1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/gfp.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/blkdev.h>
16#include <linux/backing-dev.h>
17#include <linux/task_io_accounting_ops.h>
18#include <linux/pagevec.h>
19#include <linux/pagemap.h>
20
21/*
22 * Initialise a struct file's readahead state.  Assumes that the caller has
23 * memset *ra to zero.
24 */
25void
26file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
27{
28	ra->ra_pages = mapping->backing_dev_info->ra_pages;
29	ra->prev_pos = -1;
30}
31EXPORT_SYMBOL_GPL(file_ra_state_init);
32
33#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
34
35/*
36 * see if a page needs releasing upon read_cache_pages() failure
37 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
38 *   before calling, such as the NFS fs marking pages that are cached locally
39 *   on disk, thus we need to give the fs a chance to clean up in the event of
40 *   an error
41 */
42static void read_cache_pages_invalidate_page(struct address_space *mapping,
43					     struct page *page)
44{
45	if (page_has_private(page)) {
46		if (!trylock_page(page))
47			BUG();
48		page->mapping = mapping;
49		do_invalidatepage(page, 0);
50		page->mapping = NULL;
51		unlock_page(page);
52	}
53	page_cache_release(page);
54}
55
56/*
57 * release a list of pages, invalidating them first if need be
58 */
59static void read_cache_pages_invalidate_pages(struct address_space *mapping,
60					      struct list_head *pages)
61{
62	struct page *victim;
63
64	while (!list_empty(pages)) {
65		victim = list_to_page(pages);
66		list_del(&victim->lru);
67		read_cache_pages_invalidate_page(mapping, victim);
68	}
69}
70
71/**
72 * read_cache_pages - populate an address space with some pages & start reads against them
73 * @mapping: the address_space
74 * @pages: The address of a list_head which contains the target pages.  These
75 *   pages have their ->index populated and are otherwise uninitialised.
76 * @filler: callback routine for filling a single page.
77 * @data: private data for the callback routine.
78 *
79 * Hides the details of the LRU cache etc from the filesystems.
80 */
81int read_cache_pages(struct address_space *mapping, struct list_head *pages,
82			int (*filler)(void *, struct page *), void *data)
83{
84	struct page *page;
85	int ret = 0;
86
87	while (!list_empty(pages)) {
88		page = list_to_page(pages);
89		list_del(&page->lru);
90		if (add_to_page_cache_lru(page, mapping,
91					page->index, GFP_KERNEL)) {
92			read_cache_pages_invalidate_page(mapping, page);
93			continue;
94		}
95		page_cache_release(page);
96
97		ret = filler(data, page);
98		if (unlikely(ret)) {
99			read_cache_pages_invalidate_pages(mapping, pages);
100			break;
101		}
102		task_io_account_read(PAGE_CACHE_SIZE);
103	}
104	return ret;
105}
106
107EXPORT_SYMBOL(read_cache_pages);
108
109static int read_pages(struct address_space *mapping, struct file *filp,
110		struct list_head *pages, unsigned nr_pages)
111{
112	unsigned page_idx;
113	int ret;
114
115	if (mapping->a_ops->readpages) {
116		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
117		/* Clean up the remaining pages */
118		put_pages_list(pages);
119		goto out;
120	}
121
122	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
123		struct page *page = list_to_page(pages);
124		list_del(&page->lru);
125		if (!add_to_page_cache_lru(page, mapping,
126					page->index, GFP_KERNEL)) {
127			mapping->a_ops->readpage(filp, page);
128		}
129		page_cache_release(page);
130	}
131	ret = 0;
132out:
133	return ret;
134}
135
136/*
137 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
138 * the pages first, then submits them all for I/O. This avoids the very bad
139 * behaviour which would occur if page allocations are causing VM writeback.
140 * We really don't want to intermingle reads and writes like that.
141 *
142 * Returns the number of pages requested, or the maximum amount of I/O allowed.
143 */
144static int
145__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
146			pgoff_t offset, unsigned long nr_to_read,
147			unsigned long lookahead_size)
148{
149	struct inode *inode = mapping->host;
150	struct page *page;
151	unsigned long end_index;	/* The last page we want to read */
152	LIST_HEAD(page_pool);
153	int page_idx;
154	int ret = 0;
155	loff_t isize = i_size_read(inode);
156
157	if (isize == 0)
158		goto out;
159
160	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
161
162	/*
163	 * Preallocate as many pages as we will need.
164	 */
165	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
166		pgoff_t page_offset = offset + page_idx;
167
168		if (page_offset > end_index)
169			break;
170
171		rcu_read_lock();
172		page = radix_tree_lookup(&mapping->page_tree, page_offset);
173		rcu_read_unlock();
174		if (page)
175			continue;
176
177		page = page_cache_alloc_cold(mapping);
178		if (!page)
179			break;
180		page->index = page_offset;
181		list_add(&page->lru, &page_pool);
182		if (page_idx == nr_to_read - lookahead_size)
183			SetPageReadahead(page);
184		ret++;
185	}
186
187	/*
188	 * Now start the IO.  We ignore I/O errors - if the page is not
189	 * uptodate then the caller will launch readpage again, and
190	 * will then handle the error.
191	 */
192	if (ret)
193		read_pages(mapping, filp, &page_pool, ret);
194	BUG_ON(!list_empty(&page_pool));
195out:
196	return ret;
197}
198
199/*
200 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
201 * memory at once.
202 */
203int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
204		pgoff_t offset, unsigned long nr_to_read)
205{
206	int ret = 0;
207
208	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
209		return -EINVAL;
210
211	nr_to_read = max_sane_readahead(nr_to_read);
212	while (nr_to_read) {
213		int err;
214
215		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
216
217		if (this_chunk > nr_to_read)
218			this_chunk = nr_to_read;
219		err = __do_page_cache_readahead(mapping, filp,
220						offset, this_chunk, 0);
221		if (err < 0) {
222			ret = err;
223			break;
224		}
225		ret += err;
226		offset += this_chunk;
227		nr_to_read -= this_chunk;
228	}
229	return ret;
230}
231
232/*
233 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
234 * sensible upper limit.
235 */
236unsigned long max_sane_readahead(unsigned long nr)
237{
238	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
239		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
240}
241
242/*
243 * Submit IO for the read-ahead request in file_ra_state.
244 */
245unsigned long ra_submit(struct file_ra_state *ra,
246		       struct address_space *mapping, struct file *filp)
247{
248	int actual;
249
250	actual = __do_page_cache_readahead(mapping, filp,
251					ra->start, ra->size, ra->async_size);
252
253	return actual;
254}
255
256/*
257 * Set the initial window size, round to next power of 2 and square
258 * for small size, x 4 for medium, and x 2 for large
259 * for 128k (32 page) max ra
260 * 1-8 page = 32k initial, > 8 page = 128k initial
261 */
262static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
263{
264	unsigned long newsize = roundup_pow_of_two(size);
265
266	if (newsize <= max / 32)
267		newsize = newsize * 4;
268	else if (newsize <= max / 4)
269		newsize = newsize * 2;
270	else
271		newsize = max;
272
273	return newsize;
274}
275
276/*
277 *  Get the previous window size, ramp it up, and
278 *  return it as the new window size.
279 */
280static unsigned long get_next_ra_size(struct file_ra_state *ra,
281						unsigned long max)
282{
283	unsigned long cur = ra->size;
284	unsigned long newsize;
285
286	if (cur < max / 16)
287		newsize = 4 * cur;
288	else
289		newsize = 2 * cur;
290
291	return min(newsize, max);
292}
293
294/*
295 * On-demand readahead design.
296 *
297 * The fields in struct file_ra_state represent the most-recently-executed
298 * readahead attempt:
299 *
300 *                        |<----- async_size ---------|
301 *     |------------------- size -------------------->|
302 *     |==================#===========================|
303 *     ^start             ^page marked with PG_readahead
304 *
305 * To overlap application thinking time and disk I/O time, we do
306 * `readahead pipelining': Do not wait until the application consumed all
307 * readahead pages and stalled on the missing page at readahead_index;
308 * Instead, submit an asynchronous readahead I/O as soon as there are
309 * only async_size pages left in the readahead window. Normally async_size
310 * will be equal to size, for maximum pipelining.
311 *
312 * In interleaved sequential reads, concurrent streams on the same fd can
313 * be invalidating each other's readahead state. So we flag the new readahead
314 * page at (start+size-async_size) with PG_readahead, and use it as readahead
315 * indicator. The flag won't be set on already cached pages, to avoid the
316 * readahead-for-nothing fuss, saving pointless page cache lookups.
317 *
318 * prev_pos tracks the last visited byte in the _previous_ read request.
319 * It should be maintained by the caller, and will be used for detecting
320 * small random reads. Note that the readahead algorithm checks loosely
321 * for sequential patterns. Hence interleaved reads might be served as
322 * sequential ones.
323 *
324 * There is a special-case: if the first page which the application tries to
325 * read happens to be the first page of the file, it is assumed that a linear
326 * read is about to happen and the window is immediately set to the initial size
327 * based on I/O request size and the max_readahead.
328 *
329 * The code ramps up the readahead size aggressively at first, but slow down as
330 * it approaches max_readhead.
331 */
332
333/*
334 * Count contiguously cached pages from @offset-1 to @offset-@max,
335 * this count is a conservative estimation of
336 * 	- length of the sequential read sequence, or
337 * 	- thrashing threshold in memory tight systems
338 */
339static pgoff_t count_history_pages(struct address_space *mapping,
340				   struct file_ra_state *ra,
341				   pgoff_t offset, unsigned long max)
342{
343	pgoff_t head;
344
345	rcu_read_lock();
346	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
347	rcu_read_unlock();
348
349	return offset - 1 - head;
350}
351
352/*
353 * page cache context based read-ahead
354 */
355static int try_context_readahead(struct address_space *mapping,
356				 struct file_ra_state *ra,
357				 pgoff_t offset,
358				 unsigned long req_size,
359				 unsigned long max)
360{
361	pgoff_t size;
362
363	size = count_history_pages(mapping, ra, offset, max);
364
365	/*
366	 * no history pages:
367	 * it could be a random read
368	 */
369	if (!size)
370		return 0;
371
372	/*
373	 * starts from beginning of file:
374	 * it is a strong indication of long-run stream (or whole-file-read)
375	 */
376	if (size >= offset)
377		size *= 2;
378
379	ra->start = offset;
380	ra->size = get_init_ra_size(size + req_size, max);
381	ra->async_size = ra->size;
382
383	return 1;
384}
385
386/*
387 * A minimal readahead algorithm for trivial sequential/random reads.
388 */
389static unsigned long
390ondemand_readahead(struct address_space *mapping,
391		   struct file_ra_state *ra, struct file *filp,
392		   bool hit_readahead_marker, pgoff_t offset,
393		   unsigned long req_size)
394{
395	unsigned long max = max_sane_readahead(ra->ra_pages);
396
397	/*
398	 * start of file
399	 */
400	if (!offset)
401		goto initial_readahead;
402
403	/*
404	 * It's the expected callback offset, assume sequential access.
405	 * Ramp up sizes, and push forward the readahead window.
406	 */
407	if ((offset == (ra->start + ra->size - ra->async_size) ||
408	     offset == (ra->start + ra->size))) {
409		ra->start += ra->size;
410		ra->size = get_next_ra_size(ra, max);
411		ra->async_size = ra->size;
412		goto readit;
413	}
414
415	/*
416	 * Hit a marked page without valid readahead state.
417	 * E.g. interleaved reads.
418	 * Query the pagecache for async_size, which normally equals to
419	 * readahead size. Ramp it up and use it as the new readahead size.
420	 */
421	if (hit_readahead_marker) {
422		pgoff_t start;
423
424		rcu_read_lock();
425		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
426		rcu_read_unlock();
427
428		if (!start || start - offset > max)
429			return 0;
430
431		ra->start = start;
432		ra->size = start - offset;	/* old async_size */
433		ra->size += req_size;
434		ra->size = get_next_ra_size(ra, max);
435		ra->async_size = ra->size;
436		goto readit;
437	}
438
439	/*
440	 * oversize read
441	 */
442	if (req_size > max)
443		goto initial_readahead;
444
445	/*
446	 * sequential cache miss
447	 */
448	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
449		goto initial_readahead;
450
451	/*
452	 * Query the page cache and look for the traces(cached history pages)
453	 * that a sequential stream would leave behind.
454	 */
455	if (try_context_readahead(mapping, ra, offset, req_size, max))
456		goto readit;
457
458	/*
459	 * standalone, small random read
460	 * Read as is, and do not pollute the readahead state.
461	 */
462	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
463
464initial_readahead:
465	ra->start = offset;
466	ra->size = get_init_ra_size(req_size, max);
467	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
468
469readit:
470	/*
471	 * Will this read hit the readahead marker made by itself?
472	 * If so, trigger the readahead marker hit now, and merge
473	 * the resulted next readahead window into the current one.
474	 */
475	if (offset == ra->start && ra->size == ra->async_size) {
476		ra->async_size = get_next_ra_size(ra, max);
477		ra->size += ra->async_size;
478	}
479
480	return ra_submit(ra, mapping, filp);
481}
482
483/**
484 * page_cache_sync_readahead - generic file readahead
485 * @mapping: address_space which holds the pagecache and I/O vectors
486 * @ra: file_ra_state which holds the readahead state
487 * @filp: passed on to ->readpage() and ->readpages()
488 * @offset: start offset into @mapping, in pagecache page-sized units
489 * @req_size: hint: total size of the read which the caller is performing in
490 *            pagecache pages
491 *
492 * page_cache_sync_readahead() should be called when a cache miss happened:
493 * it will submit the read.  The readahead logic may decide to piggyback more
494 * pages onto the read request if access patterns suggest it will improve
495 * performance.
496 */
497void page_cache_sync_readahead(struct address_space *mapping,
498			       struct file_ra_state *ra, struct file *filp,
499			       pgoff_t offset, unsigned long req_size)
500{
501	/* no read-ahead */
502	if (!ra->ra_pages)
503		return;
504
505	/* be dumb */
506	if (filp && (filp->f_mode & FMODE_RANDOM)) {
507		force_page_cache_readahead(mapping, filp, offset, req_size);
508		return;
509	}
510
511	/* do read-ahead */
512	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
513}
514EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
515
516/**
517 * page_cache_async_readahead - file readahead for marked pages
518 * @mapping: address_space which holds the pagecache and I/O vectors
519 * @ra: file_ra_state which holds the readahead state
520 * @filp: passed on to ->readpage() and ->readpages()
521 * @page: the page at @offset which has the PG_readahead flag set
522 * @offset: start offset into @mapping, in pagecache page-sized units
523 * @req_size: hint: total size of the read which the caller is performing in
524 *            pagecache pages
525 *
526 * page_cache_async_readahead() should be called when a page is used which
527 * has the PG_readahead flag; this is a marker to suggest that the application
528 * has used up enough of the readahead window that we should start pulling in
529 * more pages.
530 */
531void
532page_cache_async_readahead(struct address_space *mapping,
533			   struct file_ra_state *ra, struct file *filp,
534			   struct page *page, pgoff_t offset,
535			   unsigned long req_size)
536{
537	/* no read-ahead */
538	if (!ra->ra_pages)
539		return;
540
541	/*
542	 * Same bit is used for PG_readahead and PG_reclaim.
543	 */
544	if (PageWriteback(page))
545		return;
546
547	ClearPageReadahead(page);
548
549	/*
550	 * Defer asynchronous read-ahead on IO congestion.
551	 */
552	if (bdi_read_congested(mapping->backing_dev_info))
553		return;
554
555	/* do read-ahead */
556	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
557
558#ifdef CONFIG_BLOCK
559	/*
560	 * Normally the current page is !uptodate and lock_page() will be
561	 * immediately called to implicitly unplug the device. However this
562	 * is not always true for RAID conifgurations, where data arrives
563	 * not strictly in their submission order. In this case we need to
564	 * explicitly kick off the IO.
565	 */
566	if (PageUptodate(page))
567		blk_run_backing_dev(mapping->backing_dev_info, NULL);
568#endif
569}
570EXPORT_SYMBOL_GPL(page_cache_async_readahead);
571