
31#define	NSEGS		(8)		/* Number of u-law segments. */
32#define	SEG_SHIFT	(4)		/* Left shift for segment number. */
33#define	SEG_MASK	(0x70)		/* Segment field mask. */
34
35static inline int val_seg(int val)
36{
37	int r = 0;
38	val >>= 7;
39	if (val & 0xf0) {
40		val >>= 4;
41		r += 4;
42	}
43	if (val & 0x0c) {
44		val >>= 2;
45		r += 2;
46	}
47	if (val & 0x02)
48		r += 1;
49	return r;
50}
51
52#define	BIAS		(0x84)		/* Bias for linear code. */
53
54/*
55 * linear2ulaw() - Convert a linear PCM value to u-law
56 *
57 * In order to simplify the encoding process, the original linear magnitude
58 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
59 * (33 - 8191). The result can be seen in the following encoding table:
60 *
61 *	Biased Linear Input Code	Compressed Code
62 *	------------------------	---------------
63 *	00000001wxyza			000wxyz
64 *	0000001wxyzab			001wxyz
65 *	000001wxyzabc			010wxyz
66 *	00001wxyzabcd			011wxyz
67 *	0001wxyzabcde			100wxyz
68 *	001wxyzabcdef			101wxyz
69 *	01wxyzabcdefg			110wxyz
70 *	1wxyzabcdefgh			111wxyz
71 *
72 * Each biased linear code has a leading 1 which identifies the segment
73 * number. The value of the segment number is equal to 7 minus the number
74 * of leading 0's. The quantization interval is directly available as the
75 * four bits wxyz.  * The trailing bits (a - h) are ignored.
76 *
77 * Ordinarily the complement of the resulting code word is used for
78 * transmission, and so the code word is complemented before it is returned.
79 *
80 * For further information see John C. Bellamy's Digital Telephony, 1982,
81 * John Wiley & Sons, pps 98-111 and 472-476.
82 */
83static unsigned char linear2ulaw(int pcm_val)	/* 2's complement (16-bit range) */
84{
85	int mask;
86	int seg;
87	unsigned char uval;
88
89	/* Get the sign and the magnitude of the value. */
90	if (pcm_val < 0) {
91		pcm_val = BIAS - pcm_val;
92		mask = 0x7F;
93	} else {
94		pcm_val += BIAS;
95		mask = 0xFF;
96	}
97	if (pcm_val > 0x7FFF)
98		pcm_val = 0x7FFF;
99
100	/* Convert the scaled magnitude to segment number. */
101	seg = val_seg(pcm_val);
102
103	/*
104	 * Combine the sign, segment, quantization bits;
105	 * and complement the code word.
106	 */
107	uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
108	return uval ^ mask;
109}
110
111/*
112 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
113 *
114 * First, a biased linear code is derived from the code word. An unbiased
115 * output can then be obtained by subtracting 33 from the biased code.
116 *
117 * Note that this function expects to be passed the complement of the
118 * original code word. This is in keeping with ISDN conventions.
119 */
120static int ulaw2linear(unsigned char u_val)
121{
122	int t;
123
124	/* Complement to obtain normal u-law value. */
125	u_val = ~u_val;
126
127	/*
128	 * Extract and bias the quantization bits. Then
129	 * shift up by the segment number and subtract out the bias.
130	 */
131	t = ((u_val & QUANT_MASK) << 3) + BIAS;
132	t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
133
134	return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
135}
136
137/*
138 *  Basic Mu-Law plugin
139 */
140
141typedef void (*mulaw_f)(struct snd_pcm_plugin *plugin,
142			const struct snd_pcm_plugin_channel *src_channels,
143			struct snd_pcm_plugin_channel *dst_channels,
144			snd_pcm_uframes_t frames);
145
146struct mulaw_priv {
147	mulaw_f func;
148	int cvt_endian;			/* need endian conversion? */
149	unsigned int native_ofs;	/* byte offset in native format */
150	unsigned int copy_ofs;		/* byte offset in s16 format */
151	unsigned int native_bytes;	/* byte size of the native format */
152	unsigned int copy_bytes;	/* bytes to copy per conversion */
153	u16 flip; /* MSB flip for signedness, done after endian conversion */
154};
155
156static inline void cvt_s16_to_native(struct mulaw_priv *data,
157				     unsigned char *dst, u16 sample)
158{
159	sample ^= data->flip;
160	if (data->cvt_endian)
161		sample = swab16(sample);
162	if (data->native_bytes > data->copy_bytes)
163		memset(dst, 0, data->native_bytes);
164	memcpy(dst + data->native_ofs, (char *)&sample + data->copy_ofs,
165	       data->copy_bytes);
166}
167
168static void mulaw_decode(struct snd_pcm_plugin *plugin,
169			const struct snd_pcm_plugin_channel *src_channels,
170			struct snd_pcm_plugin_channel *dst_channels,
171			snd_pcm_uframes_t frames)
172{
173	struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data;
174	int channel;
175	int nchannels = plugin->src_format.channels;
176	for (channel = 0; channel < nchannels; ++channel) {
177		char *src;
178		char *dst;
179		int src_step, dst_step;
180		snd_pcm_uframes_t frames1;
181		if (!src_channels[channel].enabled) {
182			if (dst_channels[channel].wanted)
183				snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format);
184			dst_channels[channel].enabled = 0;
185			continue;
186		}
187		dst_channels[channel].enabled = 1;
188		src = src_channels[channel].area.addr + src_channels[channel].area.first / 8;
189		dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8;
190		src_step = src_channels[channel].area.step / 8;
191		dst_step = dst_channels[channel].area.step / 8;
192		frames1 = frames;
193		while (frames1-- > 0) {
194			signed short sample = ulaw2linear(*src);
195			cvt_s16_to_native(data, dst, sample);
196			src += src_step;
197			dst += dst_step;
198		}
199	}
200}
201
202static inline signed short cvt_native_to_s16(struct mulaw_priv *data,
203					     unsigned char *src)
204{
205	u16 sample = 0;
206	memcpy((char *)&sample + data->copy_ofs, src + data->native_ofs,
207	       data->copy_bytes);
208	if (data->cvt_endian)
209		sample = swab16(sample);
210	sample ^= data->flip;
211	return (signed short)sample;
212}
213
214static void mulaw_encode(struct snd_pcm_plugin *plugin,
215			const struct snd_pcm_plugin_channel *src_channels,
216			struct snd_pcm_plugin_channel *dst_channels,
217			snd_pcm_uframes_t frames)
218{
219	struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data;
220	int channel;
221	int nchannels = plugin->src_format.channels;
222	for (channel = 0; channel < nchannels; ++channel) {
223		char *src;
224		char *dst;
225		int src_step, dst_step;
226		snd_pcm_uframes_t frames1;
227		if (!src_channels[channel].enabled) {
228			if (dst_channels[channel].wanted)
229				snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format);
230			dst_channels[channel].enabled = 0;
231			continue;
232		}
233		dst_channels[channel].enabled = 1;
234		src = src_channels[channel].area.addr + src_channels[channel].area.first / 8;
235		dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8;
236		src_step = src_channels[channel].area.step / 8;
237		dst_step = dst_channels[channel].area.step / 8;
238		frames1 = frames;
239		while (frames1-- > 0) {
240			signed short sample = cvt_native_to_s16(data, src);
241			*dst = linear2ulaw(sample);
242			src += src_step;
243			dst += dst_step;
244		}
245	}
246}
247
248static snd_pcm_sframes_t mulaw_transfer(struct snd_pcm_plugin *plugin,
249			      const struct snd_pcm_plugin_channel *src_channels,
250			      struct snd_pcm_plugin_channel *dst_channels,
251			      snd_pcm_uframes_t frames)
252{
253	struct mulaw_priv *data;
254
255	if (snd_BUG_ON(!plugin || !src_channels || !dst_channels))
256		return -ENXIO;
257	if (frames == 0)
258		return 0;
259#ifdef CONFIG_SND_DEBUG
260	{
261		unsigned int channel;
262		for (channel = 0; channel < plugin->src_format.channels; channel++) {
263			if (snd_BUG_ON(src_channels[channel].area.first % 8 ||
264				       src_channels[channel].area.step % 8))
265				return -ENXIO;
266			if (snd_BUG_ON(dst_channels[channel].area.first % 8 ||
267				       dst_channels[channel].area.step % 8))
268				return -ENXIO;
269		}
270	}
271#endif
272	data = (struct mulaw_priv *)plugin->extra_data;
273	data->func(plugin, src_channels, dst_channels, frames);
274	return frames;
275}
276
277static void init_data(struct mulaw_priv *data, int format)
278{
279#ifdef SNDRV_LITTLE_ENDIAN
280	data->cvt_endian = snd_pcm_format_big_endian(format) > 0;
281#else
282	data->cvt_endian = snd_pcm_format_little_endian(format) > 0;
283#endif
284	if (!snd_pcm_format_signed(format))
285		data->flip = 0x8000;
286	data->native_bytes = snd_pcm_format_physical_width(format) / 8;
287	data->copy_bytes = data->native_bytes < 2 ? 1 : 2;
288	if (snd_pcm_format_little_endian(format)) {
289		data->native_ofs = data->native_bytes - data->copy_bytes;
290		data->copy_ofs = 2 - data->copy_bytes;
291	} else {
292		/* S24 in 4bytes need an 1 byte offset */
293		data->native_ofs = data->native_bytes -
294			snd_pcm_format_width(format) / 8;
295	}
296}
297
298int snd_pcm_plugin_build_mulaw(struct snd_pcm_substream *plug,
299			       struct snd_pcm_plugin_format *src_format,
300			       struct snd_pcm_plugin_format *dst_format,
301			       struct snd_pcm_plugin **r_plugin)
302{
303	int err;
304	struct mulaw_priv *data;
305	struct snd_pcm_plugin *plugin;
306	struct snd_pcm_plugin_format *format;
307	mulaw_f func;
308
309	if (snd_BUG_ON(!r_plugin))
310		return -ENXIO;
311	*r_plugin = NULL;
312
313	if (snd_BUG_ON(src_format->rate != dst_format->rate))
314		return -ENXIO;
315	if (snd_BUG_ON(src_format->channels != dst_format->channels))
316		return -ENXIO;
317
318	if (dst_format->format == SNDRV_PCM_FORMAT_MU_LAW) {
319		format = src_format;
320		func = mulaw_encode;
321	}
322	else if (src_format->format == SNDRV_PCM_FORMAT_MU_LAW) {
323		format = dst_format;
324		func = mulaw_decode;
325	}
326	else {
327		snd_BUG();
328		return -EINVAL;
329	}
330	if (snd_BUG_ON(!snd_pcm_format_linear(format->format)))
331		return -ENXIO;
332
333	err = snd_pcm_plugin_build(plug, "Mu-Law<->linear conversion",
334				   src_format, dst_format,
335				   sizeof(struct mulaw_priv), &plugin);
336	if (err < 0)
337		return err;
338	data = (struct mulaw_priv *)plugin->extra_data;
339	data->func = func;
340	init_data(data, format->format);
341	plugin->transfer = mulaw_transfer;
342	*r_plugin = plugin;
343	return 0;
344}
345