1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/gfp.h>
36
37#include "internal.h"
38
39#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40
41/*
42 * migrate_prep() needs to be called before we start compiling a list of pages
43 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
44 * undesirable, use migrate_prep_local()
45 */
46int migrate_prep(void)
47{
48	/*
49	 * Clear the LRU lists so pages can be isolated.
50	 * Note that pages may be moved off the LRU after we have
51	 * drained them. Those pages will fail to migrate like other
52	 * pages that may be busy.
53	 */
54	lru_add_drain_all();
55
56	return 0;
57}
58
59/* Do the necessary work of migrate_prep but not if it involves other CPUs */
60int migrate_prep_local(void)
61{
62	lru_add_drain();
63
64	return 0;
65}
66
67/*
68 * Add isolated pages on the list back to the LRU under page lock
69 * to avoid leaking evictable pages back onto unevictable list.
70 */
71void putback_lru_pages(struct list_head *l)
72{
73	struct page *page;
74	struct page *page2;
75
76	list_for_each_entry_safe(page, page2, l, lru) {
77		list_del(&page->lru);
78		dec_zone_page_state(page, NR_ISOLATED_ANON +
79				page_is_file_cache(page));
80		putback_lru_page(page);
81	}
82}
83
84/*
85 * Restore a potential migration pte to a working pte entry
86 */
87static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
88				 unsigned long addr, void *old)
89{
90	struct mm_struct *mm = vma->vm_mm;
91	swp_entry_t entry;
92 	pgd_t *pgd;
93 	pud_t *pud;
94 	pmd_t *pmd;
95	pte_t *ptep, pte;
96 	spinlock_t *ptl;
97
98 	pgd = pgd_offset(mm, addr);
99	if (!pgd_present(*pgd))
100		goto out;
101
102	pud = pud_offset(pgd, addr);
103	if (!pud_present(*pud))
104		goto out;
105
106	pmd = pmd_offset(pud, addr);
107	if (!pmd_present(*pmd))
108		goto out;
109
110	ptep = pte_offset_map(pmd, addr);
111
112	if (!is_swap_pte(*ptep)) {
113		pte_unmap(ptep);
114		goto out;
115 	}
116
117 	ptl = pte_lockptr(mm, pmd);
118 	spin_lock(ptl);
119	pte = *ptep;
120	if (!is_swap_pte(pte))
121		goto unlock;
122
123	entry = pte_to_swp_entry(pte);
124
125	if (!is_migration_entry(entry) ||
126	    migration_entry_to_page(entry) != old)
127		goto unlock;
128
129	get_page(new);
130	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
131	if (is_write_migration_entry(entry))
132		pte = pte_mkwrite(pte);
133	flush_cache_page(vma, addr, pte_pfn(pte));
134	set_pte_at(mm, addr, ptep, pte);
135
136	if (PageAnon(new))
137		page_add_anon_rmap(new, vma, addr);
138	else
139		page_add_file_rmap(new);
140
141	/* No need to invalidate - it was non-present before */
142	update_mmu_cache(vma, addr, ptep);
143unlock:
144	pte_unmap_unlock(ptep, ptl);
145out:
146	return SWAP_AGAIN;
147}
148
149/*
150 * Get rid of all migration entries and replace them by
151 * references to the indicated page.
152 */
153static void remove_migration_ptes(struct page *old, struct page *new)
154{
155	rmap_walk(new, remove_migration_pte, old);
156}
157
158/*
159 * Something used the pte of a page under migration. We need to
160 * get to the page and wait until migration is finished.
161 * When we return from this function the fault will be retried.
162 *
163 * This function is called from do_swap_page().
164 */
165void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
166				unsigned long address)
167{
168	pte_t *ptep, pte;
169	spinlock_t *ptl;
170	swp_entry_t entry;
171	struct page *page;
172
173	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
174	pte = *ptep;
175	if (!is_swap_pte(pte))
176		goto out;
177
178	entry = pte_to_swp_entry(pte);
179	if (!is_migration_entry(entry))
180		goto out;
181
182	page = migration_entry_to_page(entry);
183
184	/*
185	 * Once radix-tree replacement of page migration started, page_count
186	 * *must* be zero. And, we don't want to call wait_on_page_locked()
187	 * against a page without get_page().
188	 * So, we use get_page_unless_zero(), here. Even failed, page fault
189	 * will occur again.
190	 */
191	if (!get_page_unless_zero(page))
192		goto out;
193	pte_unmap_unlock(ptep, ptl);
194	wait_on_page_locked(page);
195	put_page(page);
196	return;
197out:
198	pte_unmap_unlock(ptep, ptl);
199}
200
201/*
202 * Replace the page in the mapping.
203 *
204 * The number of remaining references must be:
205 * 1 for anonymous pages without a mapping
206 * 2 for pages with a mapping
207 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
208 */
209static int migrate_page_move_mapping(struct address_space *mapping,
210		struct page *newpage, struct page *page)
211{
212	int expected_count;
213	void **pslot;
214
215	if (!mapping) {
216		/* Anonymous page without mapping */
217		if (page_count(page) != 1)
218			return -EAGAIN;
219		return 0;
220	}
221
222	spin_lock_irq(&mapping->tree_lock);
223
224	pslot = radix_tree_lookup_slot(&mapping->page_tree,
225 					page_index(page));
226
227	expected_count = 2 + page_has_private(page);
228	if (page_count(page) != expected_count ||
229			(struct page *)radix_tree_deref_slot(pslot) != page) {
230		spin_unlock_irq(&mapping->tree_lock);
231		return -EAGAIN;
232	}
233
234	if (!page_freeze_refs(page, expected_count)) {
235		spin_unlock_irq(&mapping->tree_lock);
236		return -EAGAIN;
237	}
238
239	/*
240	 * Now we know that no one else is looking at the page.
241	 */
242	get_page(newpage);	/* add cache reference */
243	if (PageSwapCache(page)) {
244		SetPageSwapCache(newpage);
245		set_page_private(newpage, page_private(page));
246	}
247
248	radix_tree_replace_slot(pslot, newpage);
249
250	page_unfreeze_refs(page, expected_count);
251	/*
252	 * Drop cache reference from old page.
253	 * We know this isn't the last reference.
254	 */
255	__put_page(page);
256
257	/*
258	 * If moved to a different zone then also account
259	 * the page for that zone. Other VM counters will be
260	 * taken care of when we establish references to the
261	 * new page and drop references to the old page.
262	 *
263	 * Note that anonymous pages are accounted for
264	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
265	 * are mapped to swap space.
266	 */
267	__dec_zone_page_state(page, NR_FILE_PAGES);
268	__inc_zone_page_state(newpage, NR_FILE_PAGES);
269	if (PageSwapBacked(page)) {
270		__dec_zone_page_state(page, NR_SHMEM);
271		__inc_zone_page_state(newpage, NR_SHMEM);
272	}
273	spin_unlock_irq(&mapping->tree_lock);
274
275	return 0;
276}
277
278/*
279 * Copy the page to its new location
280 */
281static void migrate_page_copy(struct page *newpage, struct page *page)
282{
283	copy_highpage(newpage, page);
284
285	if (PageError(page))
286		SetPageError(newpage);
287	if (PageReferenced(page))
288		SetPageReferenced(newpage);
289	if (PageUptodate(page))
290		SetPageUptodate(newpage);
291	if (TestClearPageActive(page)) {
292		VM_BUG_ON(PageUnevictable(page));
293		SetPageActive(newpage);
294	} else if (TestClearPageUnevictable(page))
295		SetPageUnevictable(newpage);
296	if (PageChecked(page))
297		SetPageChecked(newpage);
298	if (PageMappedToDisk(page))
299		SetPageMappedToDisk(newpage);
300
301	if (PageDirty(page)) {
302		clear_page_dirty_for_io(page);
303		/*
304		 * Want to mark the page and the radix tree as dirty, and
305		 * redo the accounting that clear_page_dirty_for_io undid,
306		 * but we can't use set_page_dirty because that function
307		 * is actually a signal that all of the page has become dirty.
308		 * Wheras only part of our page may be dirty.
309		 */
310		__set_page_dirty_nobuffers(newpage);
311 	}
312
313	mlock_migrate_page(newpage, page);
314	ksm_migrate_page(newpage, page);
315
316	ClearPageSwapCache(page);
317	ClearPagePrivate(page);
318	set_page_private(page, 0);
319	page->mapping = NULL;
320
321	/*
322	 * If any waiters have accumulated on the new page then
323	 * wake them up.
324	 */
325	if (PageWriteback(newpage))
326		end_page_writeback(newpage);
327}
328
329/************************************************************
330 *                    Migration functions
331 ***********************************************************/
332
333/* Always fail migration. Used for mappings that are not movable */
334int fail_migrate_page(struct address_space *mapping,
335			struct page *newpage, struct page *page)
336{
337	return -EIO;
338}
339EXPORT_SYMBOL(fail_migrate_page);
340
341/*
342 * Common logic to directly migrate a single page suitable for
343 * pages that do not use PagePrivate/PagePrivate2.
344 *
345 * Pages are locked upon entry and exit.
346 */
347int migrate_page(struct address_space *mapping,
348		struct page *newpage, struct page *page)
349{
350	int rc;
351
352	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
353
354	rc = migrate_page_move_mapping(mapping, newpage, page);
355
356	if (rc)
357		return rc;
358
359	migrate_page_copy(newpage, page);
360	return 0;
361}
362EXPORT_SYMBOL(migrate_page);
363
364#ifdef CONFIG_BLOCK
365/*
366 * Migration function for pages with buffers. This function can only be used
367 * if the underlying filesystem guarantees that no other references to "page"
368 * exist.
369 */
370int buffer_migrate_page(struct address_space *mapping,
371		struct page *newpage, struct page *page)
372{
373	struct buffer_head *bh, *head;
374	int rc;
375
376	if (!page_has_buffers(page))
377		return migrate_page(mapping, newpage, page);
378
379	head = page_buffers(page);
380
381	rc = migrate_page_move_mapping(mapping, newpage, page);
382
383	if (rc)
384		return rc;
385
386	bh = head;
387	do {
388		get_bh(bh);
389		lock_buffer(bh);
390		bh = bh->b_this_page;
391
392	} while (bh != head);
393
394	ClearPagePrivate(page);
395	set_page_private(newpage, page_private(page));
396	set_page_private(page, 0);
397	put_page(page);
398	get_page(newpage);
399
400	bh = head;
401	do {
402		set_bh_page(bh, newpage, bh_offset(bh));
403		bh = bh->b_this_page;
404
405	} while (bh != head);
406
407	SetPagePrivate(newpage);
408
409	migrate_page_copy(newpage, page);
410
411	bh = head;
412	do {
413		unlock_buffer(bh);
414 		put_bh(bh);
415		bh = bh->b_this_page;
416
417	} while (bh != head);
418
419	return 0;
420}
421EXPORT_SYMBOL(buffer_migrate_page);
422#endif
423
424/*
425 * Writeback a page to clean the dirty state
426 */
427static int writeout(struct address_space *mapping, struct page *page)
428{
429	struct writeback_control wbc = {
430		.sync_mode = WB_SYNC_NONE,
431		.nr_to_write = 1,
432		.range_start = 0,
433		.range_end = LLONG_MAX,
434		.nonblocking = 1,
435		.for_reclaim = 1
436	};
437	int rc;
438
439	if (!mapping->a_ops->writepage)
440		/* No write method for the address space */
441		return -EINVAL;
442
443	if (!clear_page_dirty_for_io(page))
444		/* Someone else already triggered a write */
445		return -EAGAIN;
446
447	/*
448	 * A dirty page may imply that the underlying filesystem has
449	 * the page on some queue. So the page must be clean for
450	 * migration. Writeout may mean we loose the lock and the
451	 * page state is no longer what we checked for earlier.
452	 * At this point we know that the migration attempt cannot
453	 * be successful.
454	 */
455	remove_migration_ptes(page, page);
456
457	rc = mapping->a_ops->writepage(page, &wbc);
458
459	if (rc != AOP_WRITEPAGE_ACTIVATE)
460		/* unlocked. Relock */
461		lock_page(page);
462
463	return (rc < 0) ? -EIO : -EAGAIN;
464}
465
466/*
467 * Default handling if a filesystem does not provide a migration function.
468 */
469static int fallback_migrate_page(struct address_space *mapping,
470	struct page *newpage, struct page *page)
471{
472	if (PageDirty(page))
473		return writeout(mapping, page);
474
475	/*
476	 * Buffers may be managed in a filesystem specific way.
477	 * We must have no buffers or drop them.
478	 */
479	if (page_has_private(page) &&
480	    !try_to_release_page(page, GFP_KERNEL))
481		return -EAGAIN;
482
483	return migrate_page(mapping, newpage, page);
484}
485
486/*
487 * Move a page to a newly allocated page
488 * The page is locked and all ptes have been successfully removed.
489 *
490 * The new page will have replaced the old page if this function
491 * is successful.
492 *
493 * Return value:
494 *   < 0 - error code
495 *  == 0 - success
496 */
497static int move_to_new_page(struct page *newpage, struct page *page,
498						int remap_swapcache)
499{
500	struct address_space *mapping;
501	int rc;
502
503	/*
504	 * Block others from accessing the page when we get around to
505	 * establishing additional references. We are the only one
506	 * holding a reference to the new page at this point.
507	 */
508	if (!trylock_page(newpage))
509		BUG();
510
511	/* Prepare mapping for the new page.*/
512	newpage->index = page->index;
513	newpage->mapping = page->mapping;
514	if (PageSwapBacked(page))
515		SetPageSwapBacked(newpage);
516
517	mapping = page_mapping(page);
518	if (!mapping)
519		rc = migrate_page(mapping, newpage, page);
520	else if (mapping->a_ops->migratepage)
521		/*
522		 * Most pages have a mapping and most filesystems
523		 * should provide a migration function. Anonymous
524		 * pages are part of swap space which also has its
525		 * own migration function. This is the most common
526		 * path for page migration.
527		 */
528		rc = mapping->a_ops->migratepage(mapping,
529						newpage, page);
530	else
531		rc = fallback_migrate_page(mapping, newpage, page);
532
533	if (rc) {
534		newpage->mapping = NULL;
535	} else {
536		if (remap_swapcache)
537			remove_migration_ptes(page, newpage);
538	}
539
540	unlock_page(newpage);
541
542	return rc;
543}
544
545/*
546 * Obtain the lock on page, remove all ptes and migrate the page
547 * to the newly allocated page in newpage.
548 */
549static int unmap_and_move(new_page_t get_new_page, unsigned long private,
550			struct page *page, int force, int offlining)
551{
552	int rc = 0;
553	int *result = NULL;
554	struct page *newpage = get_new_page(page, private, &result);
555	int remap_swapcache = 1;
556	int charge = 0;
557	struct mem_cgroup *mem = NULL;
558	struct anon_vma *anon_vma = NULL;
559
560	if (!newpage)
561		return -ENOMEM;
562
563	if (page_count(page) == 1) {
564		/* page was freed from under us. So we are done. */
565		goto move_newpage;
566	}
567
568	/* prepare cgroup just returns 0 or -ENOMEM */
569	rc = -EAGAIN;
570
571	if (!trylock_page(page)) {
572		if (!force)
573			goto move_newpage;
574		lock_page(page);
575	}
576
577	/*
578	 * Only memory hotplug's offline_pages() caller has locked out KSM,
579	 * and can safely migrate a KSM page.  The other cases have skipped
580	 * PageKsm along with PageReserved - but it is only now when we have
581	 * the page lock that we can be certain it will not go KSM beneath us
582	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
583	 * its pagecount raised, but only here do we take the page lock which
584	 * serializes that).
585	 */
586	if (PageKsm(page) && !offlining) {
587		rc = -EBUSY;
588		goto unlock;
589	}
590
591	/* charge against new page */
592	charge = mem_cgroup_prepare_migration(page, newpage, &mem);
593	if (charge == -ENOMEM) {
594		rc = -ENOMEM;
595		goto unlock;
596	}
597	BUG_ON(charge);
598
599	if (PageWriteback(page)) {
600		if (!force)
601			goto uncharge;
602		wait_on_page_writeback(page);
603	}
604	/*
605	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
606	 * we cannot notice that anon_vma is freed while we migrates a page.
607	 * This get_anon_vma() delays freeing anon_vma pointer until the end
608	 * of migration. File cache pages are no problem because of page_lock()
609	 * File Caches may use write_page() or lock_page() in migration, then,
610	 * just care Anon page here.
611	 */
612	if (PageAnon(page)) {
613		/*
614		 * Only page_lock_anon_vma() understands the subtleties of
615		 * getting a hold on an anon_vma from outside one of its mms.
616		 */
617		anon_vma = page_lock_anon_vma(page);
618		if (anon_vma) {
619			/*
620			 * Take a reference count on the anon_vma if the
621			 * page is mapped so that it is guaranteed to
622			 * exist when the page is remapped later
623			 */
624			get_anon_vma(anon_vma);
625			page_unlock_anon_vma(anon_vma);
626		} else if (PageSwapCache(page)) {
627			/*
628			 * We cannot be sure that the anon_vma of an unmapped
629			 * swapcache page is safe to use because we don't
630			 * know in advance if the VMA that this page belonged
631			 * to still exists. If the VMA and others sharing the
632			 * data have been freed, then the anon_vma could
633			 * already be invalid.
634			 *
635			 * To avoid this possibility, swapcache pages get
636			 * migrated but are not remapped when migration
637			 * completes
638			 */
639			remap_swapcache = 0;
640		} else {
641			goto uncharge;
642		}
643	}
644
645	/*
646	 * Corner case handling:
647	 * 1. When a new swap-cache page is read into, it is added to the LRU
648	 * and treated as swapcache but it has no rmap yet.
649	 * Calling try_to_unmap() against a page->mapping==NULL page will
650	 * trigger a BUG.  So handle it here.
651	 * 2. An orphaned page (see truncate_complete_page) might have
652	 * fs-private metadata. The page can be picked up due to memory
653	 * offlining.  Everywhere else except page reclaim, the page is
654	 * invisible to the vm, so the page can not be migrated.  So try to
655	 * free the metadata, so the page can be freed.
656	 */
657	if (!page->mapping) {
658		VM_BUG_ON(PageAnon(page));
659		if (page_has_private(page)) {
660			try_to_free_buffers(page);
661			goto uncharge;
662		}
663		goto skip_unmap;
664	}
665
666	/* Establish migration ptes or remove ptes */
667	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
668
669skip_unmap:
670	if (!page_mapped(page))
671		rc = move_to_new_page(newpage, page, remap_swapcache);
672
673	if (rc && remap_swapcache)
674		remove_migration_ptes(page, page);
675
676	/* Drop an anon_vma reference if we took one */
677	if (anon_vma)
678		drop_anon_vma(anon_vma);
679
680uncharge:
681	if (!charge)
682		mem_cgroup_end_migration(mem, page, newpage);
683unlock:
684	unlock_page(page);
685
686	if (rc != -EAGAIN) {
687 		/*
688 		 * A page that has been migrated has all references
689 		 * removed and will be freed. A page that has not been
690 		 * migrated will have kepts its references and be
691 		 * restored.
692 		 */
693 		list_del(&page->lru);
694		dec_zone_page_state(page, NR_ISOLATED_ANON +
695				page_is_file_cache(page));
696		putback_lru_page(page);
697	}
698
699move_newpage:
700
701	/*
702	 * Move the new page to the LRU. If migration was not successful
703	 * then this will free the page.
704	 */
705	putback_lru_page(newpage);
706
707	if (result) {
708		if (rc)
709			*result = rc;
710		else
711			*result = page_to_nid(newpage);
712	}
713	return rc;
714}
715
716/*
717 * migrate_pages
718 *
719 * The function takes one list of pages to migrate and a function
720 * that determines from the page to be migrated and the private data
721 * the target of the move and allocates the page.
722 *
723 * The function returns after 10 attempts or if no pages
724 * are movable anymore because to has become empty
725 * or no retryable pages exist anymore. All pages will be
726 * returned to the LRU or freed.
727 *
728 * Return: Number of pages not migrated or error code.
729 */
730int migrate_pages(struct list_head *from,
731		new_page_t get_new_page, unsigned long private, int offlining)
732{
733	int retry = 1;
734	int nr_failed = 0;
735	int pass = 0;
736	struct page *page;
737	struct page *page2;
738	int swapwrite = current->flags & PF_SWAPWRITE;
739	int rc;
740
741	if (!swapwrite)
742		current->flags |= PF_SWAPWRITE;
743
744	for(pass = 0; pass < 10 && retry; pass++) {
745		retry = 0;
746
747		list_for_each_entry_safe(page, page2, from, lru) {
748			cond_resched();
749
750			rc = unmap_and_move(get_new_page, private,
751						page, pass > 2, offlining);
752
753			switch(rc) {
754			case -ENOMEM:
755				goto out;
756			case -EAGAIN:
757				retry++;
758				break;
759			case 0:
760				break;
761			default:
762				/* Permanent failure */
763				nr_failed++;
764				break;
765			}
766		}
767	}
768	rc = 0;
769out:
770	if (!swapwrite)
771		current->flags &= ~PF_SWAPWRITE;
772
773	putback_lru_pages(from);
774
775	if (rc)
776		return rc;
777
778	return nr_failed + retry;
779}
780
781#ifdef CONFIG_NUMA
782/*
783 * Move a list of individual pages
784 */
785struct page_to_node {
786	unsigned long addr;
787	struct page *page;
788	int node;
789	int status;
790};
791
792static struct page *new_page_node(struct page *p, unsigned long private,
793		int **result)
794{
795	struct page_to_node *pm = (struct page_to_node *)private;
796
797	while (pm->node != MAX_NUMNODES && pm->page != p)
798		pm++;
799
800	if (pm->node == MAX_NUMNODES)
801		return NULL;
802
803	*result = &pm->status;
804
805	return alloc_pages_exact_node(pm->node,
806				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
807}
808
809/*
810 * Move a set of pages as indicated in the pm array. The addr
811 * field must be set to the virtual address of the page to be moved
812 * and the node number must contain a valid target node.
813 * The pm array ends with node = MAX_NUMNODES.
814 */
815static int do_move_page_to_node_array(struct mm_struct *mm,
816				      struct page_to_node *pm,
817				      int migrate_all)
818{
819	int err;
820	struct page_to_node *pp;
821	LIST_HEAD(pagelist);
822
823	down_read(&mm->mmap_sem);
824
825	/*
826	 * Build a list of pages to migrate
827	 */
828	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
829		struct vm_area_struct *vma;
830		struct page *page;
831
832		err = -EFAULT;
833		vma = find_vma(mm, pp->addr);
834		if (!vma || !vma_migratable(vma))
835			goto set_status;
836
837		page = follow_page(vma, pp->addr, FOLL_GET);
838
839		err = PTR_ERR(page);
840		if (IS_ERR(page))
841			goto set_status;
842
843		err = -ENOENT;
844		if (!page)
845			goto set_status;
846
847		/* Use PageReserved to check for zero page */
848		if (PageReserved(page) || PageKsm(page))
849			goto put_and_set;
850
851		pp->page = page;
852		err = page_to_nid(page);
853
854		if (err == pp->node)
855			/*
856			 * Node already in the right place
857			 */
858			goto put_and_set;
859
860		err = -EACCES;
861		if (page_mapcount(page) > 1 &&
862				!migrate_all)
863			goto put_and_set;
864
865		err = isolate_lru_page(page);
866		if (!err) {
867			list_add_tail(&page->lru, &pagelist);
868			inc_zone_page_state(page, NR_ISOLATED_ANON +
869					    page_is_file_cache(page));
870		}
871put_and_set:
872		/*
873		 * Either remove the duplicate refcount from
874		 * isolate_lru_page() or drop the page ref if it was
875		 * not isolated.
876		 */
877		put_page(page);
878set_status:
879		pp->status = err;
880	}
881
882	err = 0;
883	if (!list_empty(&pagelist))
884		err = migrate_pages(&pagelist, new_page_node,
885				(unsigned long)pm, 0);
886
887	up_read(&mm->mmap_sem);
888	return err;
889}
890
891/*
892 * Migrate an array of page address onto an array of nodes and fill
893 * the corresponding array of status.
894 */
895static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
896			 unsigned long nr_pages,
897			 const void __user * __user *pages,
898			 const int __user *nodes,
899			 int __user *status, int flags)
900{
901	struct page_to_node *pm;
902	nodemask_t task_nodes;
903	unsigned long chunk_nr_pages;
904	unsigned long chunk_start;
905	int err;
906
907	task_nodes = cpuset_mems_allowed(task);
908
909	err = -ENOMEM;
910	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
911	if (!pm)
912		goto out;
913
914	migrate_prep();
915
916	/*
917	 * Store a chunk of page_to_node array in a page,
918	 * but keep the last one as a marker
919	 */
920	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
921
922	for (chunk_start = 0;
923	     chunk_start < nr_pages;
924	     chunk_start += chunk_nr_pages) {
925		int j;
926
927		if (chunk_start + chunk_nr_pages > nr_pages)
928			chunk_nr_pages = nr_pages - chunk_start;
929
930		/* fill the chunk pm with addrs and nodes from user-space */
931		for (j = 0; j < chunk_nr_pages; j++) {
932			const void __user *p;
933			int node;
934
935			err = -EFAULT;
936			if (get_user(p, pages + j + chunk_start))
937				goto out_pm;
938			pm[j].addr = (unsigned long) p;
939
940			if (get_user(node, nodes + j + chunk_start))
941				goto out_pm;
942
943			err = -ENODEV;
944			if (node < 0 || node >= MAX_NUMNODES)
945				goto out_pm;
946
947			if (!node_state(node, N_HIGH_MEMORY))
948				goto out_pm;
949
950			err = -EACCES;
951			if (!node_isset(node, task_nodes))
952				goto out_pm;
953
954			pm[j].node = node;
955		}
956
957		/* End marker for this chunk */
958		pm[chunk_nr_pages].node = MAX_NUMNODES;
959
960		/* Migrate this chunk */
961		err = do_move_page_to_node_array(mm, pm,
962						 flags & MPOL_MF_MOVE_ALL);
963		if (err < 0)
964			goto out_pm;
965
966		/* Return status information */
967		for (j = 0; j < chunk_nr_pages; j++)
968			if (put_user(pm[j].status, status + j + chunk_start)) {
969				err = -EFAULT;
970				goto out_pm;
971			}
972	}
973	err = 0;
974
975out_pm:
976	free_page((unsigned long)pm);
977out:
978	return err;
979}
980
981/*
982 * Determine the nodes of an array of pages and store it in an array of status.
983 */
984static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
985				const void __user **pages, int *status)
986{
987	unsigned long i;
988
989	down_read(&mm->mmap_sem);
990
991	for (i = 0; i < nr_pages; i++) {
992		unsigned long addr = (unsigned long)(*pages);
993		struct vm_area_struct *vma;
994		struct page *page;
995		int err = -EFAULT;
996
997		vma = find_vma(mm, addr);
998		if (!vma)
999			goto set_status;
1000
1001		page = follow_page(vma, addr, 0);
1002
1003		err = PTR_ERR(page);
1004		if (IS_ERR(page))
1005			goto set_status;
1006
1007		err = -ENOENT;
1008		/* Use PageReserved to check for zero page */
1009		if (!page || PageReserved(page) || PageKsm(page))
1010			goto set_status;
1011
1012		err = page_to_nid(page);
1013set_status:
1014		*status = err;
1015
1016		pages++;
1017		status++;
1018	}
1019
1020	up_read(&mm->mmap_sem);
1021}
1022
1023/*
1024 * Determine the nodes of a user array of pages and store it in
1025 * a user array of status.
1026 */
1027static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1028			 const void __user * __user *pages,
1029			 int __user *status)
1030{
1031#define DO_PAGES_STAT_CHUNK_NR 16
1032	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1033	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1034
1035	while (nr_pages) {
1036		unsigned long chunk_nr;
1037
1038		chunk_nr = nr_pages;
1039		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1040			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1041
1042		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1043			break;
1044
1045		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1046
1047		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1048			break;
1049
1050		pages += chunk_nr;
1051		status += chunk_nr;
1052		nr_pages -= chunk_nr;
1053	}
1054	return nr_pages ? -EFAULT : 0;
1055}
1056
1057/*
1058 * Move a list of pages in the address space of the currently executing
1059 * process.
1060 */
1061SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1062		const void __user * __user *, pages,
1063		const int __user *, nodes,
1064		int __user *, status, int, flags)
1065{
1066	const struct cred *cred = current_cred(), *tcred;
1067	struct task_struct *task;
1068	struct mm_struct *mm;
1069	int err;
1070
1071	/* Check flags */
1072	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1073		return -EINVAL;
1074
1075	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1076		return -EPERM;
1077
1078	/* Find the mm_struct */
1079	read_lock(&tasklist_lock);
1080	task = pid ? find_task_by_vpid(pid) : current;
1081	if (!task) {
1082		read_unlock(&tasklist_lock);
1083		return -ESRCH;
1084	}
1085	mm = get_task_mm(task);
1086	read_unlock(&tasklist_lock);
1087
1088	if (!mm)
1089		return -EINVAL;
1090
1091	/*
1092	 * Check if this process has the right to modify the specified
1093	 * process. The right exists if the process has administrative
1094	 * capabilities, superuser privileges or the same
1095	 * userid as the target process.
1096	 */
1097	rcu_read_lock();
1098	tcred = __task_cred(task);
1099	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1100	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1101	    !capable(CAP_SYS_NICE)) {
1102		rcu_read_unlock();
1103		err = -EPERM;
1104		goto out;
1105	}
1106	rcu_read_unlock();
1107
1108 	err = security_task_movememory(task);
1109 	if (err)
1110		goto out;
1111
1112	if (nodes) {
1113		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1114				    flags);
1115	} else {
1116		err = do_pages_stat(mm, nr_pages, pages, status);
1117	}
1118
1119out:
1120	mmput(mm);
1121	return err;
1122}
1123
1124/*
1125 * Call migration functions in the vma_ops that may prepare
1126 * memory in a vm for migration. migration functions may perform
1127 * the migration for vmas that do not have an underlying page struct.
1128 */
1129int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1130	const nodemask_t *from, unsigned long flags)
1131{
1132 	struct vm_area_struct *vma;
1133 	int err = 0;
1134
1135	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1136 		if (vma->vm_ops && vma->vm_ops->migrate) {
1137 			err = vma->vm_ops->migrate(vma, to, from, flags);
1138 			if (err)
1139 				break;
1140 		}
1141 	}
1142 	return err;
1143}
1144#endif
1145