1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65#else
66#define do_swap_account		(0)
67#endif
68
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
73 *
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 */
76#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78
79/*
80 * Statistics for memory cgroup.
81 */
82enum mem_cgroup_stat_index {
83	/*
84	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85	 */
86	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
90	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
93
94	MEM_CGROUP_STAT_NSTATS,
95};
96
97struct mem_cgroup_stat_cpu {
98	s64 count[MEM_CGROUP_STAT_NSTATS];
99};
100
101/*
102 * per-zone information in memory controller.
103 */
104struct mem_cgroup_per_zone {
105	/*
106	 * spin_lock to protect the per cgroup LRU
107	 */
108	struct list_head	lists[NR_LRU_LISTS];
109	unsigned long		count[NR_LRU_LISTS];
110
111	struct zone_reclaim_stat reclaim_stat;
112	struct rb_node		tree_node;	/* RB tree node */
113	unsigned long long	usage_in_excess;/* Set to the value by which */
114						/* the soft limit is exceeded*/
115	bool			on_tree;
116	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
117						/* use container_of	   */
118};
119/* Macro for accessing counter */
120#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
121
122struct mem_cgroup_per_node {
123	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124};
125
126struct mem_cgroup_lru_info {
127	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128};
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136	struct rb_root rb_root;
137	spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150struct mem_cgroup_threshold {
151	struct eventfd_ctx *eventfd;
152	u64 threshold;
153};
154
155/* For threshold */
156struct mem_cgroup_threshold_ary {
157	/* An array index points to threshold just below usage. */
158	int current_threshold;
159	/* Size of entries[] */
160	unsigned int size;
161	/* Array of thresholds */
162	struct mem_cgroup_threshold entries[0];
163};
164
165struct mem_cgroup_thresholds {
166	/* Primary thresholds array */
167	struct mem_cgroup_threshold_ary *primary;
168	/*
169	 * Spare threshold array.
170	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171	 * It must be able to store at least primary->size - 1 entries.
172	 */
173	struct mem_cgroup_threshold_ary *spare;
174};
175
176/* for OOM */
177struct mem_cgroup_eventfd_list {
178	struct list_head list;
179	struct eventfd_ctx *eventfd;
180};
181
182static void mem_cgroup_threshold(struct mem_cgroup *mem);
183static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
184
185/*
186 * The memory controller data structure. The memory controller controls both
187 * page cache and RSS per cgroup. We would eventually like to provide
188 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
189 * to help the administrator determine what knobs to tune.
190 *
191 * TODO: Add a water mark for the memory controller. Reclaim will begin when
192 * we hit the water mark. May be even add a low water mark, such that
193 * no reclaim occurs from a cgroup at it's low water mark, this is
194 * a feature that will be implemented much later in the future.
195 */
196struct mem_cgroup {
197	struct cgroup_subsys_state css;
198	/*
199	 * the counter to account for memory usage
200	 */
201	struct res_counter res;
202	/*
203	 * the counter to account for mem+swap usage.
204	 */
205	struct res_counter memsw;
206	/*
207	 * Per cgroup active and inactive list, similar to the
208	 * per zone LRU lists.
209	 */
210	struct mem_cgroup_lru_info info;
211
212	/*
213	  protect against reclaim related member.
214	*/
215	spinlock_t reclaim_param_lock;
216
217	/*
218	 * While reclaiming in a hierarchy, we cache the last child we
219	 * reclaimed from.
220	 */
221	int last_scanned_child;
222	/*
223	 * Should the accounting and control be hierarchical, per subtree?
224	 */
225	bool use_hierarchy;
226	atomic_t	oom_lock;
227	atomic_t	refcnt;
228
229	unsigned int	swappiness;
230	/* OOM-Killer disable */
231	int		oom_kill_disable;
232
233	/* set when res.limit == memsw.limit */
234	bool		memsw_is_minimum;
235
236	/* protect arrays of thresholds */
237	struct mutex thresholds_lock;
238
239	/* thresholds for memory usage. RCU-protected */
240	struct mem_cgroup_thresholds thresholds;
241
242	/* thresholds for mem+swap usage. RCU-protected */
243	struct mem_cgroup_thresholds memsw_thresholds;
244
245	/* For oom notifier event fd */
246	struct list_head oom_notify;
247
248	/*
249	 * Should we move charges of a task when a task is moved into this
250	 * mem_cgroup ? And what type of charges should we move ?
251	 */
252	unsigned long 	move_charge_at_immigrate;
253	/*
254	 * percpu counter.
255	 */
256	struct mem_cgroup_stat_cpu *stat;
257};
258
259/* Stuffs for move charges at task migration. */
260/*
261 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
262 * left-shifted bitmap of these types.
263 */
264enum move_type {
265	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
266	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
267	NR_MOVE_TYPE,
268};
269
270/* "mc" and its members are protected by cgroup_mutex */
271static struct move_charge_struct {
272	spinlock_t	  lock; /* for from, to */
273	struct mem_cgroup *from;
274	struct mem_cgroup *to;
275	unsigned long precharge;
276	unsigned long moved_charge;
277	unsigned long moved_swap;
278	struct task_struct *moving_task;	/* a task moving charges */
279	struct mm_struct *mm;
280	wait_queue_head_t waitq;		/* a waitq for other context */
281} mc = {
282	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
283	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
284};
285
286static bool move_anon(void)
287{
288	return test_bit(MOVE_CHARGE_TYPE_ANON,
289					&mc.to->move_charge_at_immigrate);
290}
291
292static bool move_file(void)
293{
294	return test_bit(MOVE_CHARGE_TYPE_FILE,
295					&mc.to->move_charge_at_immigrate);
296}
297
298/*
299 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
300 * limit reclaim to prevent infinite loops, if they ever occur.
301 */
302#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
303#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
304
305enum charge_type {
306	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
307	MEM_CGROUP_CHARGE_TYPE_MAPPED,
308	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
309	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
310	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
311	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
312	NR_CHARGE_TYPE,
313};
314
315/* only for here (for easy reading.) */
316#define PCGF_CACHE	(1UL << PCG_CACHE)
317#define PCGF_USED	(1UL << PCG_USED)
318#define PCGF_LOCK	(1UL << PCG_LOCK)
319/* Not used, but added here for completeness */
320#define PCGF_ACCT	(1UL << PCG_ACCT)
321
322/* for encoding cft->private value on file */
323#define _MEM			(0)
324#define _MEMSWAP		(1)
325#define _OOM_TYPE		(2)
326#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
327#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
328#define MEMFILE_ATTR(val)	((val) & 0xffff)
329/* Used for OOM nofiier */
330#define OOM_CONTROL		(0)
331
332/*
333 * Reclaim flags for mem_cgroup_hierarchical_reclaim
334 */
335#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
336#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
337#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
338#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
339#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
340#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
341
342static void mem_cgroup_get(struct mem_cgroup *mem);
343static void mem_cgroup_put(struct mem_cgroup *mem);
344static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
345static void drain_all_stock_async(void);
346
347static struct mem_cgroup_per_zone *
348mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
349{
350	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
351}
352
353struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
354{
355	return &mem->css;
356}
357
358static struct mem_cgroup_per_zone *
359page_cgroup_zoneinfo(struct page_cgroup *pc)
360{
361	struct mem_cgroup *mem = pc->mem_cgroup;
362	int nid = page_cgroup_nid(pc);
363	int zid = page_cgroup_zid(pc);
364
365	if (!mem)
366		return NULL;
367
368	return mem_cgroup_zoneinfo(mem, nid, zid);
369}
370
371static struct mem_cgroup_tree_per_zone *
372soft_limit_tree_node_zone(int nid, int zid)
373{
374	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
375}
376
377static struct mem_cgroup_tree_per_zone *
378soft_limit_tree_from_page(struct page *page)
379{
380	int nid = page_to_nid(page);
381	int zid = page_zonenum(page);
382
383	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
384}
385
386static void
387__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
388				struct mem_cgroup_per_zone *mz,
389				struct mem_cgroup_tree_per_zone *mctz,
390				unsigned long long new_usage_in_excess)
391{
392	struct rb_node **p = &mctz->rb_root.rb_node;
393	struct rb_node *parent = NULL;
394	struct mem_cgroup_per_zone *mz_node;
395
396	if (mz->on_tree)
397		return;
398
399	mz->usage_in_excess = new_usage_in_excess;
400	if (!mz->usage_in_excess)
401		return;
402	while (*p) {
403		parent = *p;
404		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
405					tree_node);
406		if (mz->usage_in_excess < mz_node->usage_in_excess)
407			p = &(*p)->rb_left;
408		/*
409		 * We can't avoid mem cgroups that are over their soft
410		 * limit by the same amount
411		 */
412		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
413			p = &(*p)->rb_right;
414	}
415	rb_link_node(&mz->tree_node, parent, p);
416	rb_insert_color(&mz->tree_node, &mctz->rb_root);
417	mz->on_tree = true;
418}
419
420static void
421__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
422				struct mem_cgroup_per_zone *mz,
423				struct mem_cgroup_tree_per_zone *mctz)
424{
425	if (!mz->on_tree)
426		return;
427	rb_erase(&mz->tree_node, &mctz->rb_root);
428	mz->on_tree = false;
429}
430
431static void
432mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
433				struct mem_cgroup_per_zone *mz,
434				struct mem_cgroup_tree_per_zone *mctz)
435{
436	spin_lock(&mctz->lock);
437	__mem_cgroup_remove_exceeded(mem, mz, mctz);
438	spin_unlock(&mctz->lock);
439}
440
441
442static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
443{
444	unsigned long long excess;
445	struct mem_cgroup_per_zone *mz;
446	struct mem_cgroup_tree_per_zone *mctz;
447	int nid = page_to_nid(page);
448	int zid = page_zonenum(page);
449	mctz = soft_limit_tree_from_page(page);
450
451	/*
452	 * Necessary to update all ancestors when hierarchy is used.
453	 * because their event counter is not touched.
454	 */
455	for (; mem; mem = parent_mem_cgroup(mem)) {
456		mz = mem_cgroup_zoneinfo(mem, nid, zid);
457		excess = res_counter_soft_limit_excess(&mem->res);
458		/*
459		 * We have to update the tree if mz is on RB-tree or
460		 * mem is over its softlimit.
461		 */
462		if (excess || mz->on_tree) {
463			spin_lock(&mctz->lock);
464			/* if on-tree, remove it */
465			if (mz->on_tree)
466				__mem_cgroup_remove_exceeded(mem, mz, mctz);
467			/*
468			 * Insert again. mz->usage_in_excess will be updated.
469			 * If excess is 0, no tree ops.
470			 */
471			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
472			spin_unlock(&mctz->lock);
473		}
474	}
475}
476
477static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
478{
479	int node, zone;
480	struct mem_cgroup_per_zone *mz;
481	struct mem_cgroup_tree_per_zone *mctz;
482
483	for_each_node_state(node, N_POSSIBLE) {
484		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
485			mz = mem_cgroup_zoneinfo(mem, node, zone);
486			mctz = soft_limit_tree_node_zone(node, zone);
487			mem_cgroup_remove_exceeded(mem, mz, mctz);
488		}
489	}
490}
491
492static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
493{
494	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
495}
496
497static struct mem_cgroup_per_zone *
498__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
499{
500	struct rb_node *rightmost = NULL;
501	struct mem_cgroup_per_zone *mz;
502
503retry:
504	mz = NULL;
505	rightmost = rb_last(&mctz->rb_root);
506	if (!rightmost)
507		goto done;		/* Nothing to reclaim from */
508
509	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
510	/*
511	 * Remove the node now but someone else can add it back,
512	 * we will to add it back at the end of reclaim to its correct
513	 * position in the tree.
514	 */
515	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
516	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
517		!css_tryget(&mz->mem->css))
518		goto retry;
519done:
520	return mz;
521}
522
523static struct mem_cgroup_per_zone *
524mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526	struct mem_cgroup_per_zone *mz;
527
528	spin_lock(&mctz->lock);
529	mz = __mem_cgroup_largest_soft_limit_node(mctz);
530	spin_unlock(&mctz->lock);
531	return mz;
532}
533
534static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
535		enum mem_cgroup_stat_index idx)
536{
537	int cpu;
538	s64 val = 0;
539
540	for_each_possible_cpu(cpu)
541		val += per_cpu(mem->stat->count[idx], cpu);
542	return val;
543}
544
545static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
546{
547	s64 ret;
548
549	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
550	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
551	return ret;
552}
553
554static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
555					 bool charge)
556{
557	int val = (charge) ? 1 : -1;
558	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
559}
560
561static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
562					 struct page_cgroup *pc,
563					 bool charge)
564{
565	int val = (charge) ? 1 : -1;
566
567	preempt_disable();
568
569	if (PageCgroupCache(pc))
570		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
571	else
572		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
573
574	if (charge)
575		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
576	else
577		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
578	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
579
580	preempt_enable();
581}
582
583static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
584					enum lru_list idx)
585{
586	int nid, zid;
587	struct mem_cgroup_per_zone *mz;
588	u64 total = 0;
589
590	for_each_online_node(nid)
591		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
592			mz = mem_cgroup_zoneinfo(mem, nid, zid);
593			total += MEM_CGROUP_ZSTAT(mz, idx);
594		}
595	return total;
596}
597
598static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
599{
600	s64 val;
601
602	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
603
604	return !(val & ((1 << event_mask_shift) - 1));
605}
606
607/*
608 * Check events in order.
609 *
610 */
611static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
612{
613	/* threshold event is triggered in finer grain than soft limit */
614	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
615		mem_cgroup_threshold(mem);
616		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
617			mem_cgroup_update_tree(mem, page);
618	}
619}
620
621static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
622{
623	return container_of(cgroup_subsys_state(cont,
624				mem_cgroup_subsys_id), struct mem_cgroup,
625				css);
626}
627
628struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
629{
630	/*
631	 * mm_update_next_owner() may clear mm->owner to NULL
632	 * if it races with swapoff, page migration, etc.
633	 * So this can be called with p == NULL.
634	 */
635	if (unlikely(!p))
636		return NULL;
637
638	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
639				struct mem_cgroup, css);
640}
641
642static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
643{
644	struct mem_cgroup *mem = NULL;
645
646	if (!mm)
647		return NULL;
648	/*
649	 * Because we have no locks, mm->owner's may be being moved to other
650	 * cgroup. We use css_tryget() here even if this looks
651	 * pessimistic (rather than adding locks here).
652	 */
653	rcu_read_lock();
654	do {
655		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
656		if (unlikely(!mem))
657			break;
658	} while (!css_tryget(&mem->css));
659	rcu_read_unlock();
660	return mem;
661}
662
663/*
664 * Call callback function against all cgroup under hierarchy tree.
665 */
666static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
667			  int (*func)(struct mem_cgroup *, void *))
668{
669	int found, ret, nextid;
670	struct cgroup_subsys_state *css;
671	struct mem_cgroup *mem;
672
673	if (!root->use_hierarchy)
674		return (*func)(root, data);
675
676	nextid = 1;
677	do {
678		ret = 0;
679		mem = NULL;
680
681		rcu_read_lock();
682		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
683				   &found);
684		if (css && css_tryget(css))
685			mem = container_of(css, struct mem_cgroup, css);
686		rcu_read_unlock();
687
688		if (mem) {
689			ret = (*func)(mem, data);
690			css_put(&mem->css);
691		}
692		nextid = found + 1;
693	} while (!ret && css);
694
695	return ret;
696}
697
698static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
699{
700	return (mem == root_mem_cgroup);
701}
702
703/*
704 * Following LRU functions are allowed to be used without PCG_LOCK.
705 * Operations are called by routine of global LRU independently from memcg.
706 * What we have to take care of here is validness of pc->mem_cgroup.
707 *
708 * Changes to pc->mem_cgroup happens when
709 * 1. charge
710 * 2. moving account
711 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
712 * It is added to LRU before charge.
713 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
714 * When moving account, the page is not on LRU. It's isolated.
715 */
716
717void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
718{
719	struct page_cgroup *pc;
720	struct mem_cgroup_per_zone *mz;
721
722	if (mem_cgroup_disabled())
723		return;
724	pc = lookup_page_cgroup(page);
725	/* can happen while we handle swapcache. */
726	if (!TestClearPageCgroupAcctLRU(pc))
727		return;
728	VM_BUG_ON(!pc->mem_cgroup);
729	/*
730	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
731	 * removed from global LRU.
732	 */
733	mz = page_cgroup_zoneinfo(pc);
734	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
735	if (mem_cgroup_is_root(pc->mem_cgroup))
736		return;
737	VM_BUG_ON(list_empty(&pc->lru));
738	list_del_init(&pc->lru);
739	return;
740}
741
742void mem_cgroup_del_lru(struct page *page)
743{
744	mem_cgroup_del_lru_list(page, page_lru(page));
745}
746
747void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
748{
749	struct mem_cgroup_per_zone *mz;
750	struct page_cgroup *pc;
751
752	if (mem_cgroup_disabled())
753		return;
754
755	pc = lookup_page_cgroup(page);
756	/*
757	 * Used bit is set without atomic ops but after smp_wmb().
758	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
759	 */
760	smp_rmb();
761	/* unused or root page is not rotated. */
762	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
763		return;
764	mz = page_cgroup_zoneinfo(pc);
765	list_move(&pc->lru, &mz->lists[lru]);
766}
767
768void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
769{
770	struct page_cgroup *pc;
771	struct mem_cgroup_per_zone *mz;
772
773	if (mem_cgroup_disabled())
774		return;
775	pc = lookup_page_cgroup(page);
776	VM_BUG_ON(PageCgroupAcctLRU(pc));
777	/*
778	 * Used bit is set without atomic ops but after smp_wmb().
779	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
780	 */
781	smp_rmb();
782	if (!PageCgroupUsed(pc))
783		return;
784
785	mz = page_cgroup_zoneinfo(pc);
786	MEM_CGROUP_ZSTAT(mz, lru) += 1;
787	SetPageCgroupAcctLRU(pc);
788	if (mem_cgroup_is_root(pc->mem_cgroup))
789		return;
790	list_add(&pc->lru, &mz->lists[lru]);
791}
792
793/*
794 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
795 * lru because the page may.be reused after it's fully uncharged (because of
796 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
797 * it again. This function is only used to charge SwapCache. It's done under
798 * lock_page and expected that zone->lru_lock is never held.
799 */
800static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
801{
802	unsigned long flags;
803	struct zone *zone = page_zone(page);
804	struct page_cgroup *pc = lookup_page_cgroup(page);
805
806	spin_lock_irqsave(&zone->lru_lock, flags);
807	/*
808	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
809	 * is guarded by lock_page() because the page is SwapCache.
810	 */
811	if (!PageCgroupUsed(pc))
812		mem_cgroup_del_lru_list(page, page_lru(page));
813	spin_unlock_irqrestore(&zone->lru_lock, flags);
814}
815
816static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
817{
818	unsigned long flags;
819	struct zone *zone = page_zone(page);
820	struct page_cgroup *pc = lookup_page_cgroup(page);
821
822	spin_lock_irqsave(&zone->lru_lock, flags);
823	/* link when the page is linked to LRU but page_cgroup isn't */
824	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
825		mem_cgroup_add_lru_list(page, page_lru(page));
826	spin_unlock_irqrestore(&zone->lru_lock, flags);
827}
828
829
830void mem_cgroup_move_lists(struct page *page,
831			   enum lru_list from, enum lru_list to)
832{
833	if (mem_cgroup_disabled())
834		return;
835	mem_cgroup_del_lru_list(page, from);
836	mem_cgroup_add_lru_list(page, to);
837}
838
839int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
840{
841	int ret;
842	struct mem_cgroup *curr = NULL;
843	struct task_struct *p;
844
845	p = find_lock_task_mm(task);
846	if (!p)
847		return 0;
848	curr = try_get_mem_cgroup_from_mm(p->mm);
849	task_unlock(p);
850	if (!curr)
851		return 0;
852	/*
853	 * We should check use_hierarchy of "mem" not "curr". Because checking
854	 * use_hierarchy of "curr" here make this function true if hierarchy is
855	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
856	 * hierarchy(even if use_hierarchy is disabled in "mem").
857	 */
858	if (mem->use_hierarchy)
859		ret = css_is_ancestor(&curr->css, &mem->css);
860	else
861		ret = (curr == mem);
862	css_put(&curr->css);
863	return ret;
864}
865
866static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
867{
868	unsigned long active;
869	unsigned long inactive;
870	unsigned long gb;
871	unsigned long inactive_ratio;
872
873	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
874	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
875
876	gb = (inactive + active) >> (30 - PAGE_SHIFT);
877	if (gb)
878		inactive_ratio = int_sqrt(10 * gb);
879	else
880		inactive_ratio = 1;
881
882	if (present_pages) {
883		present_pages[0] = inactive;
884		present_pages[1] = active;
885	}
886
887	return inactive_ratio;
888}
889
890int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
891{
892	unsigned long active;
893	unsigned long inactive;
894	unsigned long present_pages[2];
895	unsigned long inactive_ratio;
896
897	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
898
899	inactive = present_pages[0];
900	active = present_pages[1];
901
902	if (inactive * inactive_ratio < active)
903		return 1;
904
905	return 0;
906}
907
908int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
909{
910	unsigned long active;
911	unsigned long inactive;
912
913	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
914	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
915
916	return (active > inactive);
917}
918
919unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
920				       struct zone *zone,
921				       enum lru_list lru)
922{
923	int nid = zone_to_nid(zone);
924	int zid = zone_idx(zone);
925	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
926
927	return MEM_CGROUP_ZSTAT(mz, lru);
928}
929
930struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
931						      struct zone *zone)
932{
933	int nid = zone_to_nid(zone);
934	int zid = zone_idx(zone);
935	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
936
937	return &mz->reclaim_stat;
938}
939
940struct zone_reclaim_stat *
941mem_cgroup_get_reclaim_stat_from_page(struct page *page)
942{
943	struct page_cgroup *pc;
944	struct mem_cgroup_per_zone *mz;
945
946	if (mem_cgroup_disabled())
947		return NULL;
948
949	pc = lookup_page_cgroup(page);
950	/*
951	 * Used bit is set without atomic ops but after smp_wmb().
952	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
953	 */
954	smp_rmb();
955	if (!PageCgroupUsed(pc))
956		return NULL;
957
958	mz = page_cgroup_zoneinfo(pc);
959	if (!mz)
960		return NULL;
961
962	return &mz->reclaim_stat;
963}
964
965unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
966					struct list_head *dst,
967					unsigned long *scanned, int order,
968					int mode, struct zone *z,
969					struct mem_cgroup *mem_cont,
970					int active, int file)
971{
972	unsigned long nr_taken = 0;
973	struct page *page;
974	unsigned long scan;
975	LIST_HEAD(pc_list);
976	struct list_head *src;
977	struct page_cgroup *pc, *tmp;
978	int nid = zone_to_nid(z);
979	int zid = zone_idx(z);
980	struct mem_cgroup_per_zone *mz;
981	int lru = LRU_FILE * file + active;
982	int ret;
983
984	BUG_ON(!mem_cont);
985	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
986	src = &mz->lists[lru];
987
988	scan = 0;
989	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
990		if (scan >= nr_to_scan)
991			break;
992
993		page = pc->page;
994		if (unlikely(!PageCgroupUsed(pc)))
995			continue;
996		if (unlikely(!PageLRU(page)))
997			continue;
998
999		scan++;
1000		ret = __isolate_lru_page(page, mode, file);
1001		switch (ret) {
1002		case 0:
1003			list_move(&page->lru, dst);
1004			mem_cgroup_del_lru(page);
1005			nr_taken++;
1006			break;
1007		case -EBUSY:
1008			/* we don't affect global LRU but rotate in our LRU */
1009			mem_cgroup_rotate_lru_list(page, page_lru(page));
1010			break;
1011		default:
1012			break;
1013		}
1014	}
1015
1016	*scanned = scan;
1017
1018	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1019				      0, 0, 0, mode);
1020
1021	return nr_taken;
1022}
1023
1024#define mem_cgroup_from_res_counter(counter, member)	\
1025	container_of(counter, struct mem_cgroup, member)
1026
1027static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1028{
1029	if (do_swap_account) {
1030		if (res_counter_check_under_limit(&mem->res) &&
1031			res_counter_check_under_limit(&mem->memsw))
1032			return true;
1033	} else
1034		if (res_counter_check_under_limit(&mem->res))
1035			return true;
1036	return false;
1037}
1038
1039static unsigned int get_swappiness(struct mem_cgroup *memcg)
1040{
1041	struct cgroup *cgrp = memcg->css.cgroup;
1042	unsigned int swappiness;
1043
1044	/* root ? */
1045	if (cgrp->parent == NULL)
1046		return vm_swappiness;
1047
1048	spin_lock(&memcg->reclaim_param_lock);
1049	swappiness = memcg->swappiness;
1050	spin_unlock(&memcg->reclaim_param_lock);
1051
1052	return swappiness;
1053}
1054
1055/* A routine for testing mem is not under move_account */
1056
1057static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1058{
1059	struct mem_cgroup *from;
1060	struct mem_cgroup *to;
1061	bool ret = false;
1062	/*
1063	 * Unlike task_move routines, we access mc.to, mc.from not under
1064	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1065	 */
1066	spin_lock(&mc.lock);
1067	from = mc.from;
1068	to = mc.to;
1069	if (!from)
1070		goto unlock;
1071	if (from == mem || to == mem
1072	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1073	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1074		ret = true;
1075unlock:
1076	spin_unlock(&mc.lock);
1077	return ret;
1078}
1079
1080static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1081{
1082	if (mc.moving_task && current != mc.moving_task) {
1083		if (mem_cgroup_under_move(mem)) {
1084			DEFINE_WAIT(wait);
1085			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1086			/* moving charge context might have finished. */
1087			if (mc.moving_task)
1088				schedule();
1089			finish_wait(&mc.waitq, &wait);
1090			return true;
1091		}
1092	}
1093	return false;
1094}
1095
1096static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1097{
1098	int *val = data;
1099	(*val)++;
1100	return 0;
1101}
1102
1103/**
1104 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1105 * @memcg: The memory cgroup that went over limit
1106 * @p: Task that is going to be killed
1107 *
1108 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1109 * enabled
1110 */
1111void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1112{
1113	struct cgroup *task_cgrp;
1114	struct cgroup *mem_cgrp;
1115	/*
1116	 * Need a buffer in BSS, can't rely on allocations. The code relies
1117	 * on the assumption that OOM is serialized for memory controller.
1118	 * If this assumption is broken, revisit this code.
1119	 */
1120	static char memcg_name[PATH_MAX];
1121	int ret;
1122
1123	if (!memcg || !p)
1124		return;
1125
1126
1127	rcu_read_lock();
1128
1129	mem_cgrp = memcg->css.cgroup;
1130	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1131
1132	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1133	if (ret < 0) {
1134		/*
1135		 * Unfortunately, we are unable to convert to a useful name
1136		 * But we'll still print out the usage information
1137		 */
1138		rcu_read_unlock();
1139		goto done;
1140	}
1141	rcu_read_unlock();
1142
1143	printk(KERN_INFO "Task in %s killed", memcg_name);
1144
1145	rcu_read_lock();
1146	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1147	if (ret < 0) {
1148		rcu_read_unlock();
1149		goto done;
1150	}
1151	rcu_read_unlock();
1152
1153	/*
1154	 * Continues from above, so we don't need an KERN_ level
1155	 */
1156	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1157done:
1158
1159	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1160		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1161		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1162		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1163	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1164		"failcnt %llu\n",
1165		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1166		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1167		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1168}
1169
1170/*
1171 * This function returns the number of memcg under hierarchy tree. Returns
1172 * 1(self count) if no children.
1173 */
1174static int mem_cgroup_count_children(struct mem_cgroup *mem)
1175{
1176	int num = 0;
1177 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1178	return num;
1179}
1180
1181/*
1182 * Return the memory (and swap, if configured) limit for a memcg.
1183 */
1184u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1185{
1186	u64 limit;
1187	u64 memsw;
1188
1189	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1190			total_swap_pages;
1191	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1192	/*
1193	 * If memsw is finite and limits the amount of swap space available
1194	 * to this memcg, return that limit.
1195	 */
1196	return min(limit, memsw);
1197}
1198
1199/*
1200 * Visit the first child (need not be the first child as per the ordering
1201 * of the cgroup list, since we track last_scanned_child) of @mem and use
1202 * that to reclaim free pages from.
1203 */
1204static struct mem_cgroup *
1205mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1206{
1207	struct mem_cgroup *ret = NULL;
1208	struct cgroup_subsys_state *css;
1209	int nextid, found;
1210
1211	if (!root_mem->use_hierarchy) {
1212		css_get(&root_mem->css);
1213		ret = root_mem;
1214	}
1215
1216	while (!ret) {
1217		rcu_read_lock();
1218		nextid = root_mem->last_scanned_child + 1;
1219		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1220				   &found);
1221		if (css && css_tryget(css))
1222			ret = container_of(css, struct mem_cgroup, css);
1223
1224		rcu_read_unlock();
1225		/* Updates scanning parameter */
1226		spin_lock(&root_mem->reclaim_param_lock);
1227		if (!css) {
1228			/* this means start scan from ID:1 */
1229			root_mem->last_scanned_child = 0;
1230		} else
1231			root_mem->last_scanned_child = found;
1232		spin_unlock(&root_mem->reclaim_param_lock);
1233	}
1234
1235	return ret;
1236}
1237
1238/*
1239 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1240 * we reclaimed from, so that we don't end up penalizing one child extensively
1241 * based on its position in the children list.
1242 *
1243 * root_mem is the original ancestor that we've been reclaim from.
1244 *
1245 * We give up and return to the caller when we visit root_mem twice.
1246 * (other groups can be removed while we're walking....)
1247 *
1248 * If shrink==true, for avoiding to free too much, this returns immedieately.
1249 */
1250static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1251						struct zone *zone,
1252						gfp_t gfp_mask,
1253						unsigned long reclaim_options)
1254{
1255	struct mem_cgroup *victim;
1256	int ret, total = 0;
1257	int loop = 0;
1258	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1259	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1260	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1261	unsigned long excess = mem_cgroup_get_excess(root_mem);
1262
1263	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1264	if (root_mem->memsw_is_minimum)
1265		noswap = true;
1266
1267	while (1) {
1268		victim = mem_cgroup_select_victim(root_mem);
1269		if (victim == root_mem) {
1270			loop++;
1271			if (loop >= 1)
1272				drain_all_stock_async();
1273			if (loop >= 2) {
1274				/*
1275				 * If we have not been able to reclaim
1276				 * anything, it might because there are
1277				 * no reclaimable pages under this hierarchy
1278				 */
1279				if (!check_soft || !total) {
1280					css_put(&victim->css);
1281					break;
1282				}
1283				/*
1284				 * We want to do more targetted reclaim.
1285				 * excess >> 2 is not to excessive so as to
1286				 * reclaim too much, nor too less that we keep
1287				 * coming back to reclaim from this cgroup
1288				 */
1289				if (total >= (excess >> 2) ||
1290					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1291					css_put(&victim->css);
1292					break;
1293				}
1294			}
1295		}
1296		if (!mem_cgroup_local_usage(victim)) {
1297			/* this cgroup's local usage == 0 */
1298			css_put(&victim->css);
1299			continue;
1300		}
1301		/* we use swappiness of local cgroup */
1302		if (check_soft)
1303			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1304				noswap, get_swappiness(victim), zone);
1305		else
1306			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1307						noswap, get_swappiness(victim));
1308		css_put(&victim->css);
1309		/*
1310		 * At shrinking usage, we can't check we should stop here or
1311		 * reclaim more. It's depends on callers. last_scanned_child
1312		 * will work enough for keeping fairness under tree.
1313		 */
1314		if (shrink)
1315			return ret;
1316		total += ret;
1317		if (check_soft) {
1318			if (res_counter_check_under_soft_limit(&root_mem->res))
1319				return total;
1320		} else if (mem_cgroup_check_under_limit(root_mem))
1321			return 1 + total;
1322	}
1323	return total;
1324}
1325
1326static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1327{
1328	int *val = (int *)data;
1329	int x;
1330	/*
1331	 * Logically, we can stop scanning immediately when we find
1332	 * a memcg is already locked. But condidering unlock ops and
1333	 * creation/removal of memcg, scan-all is simple operation.
1334	 */
1335	x = atomic_inc_return(&mem->oom_lock);
1336	*val = max(x, *val);
1337	return 0;
1338}
1339/*
1340 * Check OOM-Killer is already running under our hierarchy.
1341 * If someone is running, return false.
1342 */
1343static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1344{
1345	int lock_count = 0;
1346
1347	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1348
1349	if (lock_count == 1)
1350		return true;
1351	return false;
1352}
1353
1354static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1355{
1356	/*
1357	 * When a new child is created while the hierarchy is under oom,
1358	 * mem_cgroup_oom_lock() may not be called. We have to use
1359	 * atomic_add_unless() here.
1360	 */
1361	atomic_add_unless(&mem->oom_lock, -1, 0);
1362	return 0;
1363}
1364
1365static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1366{
1367	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
1368}
1369
1370static DEFINE_MUTEX(memcg_oom_mutex);
1371static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1372
1373struct oom_wait_info {
1374	struct mem_cgroup *mem;
1375	wait_queue_t	wait;
1376};
1377
1378static int memcg_oom_wake_function(wait_queue_t *wait,
1379	unsigned mode, int sync, void *arg)
1380{
1381	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1382	struct oom_wait_info *oom_wait_info;
1383
1384	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1385
1386	if (oom_wait_info->mem == wake_mem)
1387		goto wakeup;
1388	/* if no hierarchy, no match */
1389	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1390		return 0;
1391	/*
1392	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1393	 * Then we can use css_is_ancestor without taking care of RCU.
1394	 */
1395	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1396	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1397		return 0;
1398
1399wakeup:
1400	return autoremove_wake_function(wait, mode, sync, arg);
1401}
1402
1403static void memcg_wakeup_oom(struct mem_cgroup *mem)
1404{
1405	/* for filtering, pass "mem" as argument. */
1406	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1407}
1408
1409static void memcg_oom_recover(struct mem_cgroup *mem)
1410{
1411	if (mem && atomic_read(&mem->oom_lock))
1412		memcg_wakeup_oom(mem);
1413}
1414
1415/*
1416 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1417 */
1418bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1419{
1420	struct oom_wait_info owait;
1421	bool locked, need_to_kill;
1422
1423	owait.mem = mem;
1424	owait.wait.flags = 0;
1425	owait.wait.func = memcg_oom_wake_function;
1426	owait.wait.private = current;
1427	INIT_LIST_HEAD(&owait.wait.task_list);
1428	need_to_kill = true;
1429	/* At first, try to OOM lock hierarchy under mem.*/
1430	mutex_lock(&memcg_oom_mutex);
1431	locked = mem_cgroup_oom_lock(mem);
1432	/*
1433	 * Even if signal_pending(), we can't quit charge() loop without
1434	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1435	 * under OOM is always welcomed, use TASK_KILLABLE here.
1436	 */
1437	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1438	if (!locked || mem->oom_kill_disable)
1439		need_to_kill = false;
1440	if (locked)
1441		mem_cgroup_oom_notify(mem);
1442	mutex_unlock(&memcg_oom_mutex);
1443
1444	if (need_to_kill) {
1445		finish_wait(&memcg_oom_waitq, &owait.wait);
1446		mem_cgroup_out_of_memory(mem, mask);
1447	} else {
1448		schedule();
1449		finish_wait(&memcg_oom_waitq, &owait.wait);
1450	}
1451	mutex_lock(&memcg_oom_mutex);
1452	mem_cgroup_oom_unlock(mem);
1453	memcg_wakeup_oom(mem);
1454	mutex_unlock(&memcg_oom_mutex);
1455
1456	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1457		return false;
1458	/* Give chance to dying process */
1459	schedule_timeout(1);
1460	return true;
1461}
1462
1463/*
1464 * Currently used to update mapped file statistics, but the routine can be
1465 * generalized to update other statistics as well.
1466 */
1467void mem_cgroup_update_file_mapped(struct page *page, int val)
1468{
1469	struct mem_cgroup *mem;
1470	struct page_cgroup *pc;
1471
1472	pc = lookup_page_cgroup(page);
1473	if (unlikely(!pc))
1474		return;
1475
1476	lock_page_cgroup(pc);
1477	mem = pc->mem_cgroup;
1478	if (!mem || !PageCgroupUsed(pc))
1479		goto done;
1480
1481	/*
1482	 * Preemption is already disabled. We can use __this_cpu_xxx
1483	 */
1484	if (val > 0) {
1485		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1486		SetPageCgroupFileMapped(pc);
1487	} else {
1488		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1489		ClearPageCgroupFileMapped(pc);
1490	}
1491
1492done:
1493	unlock_page_cgroup(pc);
1494}
1495
1496/*
1497 * size of first charge trial. "32" comes from vmscan.c's magic value.
1498 * TODO: maybe necessary to use big numbers in big irons.
1499 */
1500#define CHARGE_SIZE	(32 * PAGE_SIZE)
1501struct memcg_stock_pcp {
1502	struct mem_cgroup *cached; /* this never be root cgroup */
1503	int charge;
1504	struct work_struct work;
1505};
1506static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1507static atomic_t memcg_drain_count;
1508
1509/*
1510 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1511 * from local stock and true is returned. If the stock is 0 or charges from a
1512 * cgroup which is not current target, returns false. This stock will be
1513 * refilled.
1514 */
1515static bool consume_stock(struct mem_cgroup *mem)
1516{
1517	struct memcg_stock_pcp *stock;
1518	bool ret = true;
1519
1520	stock = &get_cpu_var(memcg_stock);
1521	if (mem == stock->cached && stock->charge)
1522		stock->charge -= PAGE_SIZE;
1523	else /* need to call res_counter_charge */
1524		ret = false;
1525	put_cpu_var(memcg_stock);
1526	return ret;
1527}
1528
1529/*
1530 * Returns stocks cached in percpu to res_counter and reset cached information.
1531 */
1532static void drain_stock(struct memcg_stock_pcp *stock)
1533{
1534	struct mem_cgroup *old = stock->cached;
1535
1536	if (stock->charge) {
1537		res_counter_uncharge(&old->res, stock->charge);
1538		if (do_swap_account)
1539			res_counter_uncharge(&old->memsw, stock->charge);
1540	}
1541	stock->cached = NULL;
1542	stock->charge = 0;
1543}
1544
1545/*
1546 * This must be called under preempt disabled or must be called by
1547 * a thread which is pinned to local cpu.
1548 */
1549static void drain_local_stock(struct work_struct *dummy)
1550{
1551	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1552	drain_stock(stock);
1553}
1554
1555/*
1556 * Cache charges(val) which is from res_counter, to local per_cpu area.
1557 * This will be consumed by consume_stock() function, later.
1558 */
1559static void refill_stock(struct mem_cgroup *mem, int val)
1560{
1561	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1562
1563	if (stock->cached != mem) { /* reset if necessary */
1564		drain_stock(stock);
1565		stock->cached = mem;
1566	}
1567	stock->charge += val;
1568	put_cpu_var(memcg_stock);
1569}
1570
1571/*
1572 * Tries to drain stocked charges in other cpus. This function is asynchronous
1573 * and just put a work per cpu for draining localy on each cpu. Caller can
1574 * expects some charges will be back to res_counter later but cannot wait for
1575 * it.
1576 */
1577static void drain_all_stock_async(void)
1578{
1579	int cpu;
1580	/* This function is for scheduling "drain" in asynchronous way.
1581	 * The result of "drain" is not directly handled by callers. Then,
1582	 * if someone is calling drain, we don't have to call drain more.
1583	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1584	 * there is a race. We just do loose check here.
1585	 */
1586	if (atomic_read(&memcg_drain_count))
1587		return;
1588	/* Notify other cpus that system-wide "drain" is running */
1589	atomic_inc(&memcg_drain_count);
1590	get_online_cpus();
1591	for_each_online_cpu(cpu) {
1592		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1593		schedule_work_on(cpu, &stock->work);
1594	}
1595 	put_online_cpus();
1596	atomic_dec(&memcg_drain_count);
1597	/* We don't wait for flush_work */
1598}
1599
1600/* This is a synchronous drain interface. */
1601static void drain_all_stock_sync(void)
1602{
1603	/* called when force_empty is called */
1604	atomic_inc(&memcg_drain_count);
1605	schedule_on_each_cpu(drain_local_stock);
1606	atomic_dec(&memcg_drain_count);
1607}
1608
1609static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1610					unsigned long action,
1611					void *hcpu)
1612{
1613	int cpu = (unsigned long)hcpu;
1614	struct memcg_stock_pcp *stock;
1615
1616	if (action != CPU_DEAD)
1617		return NOTIFY_OK;
1618	stock = &per_cpu(memcg_stock, cpu);
1619	drain_stock(stock);
1620	return NOTIFY_OK;
1621}
1622
1623
1624/* See __mem_cgroup_try_charge() for details */
1625enum {
1626	CHARGE_OK,		/* success */
1627	CHARGE_RETRY,		/* need to retry but retry is not bad */
1628	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1629	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1630	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1631};
1632
1633static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1634				int csize, bool oom_check)
1635{
1636	struct mem_cgroup *mem_over_limit;
1637	struct res_counter *fail_res;
1638	unsigned long flags = 0;
1639	int ret;
1640
1641	ret = res_counter_charge(&mem->res, csize, &fail_res);
1642
1643	if (likely(!ret)) {
1644		if (!do_swap_account)
1645			return CHARGE_OK;
1646		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1647		if (likely(!ret))
1648			return CHARGE_OK;
1649
1650		res_counter_uncharge(&mem->res, csize);
1651		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1652		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1653	} else
1654		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1655
1656	if (csize > PAGE_SIZE) /* change csize and retry */
1657		return CHARGE_RETRY;
1658
1659	if (!(gfp_mask & __GFP_WAIT))
1660		return CHARGE_WOULDBLOCK;
1661
1662	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1663					gfp_mask, flags);
1664	/*
1665	 * try_to_free_mem_cgroup_pages() might not give us a full
1666	 * picture of reclaim. Some pages are reclaimed and might be
1667	 * moved to swap cache or just unmapped from the cgroup.
1668	 * Check the limit again to see if the reclaim reduced the
1669	 * current usage of the cgroup before giving up
1670	 */
1671	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1672		return CHARGE_RETRY;
1673
1674	/*
1675	 * At task move, charge accounts can be doubly counted. So, it's
1676	 * better to wait until the end of task_move if something is going on.
1677	 */
1678	if (mem_cgroup_wait_acct_move(mem_over_limit))
1679		return CHARGE_RETRY;
1680
1681	/* If we don't need to call oom-killer at el, return immediately */
1682	if (!oom_check)
1683		return CHARGE_NOMEM;
1684	/* check OOM */
1685	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1686		return CHARGE_OOM_DIE;
1687
1688	return CHARGE_RETRY;
1689}
1690
1691/*
1692 * Unlike exported interface, "oom" parameter is added. if oom==true,
1693 * oom-killer can be invoked.
1694 */
1695static int __mem_cgroup_try_charge(struct mm_struct *mm,
1696		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1697{
1698	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1699	struct mem_cgroup *mem = NULL;
1700	int ret;
1701	int csize = CHARGE_SIZE;
1702
1703	/*
1704	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1705	 * in system level. So, allow to go ahead dying process in addition to
1706	 * MEMDIE process.
1707	 */
1708	if (unlikely(test_thread_flag(TIF_MEMDIE)
1709		     || fatal_signal_pending(current)))
1710		goto bypass;
1711
1712	/*
1713	 * We always charge the cgroup the mm_struct belongs to.
1714	 * The mm_struct's mem_cgroup changes on task migration if the
1715	 * thread group leader migrates. It's possible that mm is not
1716	 * set, if so charge the init_mm (happens for pagecache usage).
1717	 */
1718	if (!*memcg && !mm)
1719		goto bypass;
1720again:
1721	if (*memcg) { /* css should be a valid one */
1722		mem = *memcg;
1723		VM_BUG_ON(css_is_removed(&mem->css));
1724		if (mem_cgroup_is_root(mem))
1725			goto done;
1726		if (consume_stock(mem))
1727			goto done;
1728		css_get(&mem->css);
1729	} else {
1730		struct task_struct *p;
1731
1732		rcu_read_lock();
1733		p = rcu_dereference(mm->owner);
1734		/*
1735		 * Because we don't have task_lock(), "p" can exit.
1736		 * In that case, "mem" can point to root or p can be NULL with
1737		 * race with swapoff. Then, we have small risk of mis-accouning.
1738		 * But such kind of mis-account by race always happens because
1739		 * we don't have cgroup_mutex(). It's overkill and we allo that
1740		 * small race, here.
1741		 * (*) swapoff at el will charge against mm-struct not against
1742		 * task-struct. So, mm->owner can be NULL.
1743		 */
1744		mem = mem_cgroup_from_task(p);
1745		if (!mem || mem_cgroup_is_root(mem)) {
1746			rcu_read_unlock();
1747			goto done;
1748		}
1749		if (consume_stock(mem)) {
1750			/*
1751			 * It seems dagerous to access memcg without css_get().
1752			 * But considering how consume_stok works, it's not
1753			 * necessary. If consume_stock success, some charges
1754			 * from this memcg are cached on this cpu. So, we
1755			 * don't need to call css_get()/css_tryget() before
1756			 * calling consume_stock().
1757			 */
1758			rcu_read_unlock();
1759			goto done;
1760		}
1761		/* after here, we may be blocked. we need to get refcnt */
1762		if (!css_tryget(&mem->css)) {
1763			rcu_read_unlock();
1764			goto again;
1765		}
1766		rcu_read_unlock();
1767	}
1768
1769	do {
1770		bool oom_check;
1771
1772		/* If killed, bypass charge */
1773		if (fatal_signal_pending(current)) {
1774			css_put(&mem->css);
1775			goto bypass;
1776		}
1777
1778		oom_check = false;
1779		if (oom && !nr_oom_retries) {
1780			oom_check = true;
1781			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1782		}
1783
1784		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1785
1786		switch (ret) {
1787		case CHARGE_OK:
1788			break;
1789		case CHARGE_RETRY: /* not in OOM situation but retry */
1790			csize = PAGE_SIZE;
1791			css_put(&mem->css);
1792			mem = NULL;
1793			goto again;
1794		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1795			css_put(&mem->css);
1796			goto nomem;
1797		case CHARGE_NOMEM: /* OOM routine works */
1798			if (!oom) {
1799				css_put(&mem->css);
1800				goto nomem;
1801			}
1802			/* If oom, we never return -ENOMEM */
1803			nr_oom_retries--;
1804			break;
1805		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1806			css_put(&mem->css);
1807			goto bypass;
1808		}
1809	} while (ret != CHARGE_OK);
1810
1811	if (csize > PAGE_SIZE)
1812		refill_stock(mem, csize - PAGE_SIZE);
1813	css_put(&mem->css);
1814done:
1815	*memcg = mem;
1816	return 0;
1817nomem:
1818	*memcg = NULL;
1819	return -ENOMEM;
1820bypass:
1821	*memcg = NULL;
1822	return 0;
1823}
1824
1825/*
1826 * Somemtimes we have to undo a charge we got by try_charge().
1827 * This function is for that and do uncharge, put css's refcnt.
1828 * gotten by try_charge().
1829 */
1830static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1831							unsigned long count)
1832{
1833	if (!mem_cgroup_is_root(mem)) {
1834		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1835		if (do_swap_account)
1836			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1837	}
1838}
1839
1840static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1841{
1842	__mem_cgroup_cancel_charge(mem, 1);
1843}
1844
1845/*
1846 * A helper function to get mem_cgroup from ID. must be called under
1847 * rcu_read_lock(). The caller must check css_is_removed() or some if
1848 * it's concern. (dropping refcnt from swap can be called against removed
1849 * memcg.)
1850 */
1851static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1852{
1853	struct cgroup_subsys_state *css;
1854
1855	/* ID 0 is unused ID */
1856	if (!id)
1857		return NULL;
1858	css = css_lookup(&mem_cgroup_subsys, id);
1859	if (!css)
1860		return NULL;
1861	return container_of(css, struct mem_cgroup, css);
1862}
1863
1864struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1865{
1866	struct mem_cgroup *mem = NULL;
1867	struct page_cgroup *pc;
1868	unsigned short id;
1869	swp_entry_t ent;
1870
1871	VM_BUG_ON(!PageLocked(page));
1872
1873	pc = lookup_page_cgroup(page);
1874	lock_page_cgroup(pc);
1875	if (PageCgroupUsed(pc)) {
1876		mem = pc->mem_cgroup;
1877		if (mem && !css_tryget(&mem->css))
1878			mem = NULL;
1879	} else if (PageSwapCache(page)) {
1880		ent.val = page_private(page);
1881		id = lookup_swap_cgroup(ent);
1882		rcu_read_lock();
1883		mem = mem_cgroup_lookup(id);
1884		if (mem && !css_tryget(&mem->css))
1885			mem = NULL;
1886		rcu_read_unlock();
1887	}
1888	unlock_page_cgroup(pc);
1889	return mem;
1890}
1891
1892/*
1893 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1894 * USED state. If already USED, uncharge and return.
1895 */
1896
1897static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1898				     struct page_cgroup *pc,
1899				     enum charge_type ctype)
1900{
1901	/* try_charge() can return NULL to *memcg, taking care of it. */
1902	if (!mem)
1903		return;
1904
1905	lock_page_cgroup(pc);
1906	if (unlikely(PageCgroupUsed(pc))) {
1907		unlock_page_cgroup(pc);
1908		mem_cgroup_cancel_charge(mem);
1909		return;
1910	}
1911
1912	pc->mem_cgroup = mem;
1913	/*
1914	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1915	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1916	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1917	 * before USED bit, we need memory barrier here.
1918	 * See mem_cgroup_add_lru_list(), etc.
1919 	 */
1920	smp_wmb();
1921	switch (ctype) {
1922	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1923	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1924		SetPageCgroupCache(pc);
1925		SetPageCgroupUsed(pc);
1926		break;
1927	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1928		ClearPageCgroupCache(pc);
1929		SetPageCgroupUsed(pc);
1930		break;
1931	default:
1932		break;
1933	}
1934
1935	mem_cgroup_charge_statistics(mem, pc, true);
1936
1937	unlock_page_cgroup(pc);
1938	/*
1939	 * "charge_statistics" updated event counter. Then, check it.
1940	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1941	 * if they exceeds softlimit.
1942	 */
1943	memcg_check_events(mem, pc->page);
1944}
1945
1946/**
1947 * __mem_cgroup_move_account - move account of the page
1948 * @pc:	page_cgroup of the page.
1949 * @from: mem_cgroup which the page is moved from.
1950 * @to:	mem_cgroup which the page is moved to. @from != @to.
1951 * @uncharge: whether we should call uncharge and css_put against @from.
1952 *
1953 * The caller must confirm following.
1954 * - page is not on LRU (isolate_page() is useful.)
1955 * - the pc is locked, used, and ->mem_cgroup points to @from.
1956 *
1957 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1958 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1959 * true, this function does "uncharge" from old cgroup, but it doesn't if
1960 * @uncharge is false, so a caller should do "uncharge".
1961 */
1962
1963static void __mem_cgroup_move_account(struct page_cgroup *pc,
1964	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1965{
1966	VM_BUG_ON(from == to);
1967	VM_BUG_ON(PageLRU(pc->page));
1968	VM_BUG_ON(!PageCgroupLocked(pc));
1969	VM_BUG_ON(!PageCgroupUsed(pc));
1970	VM_BUG_ON(pc->mem_cgroup != from);
1971
1972	if (PageCgroupFileMapped(pc)) {
1973		/* Update mapped_file data for mem_cgroup */
1974		preempt_disable();
1975		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1976		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1977		preempt_enable();
1978	}
1979	mem_cgroup_charge_statistics(from, pc, false);
1980	if (uncharge)
1981		/* This is not "cancel", but cancel_charge does all we need. */
1982		mem_cgroup_cancel_charge(from);
1983
1984	/* caller should have done css_get */
1985	pc->mem_cgroup = to;
1986	mem_cgroup_charge_statistics(to, pc, true);
1987	/*
1988	 * We charges against "to" which may not have any tasks. Then, "to"
1989	 * can be under rmdir(). But in current implementation, caller of
1990	 * this function is just force_empty() and move charge, so it's
1991	 * garanteed that "to" is never removed. So, we don't check rmdir
1992	 * status here.
1993	 */
1994}
1995
1996/*
1997 * check whether the @pc is valid for moving account and call
1998 * __mem_cgroup_move_account()
1999 */
2000static int mem_cgroup_move_account(struct page_cgroup *pc,
2001		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2002{
2003	int ret = -EINVAL;
2004	lock_page_cgroup(pc);
2005	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2006		__mem_cgroup_move_account(pc, from, to, uncharge);
2007		ret = 0;
2008	}
2009	unlock_page_cgroup(pc);
2010	/*
2011	 * check events
2012	 */
2013	memcg_check_events(to, pc->page);
2014	memcg_check_events(from, pc->page);
2015	return ret;
2016}
2017
2018/*
2019 * move charges to its parent.
2020 */
2021
2022static int mem_cgroup_move_parent(struct page_cgroup *pc,
2023				  struct mem_cgroup *child,
2024				  gfp_t gfp_mask)
2025{
2026	struct page *page = pc->page;
2027	struct cgroup *cg = child->css.cgroup;
2028	struct cgroup *pcg = cg->parent;
2029	struct mem_cgroup *parent;
2030	int ret;
2031
2032	/* Is ROOT ? */
2033	if (!pcg)
2034		return -EINVAL;
2035
2036	ret = -EBUSY;
2037	if (!get_page_unless_zero(page))
2038		goto out;
2039	if (isolate_lru_page(page))
2040		goto put;
2041
2042	parent = mem_cgroup_from_cont(pcg);
2043	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2044	if (ret || !parent)
2045		goto put_back;
2046
2047	ret = mem_cgroup_move_account(pc, child, parent, true);
2048	if (ret)
2049		mem_cgroup_cancel_charge(parent);
2050put_back:
2051	putback_lru_page(page);
2052put:
2053	put_page(page);
2054out:
2055	return ret;
2056}
2057
2058/*
2059 * Charge the memory controller for page usage.
2060 * Return
2061 * 0 if the charge was successful
2062 * < 0 if the cgroup is over its limit
2063 */
2064static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2065				gfp_t gfp_mask, enum charge_type ctype)
2066{
2067	struct mem_cgroup *mem = NULL;
2068	struct page_cgroup *pc;
2069	int ret;
2070
2071	pc = lookup_page_cgroup(page);
2072	/* can happen at boot */
2073	if (unlikely(!pc))
2074		return 0;
2075	prefetchw(pc);
2076
2077	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2078	if (ret || !mem)
2079		return ret;
2080
2081	__mem_cgroup_commit_charge(mem, pc, ctype);
2082	return 0;
2083}
2084
2085int mem_cgroup_newpage_charge(struct page *page,
2086			      struct mm_struct *mm, gfp_t gfp_mask)
2087{
2088	if (mem_cgroup_disabled())
2089		return 0;
2090	if (PageCompound(page))
2091		return 0;
2092	/*
2093	 * If already mapped, we don't have to account.
2094	 * If page cache, page->mapping has address_space.
2095	 * But page->mapping may have out-of-use anon_vma pointer,
2096	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2097	 * is NULL.
2098  	 */
2099	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2100		return 0;
2101	if (unlikely(!mm))
2102		mm = &init_mm;
2103	return mem_cgroup_charge_common(page, mm, gfp_mask,
2104				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2105}
2106
2107static void
2108__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2109					enum charge_type ctype);
2110
2111int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2112				gfp_t gfp_mask)
2113{
2114	int ret;
2115
2116	if (mem_cgroup_disabled())
2117		return 0;
2118	if (PageCompound(page))
2119		return 0;
2120	/*
2121	 * Corner case handling. This is called from add_to_page_cache()
2122	 * in usual. But some FS (shmem) precharges this page before calling it
2123	 * and call add_to_page_cache() with GFP_NOWAIT.
2124	 *
2125	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2126	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2127	 * charge twice. (It works but has to pay a bit larger cost.)
2128	 * And when the page is SwapCache, it should take swap information
2129	 * into account. This is under lock_page() now.
2130	 */
2131	if (!(gfp_mask & __GFP_WAIT)) {
2132		struct page_cgroup *pc;
2133
2134		pc = lookup_page_cgroup(page);
2135		if (!pc)
2136			return 0;
2137		lock_page_cgroup(pc);
2138		if (PageCgroupUsed(pc)) {
2139			unlock_page_cgroup(pc);
2140			return 0;
2141		}
2142		unlock_page_cgroup(pc);
2143	}
2144
2145	if (unlikely(!mm))
2146		mm = &init_mm;
2147
2148	if (page_is_file_cache(page))
2149		return mem_cgroup_charge_common(page, mm, gfp_mask,
2150				MEM_CGROUP_CHARGE_TYPE_CACHE);
2151
2152	/* shmem */
2153	if (PageSwapCache(page)) {
2154		struct mem_cgroup *mem = NULL;
2155
2156		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2157		if (!ret)
2158			__mem_cgroup_commit_charge_swapin(page, mem,
2159					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2160	} else
2161		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2162					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2163
2164	return ret;
2165}
2166
2167/*
2168 * While swap-in, try_charge -> commit or cancel, the page is locked.
2169 * And when try_charge() successfully returns, one refcnt to memcg without
2170 * struct page_cgroup is acquired. This refcnt will be consumed by
2171 * "commit()" or removed by "cancel()"
2172 */
2173int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2174				 struct page *page,
2175				 gfp_t mask, struct mem_cgroup **ptr)
2176{
2177	struct mem_cgroup *mem;
2178	int ret;
2179
2180	if (mem_cgroup_disabled())
2181		return 0;
2182
2183	if (!do_swap_account)
2184		goto charge_cur_mm;
2185	/*
2186	 * A racing thread's fault, or swapoff, may have already updated
2187	 * the pte, and even removed page from swap cache: in those cases
2188	 * do_swap_page()'s pte_same() test will fail; but there's also a
2189	 * KSM case which does need to charge the page.
2190	 */
2191	if (!PageSwapCache(page))
2192		goto charge_cur_mm;
2193	mem = try_get_mem_cgroup_from_page(page);
2194	if (!mem)
2195		goto charge_cur_mm;
2196	*ptr = mem;
2197	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2198	css_put(&mem->css);
2199	return ret;
2200charge_cur_mm:
2201	if (unlikely(!mm))
2202		mm = &init_mm;
2203	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2204}
2205
2206static void
2207__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2208					enum charge_type ctype)
2209{
2210	struct page_cgroup *pc;
2211
2212	if (mem_cgroup_disabled())
2213		return;
2214	if (!ptr)
2215		return;
2216	cgroup_exclude_rmdir(&ptr->css);
2217	pc = lookup_page_cgroup(page);
2218	mem_cgroup_lru_del_before_commit_swapcache(page);
2219	__mem_cgroup_commit_charge(ptr, pc, ctype);
2220	mem_cgroup_lru_add_after_commit_swapcache(page);
2221	/*
2222	 * Now swap is on-memory. This means this page may be
2223	 * counted both as mem and swap....double count.
2224	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2225	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2226	 * may call delete_from_swap_cache() before reach here.
2227	 */
2228	if (do_swap_account && PageSwapCache(page)) {
2229		swp_entry_t ent = {.val = page_private(page)};
2230		unsigned short id;
2231		struct mem_cgroup *memcg;
2232
2233		id = swap_cgroup_record(ent, 0);
2234		rcu_read_lock();
2235		memcg = mem_cgroup_lookup(id);
2236		if (memcg) {
2237			/*
2238			 * This recorded memcg can be obsolete one. So, avoid
2239			 * calling css_tryget
2240			 */
2241			if (!mem_cgroup_is_root(memcg))
2242				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2243			mem_cgroup_swap_statistics(memcg, false);
2244			mem_cgroup_put(memcg);
2245		}
2246		rcu_read_unlock();
2247	}
2248	/*
2249	 * At swapin, we may charge account against cgroup which has no tasks.
2250	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2251	 * In that case, we need to call pre_destroy() again. check it here.
2252	 */
2253	cgroup_release_and_wakeup_rmdir(&ptr->css);
2254}
2255
2256void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2257{
2258	__mem_cgroup_commit_charge_swapin(page, ptr,
2259					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2260}
2261
2262void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2263{
2264	if (mem_cgroup_disabled())
2265		return;
2266	if (!mem)
2267		return;
2268	mem_cgroup_cancel_charge(mem);
2269}
2270
2271static void
2272__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2273{
2274	struct memcg_batch_info *batch = NULL;
2275	bool uncharge_memsw = true;
2276	/* If swapout, usage of swap doesn't decrease */
2277	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2278		uncharge_memsw = false;
2279
2280	batch = &current->memcg_batch;
2281	/*
2282	 * In usual, we do css_get() when we remember memcg pointer.
2283	 * But in this case, we keep res->usage until end of a series of
2284	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2285	 */
2286	if (!batch->memcg)
2287		batch->memcg = mem;
2288	/*
2289	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2290	 * In those cases, all pages freed continously can be expected to be in
2291	 * the same cgroup and we have chance to coalesce uncharges.
2292	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2293	 * because we want to do uncharge as soon as possible.
2294	 */
2295
2296	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2297		goto direct_uncharge;
2298
2299	/*
2300	 * In typical case, batch->memcg == mem. This means we can
2301	 * merge a series of uncharges to an uncharge of res_counter.
2302	 * If not, we uncharge res_counter ony by one.
2303	 */
2304	if (batch->memcg != mem)
2305		goto direct_uncharge;
2306	/* remember freed charge and uncharge it later */
2307	batch->bytes += PAGE_SIZE;
2308	if (uncharge_memsw)
2309		batch->memsw_bytes += PAGE_SIZE;
2310	return;
2311direct_uncharge:
2312	res_counter_uncharge(&mem->res, PAGE_SIZE);
2313	if (uncharge_memsw)
2314		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2315	if (unlikely(batch->memcg != mem))
2316		memcg_oom_recover(mem);
2317	return;
2318}
2319
2320/*
2321 * uncharge if !page_mapped(page)
2322 */
2323static struct mem_cgroup *
2324__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2325{
2326	struct page_cgroup *pc;
2327	struct mem_cgroup *mem = NULL;
2328
2329	if (mem_cgroup_disabled())
2330		return NULL;
2331
2332	if (PageSwapCache(page))
2333		return NULL;
2334
2335	/*
2336	 * Check if our page_cgroup is valid
2337	 */
2338	pc = lookup_page_cgroup(page);
2339	if (unlikely(!pc || !PageCgroupUsed(pc)))
2340		return NULL;
2341
2342	lock_page_cgroup(pc);
2343
2344	mem = pc->mem_cgroup;
2345
2346	if (!PageCgroupUsed(pc))
2347		goto unlock_out;
2348
2349	switch (ctype) {
2350	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2351	case MEM_CGROUP_CHARGE_TYPE_DROP:
2352		/* See mem_cgroup_prepare_migration() */
2353		if (page_mapped(page) || PageCgroupMigration(pc))
2354			goto unlock_out;
2355		break;
2356	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2357		if (!PageAnon(page)) {	/* Shared memory */
2358			if (page->mapping && !page_is_file_cache(page))
2359				goto unlock_out;
2360		} else if (page_mapped(page)) /* Anon */
2361				goto unlock_out;
2362		break;
2363	default:
2364		break;
2365	}
2366
2367	mem_cgroup_charge_statistics(mem, pc, false);
2368
2369	ClearPageCgroupUsed(pc);
2370	/*
2371	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2372	 * freed from LRU. This is safe because uncharged page is expected not
2373	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2374	 * special functions.
2375	 */
2376
2377	unlock_page_cgroup(pc);
2378	/*
2379	 * even after unlock, we have mem->res.usage here and this memcg
2380	 * will never be freed.
2381	 */
2382	memcg_check_events(mem, page);
2383	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2384		mem_cgroup_swap_statistics(mem, true);
2385		mem_cgroup_get(mem);
2386	}
2387	if (!mem_cgroup_is_root(mem))
2388		__do_uncharge(mem, ctype);
2389
2390	return mem;
2391
2392unlock_out:
2393	unlock_page_cgroup(pc);
2394	return NULL;
2395}
2396
2397void mem_cgroup_uncharge_page(struct page *page)
2398{
2399	/* early check. */
2400	if (page_mapped(page))
2401		return;
2402	if (page->mapping && !PageAnon(page))
2403		return;
2404	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2405}
2406
2407void mem_cgroup_uncharge_cache_page(struct page *page)
2408{
2409	VM_BUG_ON(page_mapped(page));
2410	VM_BUG_ON(page->mapping);
2411	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2412}
2413
2414/*
2415 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2416 * In that cases, pages are freed continuously and we can expect pages
2417 * are in the same memcg. All these calls itself limits the number of
2418 * pages freed at once, then uncharge_start/end() is called properly.
2419 * This may be called prural(2) times in a context,
2420 */
2421
2422void mem_cgroup_uncharge_start(void)
2423{
2424	current->memcg_batch.do_batch++;
2425	/* We can do nest. */
2426	if (current->memcg_batch.do_batch == 1) {
2427		current->memcg_batch.memcg = NULL;
2428		current->memcg_batch.bytes = 0;
2429		current->memcg_batch.memsw_bytes = 0;
2430	}
2431}
2432
2433void mem_cgroup_uncharge_end(void)
2434{
2435	struct memcg_batch_info *batch = &current->memcg_batch;
2436
2437	if (!batch->do_batch)
2438		return;
2439
2440	batch->do_batch--;
2441	if (batch->do_batch) /* If stacked, do nothing. */
2442		return;
2443
2444	if (!batch->memcg)
2445		return;
2446	/*
2447	 * This "batch->memcg" is valid without any css_get/put etc...
2448	 * bacause we hide charges behind us.
2449	 */
2450	if (batch->bytes)
2451		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2452	if (batch->memsw_bytes)
2453		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2454	memcg_oom_recover(batch->memcg);
2455	/* forget this pointer (for sanity check) */
2456	batch->memcg = NULL;
2457}
2458
2459#ifdef CONFIG_SWAP
2460/*
2461 * called after __delete_from_swap_cache() and drop "page" account.
2462 * memcg information is recorded to swap_cgroup of "ent"
2463 */
2464void
2465mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2466{
2467	struct mem_cgroup *memcg;
2468	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2469
2470	if (!swapout) /* this was a swap cache but the swap is unused ! */
2471		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2472
2473	memcg = __mem_cgroup_uncharge_common(page, ctype);
2474
2475	/*
2476	 * record memcg information,  if swapout && memcg != NULL,
2477	 * mem_cgroup_get() was called in uncharge().
2478	 */
2479	if (do_swap_account && swapout && memcg)
2480		swap_cgroup_record(ent, css_id(&memcg->css));
2481}
2482#endif
2483
2484#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2485/*
2486 * called from swap_entry_free(). remove record in swap_cgroup and
2487 * uncharge "memsw" account.
2488 */
2489void mem_cgroup_uncharge_swap(swp_entry_t ent)
2490{
2491	struct mem_cgroup *memcg;
2492	unsigned short id;
2493
2494	if (!do_swap_account)
2495		return;
2496
2497	id = swap_cgroup_record(ent, 0);
2498	rcu_read_lock();
2499	memcg = mem_cgroup_lookup(id);
2500	if (memcg) {
2501		/*
2502		 * We uncharge this because swap is freed.
2503		 * This memcg can be obsolete one. We avoid calling css_tryget
2504		 */
2505		if (!mem_cgroup_is_root(memcg))
2506			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2507		mem_cgroup_swap_statistics(memcg, false);
2508		mem_cgroup_put(memcg);
2509	}
2510	rcu_read_unlock();
2511}
2512
2513/**
2514 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2515 * @entry: swap entry to be moved
2516 * @from:  mem_cgroup which the entry is moved from
2517 * @to:  mem_cgroup which the entry is moved to
2518 * @need_fixup: whether we should fixup res_counters and refcounts.
2519 *
2520 * It succeeds only when the swap_cgroup's record for this entry is the same
2521 * as the mem_cgroup's id of @from.
2522 *
2523 * Returns 0 on success, -EINVAL on failure.
2524 *
2525 * The caller must have charged to @to, IOW, called res_counter_charge() about
2526 * both res and memsw, and called css_get().
2527 */
2528static int mem_cgroup_move_swap_account(swp_entry_t entry,
2529		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2530{
2531	unsigned short old_id, new_id;
2532
2533	old_id = css_id(&from->css);
2534	new_id = css_id(&to->css);
2535
2536	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2537		mem_cgroup_swap_statistics(from, false);
2538		mem_cgroup_swap_statistics(to, true);
2539		/*
2540		 * This function is only called from task migration context now.
2541		 * It postpones res_counter and refcount handling till the end
2542		 * of task migration(mem_cgroup_clear_mc()) for performance
2543		 * improvement. But we cannot postpone mem_cgroup_get(to)
2544		 * because if the process that has been moved to @to does
2545		 * swap-in, the refcount of @to might be decreased to 0.
2546		 */
2547		mem_cgroup_get(to);
2548		if (need_fixup) {
2549			if (!mem_cgroup_is_root(from))
2550				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2551			mem_cgroup_put(from);
2552			/*
2553			 * we charged both to->res and to->memsw, so we should
2554			 * uncharge to->res.
2555			 */
2556			if (!mem_cgroup_is_root(to))
2557				res_counter_uncharge(&to->res, PAGE_SIZE);
2558		}
2559		return 0;
2560	}
2561	return -EINVAL;
2562}
2563#else
2564static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2565		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2566{
2567	return -EINVAL;
2568}
2569#endif
2570
2571/*
2572 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2573 * page belongs to.
2574 */
2575int mem_cgroup_prepare_migration(struct page *page,
2576	struct page *newpage, struct mem_cgroup **ptr)
2577{
2578	struct page_cgroup *pc;
2579	struct mem_cgroup *mem = NULL;
2580	enum charge_type ctype;
2581	int ret = 0;
2582
2583	if (mem_cgroup_disabled())
2584		return 0;
2585
2586	pc = lookup_page_cgroup(page);
2587	lock_page_cgroup(pc);
2588	if (PageCgroupUsed(pc)) {
2589		mem = pc->mem_cgroup;
2590		css_get(&mem->css);
2591		/*
2592		 * At migrating an anonymous page, its mapcount goes down
2593		 * to 0 and uncharge() will be called. But, even if it's fully
2594		 * unmapped, migration may fail and this page has to be
2595		 * charged again. We set MIGRATION flag here and delay uncharge
2596		 * until end_migration() is called
2597		 *
2598		 * Corner Case Thinking
2599		 * A)
2600		 * When the old page was mapped as Anon and it's unmap-and-freed
2601		 * while migration was ongoing.
2602		 * If unmap finds the old page, uncharge() of it will be delayed
2603		 * until end_migration(). If unmap finds a new page, it's
2604		 * uncharged when it make mapcount to be 1->0. If unmap code
2605		 * finds swap_migration_entry, the new page will not be mapped
2606		 * and end_migration() will find it(mapcount==0).
2607		 *
2608		 * B)
2609		 * When the old page was mapped but migraion fails, the kernel
2610		 * remaps it. A charge for it is kept by MIGRATION flag even
2611		 * if mapcount goes down to 0. We can do remap successfully
2612		 * without charging it again.
2613		 *
2614		 * C)
2615		 * The "old" page is under lock_page() until the end of
2616		 * migration, so, the old page itself will not be swapped-out.
2617		 * If the new page is swapped out before end_migraton, our
2618		 * hook to usual swap-out path will catch the event.
2619		 */
2620		if (PageAnon(page))
2621			SetPageCgroupMigration(pc);
2622	}
2623	unlock_page_cgroup(pc);
2624	/*
2625	 * If the page is not charged at this point,
2626	 * we return here.
2627	 */
2628	if (!mem)
2629		return 0;
2630
2631	*ptr = mem;
2632	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2633	css_put(&mem->css);/* drop extra refcnt */
2634	if (ret || *ptr == NULL) {
2635		if (PageAnon(page)) {
2636			lock_page_cgroup(pc);
2637			ClearPageCgroupMigration(pc);
2638			unlock_page_cgroup(pc);
2639			/*
2640			 * The old page may be fully unmapped while we kept it.
2641			 */
2642			mem_cgroup_uncharge_page(page);
2643		}
2644		return -ENOMEM;
2645	}
2646	/*
2647	 * We charge new page before it's used/mapped. So, even if unlock_page()
2648	 * is called before end_migration, we can catch all events on this new
2649	 * page. In the case new page is migrated but not remapped, new page's
2650	 * mapcount will be finally 0 and we call uncharge in end_migration().
2651	 */
2652	pc = lookup_page_cgroup(newpage);
2653	if (PageAnon(page))
2654		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2655	else if (page_is_file_cache(page))
2656		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2657	else
2658		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2659	__mem_cgroup_commit_charge(mem, pc, ctype);
2660	return ret;
2661}
2662
2663/* remove redundant charge if migration failed*/
2664void mem_cgroup_end_migration(struct mem_cgroup *mem,
2665	struct page *oldpage, struct page *newpage)
2666{
2667	struct page *used, *unused;
2668	struct page_cgroup *pc;
2669
2670	if (!mem)
2671		return;
2672	/* blocks rmdir() */
2673	cgroup_exclude_rmdir(&mem->css);
2674	/* at migration success, oldpage->mapping is NULL. */
2675	if (oldpage->mapping) {
2676		used = oldpage;
2677		unused = newpage;
2678	} else {
2679		used = newpage;
2680		unused = oldpage;
2681	}
2682	/*
2683	 * We disallowed uncharge of pages under migration because mapcount
2684	 * of the page goes down to zero, temporarly.
2685	 * Clear the flag and check the page should be charged.
2686	 */
2687	pc = lookup_page_cgroup(oldpage);
2688	lock_page_cgroup(pc);
2689	ClearPageCgroupMigration(pc);
2690	unlock_page_cgroup(pc);
2691
2692	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2693
2694	/*
2695	 * If a page is a file cache, radix-tree replacement is very atomic
2696	 * and we can skip this check. When it was an Anon page, its mapcount
2697	 * goes down to 0. But because we added MIGRATION flage, it's not
2698	 * uncharged yet. There are several case but page->mapcount check
2699	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2700	 * check. (see prepare_charge() also)
2701	 */
2702	if (PageAnon(used))
2703		mem_cgroup_uncharge_page(used);
2704	/*
2705	 * At migration, we may charge account against cgroup which has no
2706	 * tasks.
2707	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2708	 * In that case, we need to call pre_destroy() again. check it here.
2709	 */
2710	cgroup_release_and_wakeup_rmdir(&mem->css);
2711}
2712
2713/*
2714 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2715 * Calling hierarchical_reclaim is not enough because we should update
2716 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2717 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2718 * not from the memcg which this page would be charged to.
2719 * try_charge_swapin does all of these works properly.
2720 */
2721int mem_cgroup_shmem_charge_fallback(struct page *page,
2722			    struct mm_struct *mm,
2723			    gfp_t gfp_mask)
2724{
2725	struct mem_cgroup *mem = NULL;
2726	int ret;
2727
2728	if (mem_cgroup_disabled())
2729		return 0;
2730
2731	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2732	if (!ret)
2733		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2734
2735	return ret;
2736}
2737
2738static DEFINE_MUTEX(set_limit_mutex);
2739
2740static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2741				unsigned long long val)
2742{
2743	int retry_count;
2744	u64 memswlimit, memlimit;
2745	int ret = 0;
2746	int children = mem_cgroup_count_children(memcg);
2747	u64 curusage, oldusage;
2748	int enlarge;
2749
2750	/*
2751	 * For keeping hierarchical_reclaim simple, how long we should retry
2752	 * is depends on callers. We set our retry-count to be function
2753	 * of # of children which we should visit in this loop.
2754	 */
2755	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2756
2757	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2758
2759	enlarge = 0;
2760	while (retry_count) {
2761		if (signal_pending(current)) {
2762			ret = -EINTR;
2763			break;
2764		}
2765		/*
2766		 * Rather than hide all in some function, I do this in
2767		 * open coded manner. You see what this really does.
2768		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2769		 */
2770		mutex_lock(&set_limit_mutex);
2771		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2772		if (memswlimit < val) {
2773			ret = -EINVAL;
2774			mutex_unlock(&set_limit_mutex);
2775			break;
2776		}
2777
2778		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2779		if (memlimit < val)
2780			enlarge = 1;
2781
2782		ret = res_counter_set_limit(&memcg->res, val);
2783		if (!ret) {
2784			if (memswlimit == val)
2785				memcg->memsw_is_minimum = true;
2786			else
2787				memcg->memsw_is_minimum = false;
2788		}
2789		mutex_unlock(&set_limit_mutex);
2790
2791		if (!ret)
2792			break;
2793
2794		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2795						MEM_CGROUP_RECLAIM_SHRINK);
2796		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2797		/* Usage is reduced ? */
2798  		if (curusage >= oldusage)
2799			retry_count--;
2800		else
2801			oldusage = curusage;
2802	}
2803	if (!ret && enlarge)
2804		memcg_oom_recover(memcg);
2805
2806	return ret;
2807}
2808
2809static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2810					unsigned long long val)
2811{
2812	int retry_count;
2813	u64 memlimit, memswlimit, oldusage, curusage;
2814	int children = mem_cgroup_count_children(memcg);
2815	int ret = -EBUSY;
2816	int enlarge = 0;
2817
2818	/* see mem_cgroup_resize_res_limit */
2819 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2820	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2821	while (retry_count) {
2822		if (signal_pending(current)) {
2823			ret = -EINTR;
2824			break;
2825		}
2826		/*
2827		 * Rather than hide all in some function, I do this in
2828		 * open coded manner. You see what this really does.
2829		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2830		 */
2831		mutex_lock(&set_limit_mutex);
2832		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2833		if (memlimit > val) {
2834			ret = -EINVAL;
2835			mutex_unlock(&set_limit_mutex);
2836			break;
2837		}
2838		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2839		if (memswlimit < val)
2840			enlarge = 1;
2841		ret = res_counter_set_limit(&memcg->memsw, val);
2842		if (!ret) {
2843			if (memlimit == val)
2844				memcg->memsw_is_minimum = true;
2845			else
2846				memcg->memsw_is_minimum = false;
2847		}
2848		mutex_unlock(&set_limit_mutex);
2849
2850		if (!ret)
2851			break;
2852
2853		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2854						MEM_CGROUP_RECLAIM_NOSWAP |
2855						MEM_CGROUP_RECLAIM_SHRINK);
2856		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2857		/* Usage is reduced ? */
2858		if (curusage >= oldusage)
2859			retry_count--;
2860		else
2861			oldusage = curusage;
2862	}
2863	if (!ret && enlarge)
2864		memcg_oom_recover(memcg);
2865	return ret;
2866}
2867
2868unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2869					    gfp_t gfp_mask)
2870{
2871	unsigned long nr_reclaimed = 0;
2872	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2873	unsigned long reclaimed;
2874	int loop = 0;
2875	struct mem_cgroup_tree_per_zone *mctz;
2876	unsigned long long excess;
2877
2878	if (order > 0)
2879		return 0;
2880
2881	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2882	/*
2883	 * This loop can run a while, specially if mem_cgroup's continuously
2884	 * keep exceeding their soft limit and putting the system under
2885	 * pressure
2886	 */
2887	do {
2888		if (next_mz)
2889			mz = next_mz;
2890		else
2891			mz = mem_cgroup_largest_soft_limit_node(mctz);
2892		if (!mz)
2893			break;
2894
2895		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2896						gfp_mask,
2897						MEM_CGROUP_RECLAIM_SOFT);
2898		nr_reclaimed += reclaimed;
2899		spin_lock(&mctz->lock);
2900
2901		/*
2902		 * If we failed to reclaim anything from this memory cgroup
2903		 * it is time to move on to the next cgroup
2904		 */
2905		next_mz = NULL;
2906		if (!reclaimed) {
2907			do {
2908				/*
2909				 * Loop until we find yet another one.
2910				 *
2911				 * By the time we get the soft_limit lock
2912				 * again, someone might have aded the
2913				 * group back on the RB tree. Iterate to
2914				 * make sure we get a different mem.
2915				 * mem_cgroup_largest_soft_limit_node returns
2916				 * NULL if no other cgroup is present on
2917				 * the tree
2918				 */
2919				next_mz =
2920				__mem_cgroup_largest_soft_limit_node(mctz);
2921				if (next_mz == mz) {
2922					css_put(&next_mz->mem->css);
2923					next_mz = NULL;
2924				} else /* next_mz == NULL or other memcg */
2925					break;
2926			} while (1);
2927		}
2928		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2929		excess = res_counter_soft_limit_excess(&mz->mem->res);
2930		/*
2931		 * One school of thought says that we should not add
2932		 * back the node to the tree if reclaim returns 0.
2933		 * But our reclaim could return 0, simply because due
2934		 * to priority we are exposing a smaller subset of
2935		 * memory to reclaim from. Consider this as a longer
2936		 * term TODO.
2937		 */
2938		/* If excess == 0, no tree ops */
2939		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2940		spin_unlock(&mctz->lock);
2941		css_put(&mz->mem->css);
2942		loop++;
2943		/*
2944		 * Could not reclaim anything and there are no more
2945		 * mem cgroups to try or we seem to be looping without
2946		 * reclaiming anything.
2947		 */
2948		if (!nr_reclaimed &&
2949			(next_mz == NULL ||
2950			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2951			break;
2952	} while (!nr_reclaimed);
2953	if (next_mz)
2954		css_put(&next_mz->mem->css);
2955	return nr_reclaimed;
2956}
2957
2958/*
2959 * This routine traverse page_cgroup in given list and drop them all.
2960 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2961 */
2962static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2963				int node, int zid, enum lru_list lru)
2964{
2965	struct zone *zone;
2966	struct mem_cgroup_per_zone *mz;
2967	struct page_cgroup *pc, *busy;
2968	unsigned long flags, loop;
2969	struct list_head *list;
2970	int ret = 0;
2971
2972	zone = &NODE_DATA(node)->node_zones[zid];
2973	mz = mem_cgroup_zoneinfo(mem, node, zid);
2974	list = &mz->lists[lru];
2975
2976	loop = MEM_CGROUP_ZSTAT(mz, lru);
2977	/* give some margin against EBUSY etc...*/
2978	loop += 256;
2979	busy = NULL;
2980	while (loop--) {
2981		ret = 0;
2982		spin_lock_irqsave(&zone->lru_lock, flags);
2983		if (list_empty(list)) {
2984			spin_unlock_irqrestore(&zone->lru_lock, flags);
2985			break;
2986		}
2987		pc = list_entry(list->prev, struct page_cgroup, lru);
2988		if (busy == pc) {
2989			list_move(&pc->lru, list);
2990			busy = NULL;
2991			spin_unlock_irqrestore(&zone->lru_lock, flags);
2992			continue;
2993		}
2994		spin_unlock_irqrestore(&zone->lru_lock, flags);
2995
2996		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2997		if (ret == -ENOMEM)
2998			break;
2999
3000		if (ret == -EBUSY || ret == -EINVAL) {
3001			/* found lock contention or "pc" is obsolete. */
3002			busy = pc;
3003			cond_resched();
3004		} else
3005			busy = NULL;
3006	}
3007
3008	if (!ret && !list_empty(list))
3009		return -EBUSY;
3010	return ret;
3011}
3012
3013/*
3014 * make mem_cgroup's charge to be 0 if there is no task.
3015 * This enables deleting this mem_cgroup.
3016 */
3017static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3018{
3019	int ret;
3020	int node, zid, shrink;
3021	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3022	struct cgroup *cgrp = mem->css.cgroup;
3023
3024	css_get(&mem->css);
3025
3026	shrink = 0;
3027	/* should free all ? */
3028	if (free_all)
3029		goto try_to_free;
3030move_account:
3031	do {
3032		ret = -EBUSY;
3033		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3034			goto out;
3035		ret = -EINTR;
3036		if (signal_pending(current))
3037			goto out;
3038		/* This is for making all *used* pages to be on LRU. */
3039		lru_add_drain_all();
3040		drain_all_stock_sync();
3041		ret = 0;
3042		for_each_node_state(node, N_HIGH_MEMORY) {
3043			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3044				enum lru_list l;
3045				for_each_lru(l) {
3046					ret = mem_cgroup_force_empty_list(mem,
3047							node, zid, l);
3048					if (ret)
3049						break;
3050				}
3051			}
3052			if (ret)
3053				break;
3054		}
3055		memcg_oom_recover(mem);
3056		/* it seems parent cgroup doesn't have enough mem */
3057		if (ret == -ENOMEM)
3058			goto try_to_free;
3059		cond_resched();
3060	/* "ret" should also be checked to ensure all lists are empty. */
3061	} while (mem->res.usage > 0 || ret);
3062out:
3063	css_put(&mem->css);
3064	return ret;
3065
3066try_to_free:
3067	/* returns EBUSY if there is a task or if we come here twice. */
3068	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3069		ret = -EBUSY;
3070		goto out;
3071	}
3072	/* we call try-to-free pages for make this cgroup empty */
3073	lru_add_drain_all();
3074	/* try to free all pages in this cgroup */
3075	shrink = 1;
3076	while (nr_retries && mem->res.usage > 0) {
3077		int progress;
3078
3079		if (signal_pending(current)) {
3080			ret = -EINTR;
3081			goto out;
3082		}
3083		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3084						false, get_swappiness(mem));
3085		if (!progress) {
3086			nr_retries--;
3087			/* maybe some writeback is necessary */
3088			congestion_wait(BLK_RW_ASYNC, HZ/10);
3089		}
3090
3091	}
3092	lru_add_drain();
3093	/* try move_account...there may be some *locked* pages. */
3094	goto move_account;
3095}
3096
3097int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3098{
3099	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3100}
3101
3102
3103static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3104{
3105	return mem_cgroup_from_cont(cont)->use_hierarchy;
3106}
3107
3108static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3109					u64 val)
3110{
3111	int retval = 0;
3112	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3113	struct cgroup *parent = cont->parent;
3114	struct mem_cgroup *parent_mem = NULL;
3115
3116	if (parent)
3117		parent_mem = mem_cgroup_from_cont(parent);
3118
3119	cgroup_lock();
3120	/*
3121	 * If parent's use_hierarchy is set, we can't make any modifications
3122	 * in the child subtrees. If it is unset, then the change can
3123	 * occur, provided the current cgroup has no children.
3124	 *
3125	 * For the root cgroup, parent_mem is NULL, we allow value to be
3126	 * set if there are no children.
3127	 */
3128	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3129				(val == 1 || val == 0)) {
3130		if (list_empty(&cont->children))
3131			mem->use_hierarchy = val;
3132		else
3133			retval = -EBUSY;
3134	} else
3135		retval = -EINVAL;
3136	cgroup_unlock();
3137
3138	return retval;
3139}
3140
3141struct mem_cgroup_idx_data {
3142	s64 val;
3143	enum mem_cgroup_stat_index idx;
3144};
3145
3146static int
3147mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3148{
3149	struct mem_cgroup_idx_data *d = data;
3150	d->val += mem_cgroup_read_stat(mem, d->idx);
3151	return 0;
3152}
3153
3154static void
3155mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3156				enum mem_cgroup_stat_index idx, s64 *val)
3157{
3158	struct mem_cgroup_idx_data d;
3159	d.idx = idx;
3160	d.val = 0;
3161	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3162	*val = d.val;
3163}
3164
3165static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3166{
3167	u64 idx_val, val;
3168
3169	if (!mem_cgroup_is_root(mem)) {
3170		if (!swap)
3171			return res_counter_read_u64(&mem->res, RES_USAGE);
3172		else
3173			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3174	}
3175
3176	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3177	val = idx_val;
3178	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3179	val += idx_val;
3180
3181	if (swap) {
3182		mem_cgroup_get_recursive_idx_stat(mem,
3183				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3184		val += idx_val;
3185	}
3186
3187	return val << PAGE_SHIFT;
3188}
3189
3190static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3191{
3192	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3193	u64 val;
3194	int type, name;
3195
3196	type = MEMFILE_TYPE(cft->private);
3197	name = MEMFILE_ATTR(cft->private);
3198	switch (type) {
3199	case _MEM:
3200		if (name == RES_USAGE)
3201			val = mem_cgroup_usage(mem, false);
3202		else
3203			val = res_counter_read_u64(&mem->res, name);
3204		break;
3205	case _MEMSWAP:
3206		if (name == RES_USAGE)
3207			val = mem_cgroup_usage(mem, true);
3208		else
3209			val = res_counter_read_u64(&mem->memsw, name);
3210		break;
3211	default:
3212		BUG();
3213		break;
3214	}
3215	return val;
3216}
3217/*
3218 * The user of this function is...
3219 * RES_LIMIT.
3220 */
3221static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3222			    const char *buffer)
3223{
3224	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3225	int type, name;
3226	unsigned long long val;
3227	int ret;
3228
3229	type = MEMFILE_TYPE(cft->private);
3230	name = MEMFILE_ATTR(cft->private);
3231	switch (name) {
3232	case RES_LIMIT:
3233		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3234			ret = -EINVAL;
3235			break;
3236		}
3237		/* This function does all necessary parse...reuse it */
3238		ret = res_counter_memparse_write_strategy(buffer, &val);
3239		if (ret)
3240			break;
3241		if (type == _MEM)
3242			ret = mem_cgroup_resize_limit(memcg, val);
3243		else
3244			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3245		break;
3246	case RES_SOFT_LIMIT:
3247		ret = res_counter_memparse_write_strategy(buffer, &val);
3248		if (ret)
3249			break;
3250		/*
3251		 * For memsw, soft limits are hard to implement in terms
3252		 * of semantics, for now, we support soft limits for
3253		 * control without swap
3254		 */
3255		if (type == _MEM)
3256			ret = res_counter_set_soft_limit(&memcg->res, val);
3257		else
3258			ret = -EINVAL;
3259		break;
3260	default:
3261		ret = -EINVAL; /* should be BUG() ? */
3262		break;
3263	}
3264	return ret;
3265}
3266
3267static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3268		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3269{
3270	struct cgroup *cgroup;
3271	unsigned long long min_limit, min_memsw_limit, tmp;
3272
3273	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3274	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3275	cgroup = memcg->css.cgroup;
3276	if (!memcg->use_hierarchy)
3277		goto out;
3278
3279	while (cgroup->parent) {
3280		cgroup = cgroup->parent;
3281		memcg = mem_cgroup_from_cont(cgroup);
3282		if (!memcg->use_hierarchy)
3283			break;
3284		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3285		min_limit = min(min_limit, tmp);
3286		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3287		min_memsw_limit = min(min_memsw_limit, tmp);
3288	}
3289out:
3290	*mem_limit = min_limit;
3291	*memsw_limit = min_memsw_limit;
3292	return;
3293}
3294
3295static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3296{
3297	struct mem_cgroup *mem;
3298	int type, name;
3299
3300	mem = mem_cgroup_from_cont(cont);
3301	type = MEMFILE_TYPE(event);
3302	name = MEMFILE_ATTR(event);
3303	switch (name) {
3304	case RES_MAX_USAGE:
3305		if (type == _MEM)
3306			res_counter_reset_max(&mem->res);
3307		else
3308			res_counter_reset_max(&mem->memsw);
3309		break;
3310	case RES_FAILCNT:
3311		if (type == _MEM)
3312			res_counter_reset_failcnt(&mem->res);
3313		else
3314			res_counter_reset_failcnt(&mem->memsw);
3315		break;
3316	}
3317
3318	return 0;
3319}
3320
3321static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3322					struct cftype *cft)
3323{
3324	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3325}
3326
3327#ifdef CONFIG_MMU
3328static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3329					struct cftype *cft, u64 val)
3330{
3331	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3332
3333	if (val >= (1 << NR_MOVE_TYPE))
3334		return -EINVAL;
3335	/*
3336	 * We check this value several times in both in can_attach() and
3337	 * attach(), so we need cgroup lock to prevent this value from being
3338	 * inconsistent.
3339	 */
3340	cgroup_lock();
3341	mem->move_charge_at_immigrate = val;
3342	cgroup_unlock();
3343
3344	return 0;
3345}
3346#else
3347static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3348					struct cftype *cft, u64 val)
3349{
3350	return -ENOSYS;
3351}
3352#endif
3353
3354
3355/* For read statistics */
3356enum {
3357	MCS_CACHE,
3358	MCS_RSS,
3359	MCS_FILE_MAPPED,
3360	MCS_PGPGIN,
3361	MCS_PGPGOUT,
3362	MCS_SWAP,
3363	MCS_INACTIVE_ANON,
3364	MCS_ACTIVE_ANON,
3365	MCS_INACTIVE_FILE,
3366	MCS_ACTIVE_FILE,
3367	MCS_UNEVICTABLE,
3368	NR_MCS_STAT,
3369};
3370
3371struct mcs_total_stat {
3372	s64 stat[NR_MCS_STAT];
3373};
3374
3375struct {
3376	char *local_name;
3377	char *total_name;
3378} memcg_stat_strings[NR_MCS_STAT] = {
3379	{"cache", "total_cache"},
3380	{"rss", "total_rss"},
3381	{"mapped_file", "total_mapped_file"},
3382	{"pgpgin", "total_pgpgin"},
3383	{"pgpgout", "total_pgpgout"},
3384	{"swap", "total_swap"},
3385	{"inactive_anon", "total_inactive_anon"},
3386	{"active_anon", "total_active_anon"},
3387	{"inactive_file", "total_inactive_file"},
3388	{"active_file", "total_active_file"},
3389	{"unevictable", "total_unevictable"}
3390};
3391
3392
3393static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3394{
3395	struct mcs_total_stat *s = data;
3396	s64 val;
3397
3398	/* per cpu stat */
3399	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3400	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3401	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3402	s->stat[MCS_RSS] += val * PAGE_SIZE;
3403	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3404	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3405	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3406	s->stat[MCS_PGPGIN] += val;
3407	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3408	s->stat[MCS_PGPGOUT] += val;
3409	if (do_swap_account) {
3410		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3411		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3412	}
3413
3414	/* per zone stat */
3415	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3416	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3417	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3418	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3419	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3420	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3421	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3422	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3423	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3424	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3425	return 0;
3426}
3427
3428static void
3429mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3430{
3431	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3432}
3433
3434static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3435				 struct cgroup_map_cb *cb)
3436{
3437	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3438	struct mcs_total_stat mystat;
3439	int i;
3440
3441	memset(&mystat, 0, sizeof(mystat));
3442	mem_cgroup_get_local_stat(mem_cont, &mystat);
3443
3444	for (i = 0; i < NR_MCS_STAT; i++) {
3445		if (i == MCS_SWAP && !do_swap_account)
3446			continue;
3447		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3448	}
3449
3450	/* Hierarchical information */
3451	{
3452		unsigned long long limit, memsw_limit;
3453		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3454		cb->fill(cb, "hierarchical_memory_limit", limit);
3455		if (do_swap_account)
3456			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3457	}
3458
3459	memset(&mystat, 0, sizeof(mystat));
3460	mem_cgroup_get_total_stat(mem_cont, &mystat);
3461	for (i = 0; i < NR_MCS_STAT; i++) {
3462		if (i == MCS_SWAP && !do_swap_account)
3463			continue;
3464		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3465	}
3466
3467#ifdef CONFIG_DEBUG_VM
3468	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3469
3470	{
3471		int nid, zid;
3472		struct mem_cgroup_per_zone *mz;
3473		unsigned long recent_rotated[2] = {0, 0};
3474		unsigned long recent_scanned[2] = {0, 0};
3475
3476		for_each_online_node(nid)
3477			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3478				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3479
3480				recent_rotated[0] +=
3481					mz->reclaim_stat.recent_rotated[0];
3482				recent_rotated[1] +=
3483					mz->reclaim_stat.recent_rotated[1];
3484				recent_scanned[0] +=
3485					mz->reclaim_stat.recent_scanned[0];
3486				recent_scanned[1] +=
3487					mz->reclaim_stat.recent_scanned[1];
3488			}
3489		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3490		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3491		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3492		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3493	}
3494#endif
3495
3496	return 0;
3497}
3498
3499static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3500{
3501	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3502
3503	return get_swappiness(memcg);
3504}
3505
3506static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3507				       u64 val)
3508{
3509	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3510	struct mem_cgroup *parent;
3511
3512	if (val > 100)
3513		return -EINVAL;
3514
3515	if (cgrp->parent == NULL)
3516		return -EINVAL;
3517
3518	parent = mem_cgroup_from_cont(cgrp->parent);
3519
3520	cgroup_lock();
3521
3522	/* If under hierarchy, only empty-root can set this value */
3523	if ((parent->use_hierarchy) ||
3524	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3525		cgroup_unlock();
3526		return -EINVAL;
3527	}
3528
3529	spin_lock(&memcg->reclaim_param_lock);
3530	memcg->swappiness = val;
3531	spin_unlock(&memcg->reclaim_param_lock);
3532
3533	cgroup_unlock();
3534
3535	return 0;
3536}
3537
3538static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3539{
3540	struct mem_cgroup_threshold_ary *t;
3541	u64 usage;
3542	int i;
3543
3544	rcu_read_lock();
3545	if (!swap)
3546		t = rcu_dereference(memcg->thresholds.primary);
3547	else
3548		t = rcu_dereference(memcg->memsw_thresholds.primary);
3549
3550	if (!t)
3551		goto unlock;
3552
3553	usage = mem_cgroup_usage(memcg, swap);
3554
3555	/*
3556	 * current_threshold points to threshold just below usage.
3557	 * If it's not true, a threshold was crossed after last
3558	 * call of __mem_cgroup_threshold().
3559	 */
3560	i = t->current_threshold;
3561
3562	/*
3563	 * Iterate backward over array of thresholds starting from
3564	 * current_threshold and check if a threshold is crossed.
3565	 * If none of thresholds below usage is crossed, we read
3566	 * only one element of the array here.
3567	 */
3568	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3569		eventfd_signal(t->entries[i].eventfd, 1);
3570
3571	/* i = current_threshold + 1 */
3572	i++;
3573
3574	/*
3575	 * Iterate forward over array of thresholds starting from
3576	 * current_threshold+1 and check if a threshold is crossed.
3577	 * If none of thresholds above usage is crossed, we read
3578	 * only one element of the array here.
3579	 */
3580	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3581		eventfd_signal(t->entries[i].eventfd, 1);
3582
3583	/* Update current_threshold */
3584	t->current_threshold = i - 1;
3585unlock:
3586	rcu_read_unlock();
3587}
3588
3589static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3590{
3591	while (memcg) {
3592		__mem_cgroup_threshold(memcg, false);
3593		if (do_swap_account)
3594			__mem_cgroup_threshold(memcg, true);
3595
3596		memcg = parent_mem_cgroup(memcg);
3597	}
3598}
3599
3600static int compare_thresholds(const void *a, const void *b)
3601{
3602	const struct mem_cgroup_threshold *_a = a;
3603	const struct mem_cgroup_threshold *_b = b;
3604
3605	return _a->threshold - _b->threshold;
3606}
3607
3608static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3609{
3610	struct mem_cgroup_eventfd_list *ev;
3611
3612	list_for_each_entry(ev, &mem->oom_notify, list)
3613		eventfd_signal(ev->eventfd, 1);
3614	return 0;
3615}
3616
3617static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3618{
3619	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3620}
3621
3622static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3623	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3624{
3625	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3626	struct mem_cgroup_thresholds *thresholds;
3627	struct mem_cgroup_threshold_ary *new;
3628	int type = MEMFILE_TYPE(cft->private);
3629	u64 threshold, usage;
3630	int i, size, ret;
3631
3632	ret = res_counter_memparse_write_strategy(args, &threshold);
3633	if (ret)
3634		return ret;
3635
3636	mutex_lock(&memcg->thresholds_lock);
3637
3638	if (type == _MEM)
3639		thresholds = &memcg->thresholds;
3640	else if (type == _MEMSWAP)
3641		thresholds = &memcg->memsw_thresholds;
3642	else
3643		BUG();
3644
3645	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3646
3647	/* Check if a threshold crossed before adding a new one */
3648	if (thresholds->primary)
3649		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3650
3651	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3652
3653	/* Allocate memory for new array of thresholds */
3654	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3655			GFP_KERNEL);
3656	if (!new) {
3657		ret = -ENOMEM;
3658		goto unlock;
3659	}
3660	new->size = size;
3661
3662	/* Copy thresholds (if any) to new array */
3663	if (thresholds->primary) {
3664		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3665				sizeof(struct mem_cgroup_threshold));
3666	}
3667
3668	/* Add new threshold */
3669	new->entries[size - 1].eventfd = eventfd;
3670	new->entries[size - 1].threshold = threshold;
3671
3672	/* Sort thresholds. Registering of new threshold isn't time-critical */
3673	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3674			compare_thresholds, NULL);
3675
3676	/* Find current threshold */
3677	new->current_threshold = -1;
3678	for (i = 0; i < size; i++) {
3679		if (new->entries[i].threshold < usage) {
3680			/*
3681			 * new->current_threshold will not be used until
3682			 * rcu_assign_pointer(), so it's safe to increment
3683			 * it here.
3684			 */
3685			++new->current_threshold;
3686		}
3687	}
3688
3689	/* Free old spare buffer and save old primary buffer as spare */
3690	kfree(thresholds->spare);
3691	thresholds->spare = thresholds->primary;
3692
3693	rcu_assign_pointer(thresholds->primary, new);
3694
3695	/* To be sure that nobody uses thresholds */
3696	synchronize_rcu();
3697
3698unlock:
3699	mutex_unlock(&memcg->thresholds_lock);
3700
3701	return ret;
3702}
3703
3704static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3705	struct cftype *cft, struct eventfd_ctx *eventfd)
3706{
3707	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3708	struct mem_cgroup_thresholds *thresholds;
3709	struct mem_cgroup_threshold_ary *new;
3710	int type = MEMFILE_TYPE(cft->private);
3711	u64 usage;
3712	int i, j, size;
3713
3714	mutex_lock(&memcg->thresholds_lock);
3715	if (type == _MEM)
3716		thresholds = &memcg->thresholds;
3717	else if (type == _MEMSWAP)
3718		thresholds = &memcg->memsw_thresholds;
3719	else
3720		BUG();
3721
3722	/*
3723	 * Something went wrong if we trying to unregister a threshold
3724	 * if we don't have thresholds
3725	 */
3726	BUG_ON(!thresholds);
3727
3728	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3729
3730	/* Check if a threshold crossed before removing */
3731	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3732
3733	/* Calculate new number of threshold */
3734	size = 0;
3735	for (i = 0; i < thresholds->primary->size; i++) {
3736		if (thresholds->primary->entries[i].eventfd != eventfd)
3737			size++;
3738	}
3739
3740	new = thresholds->spare;
3741
3742	/* Set thresholds array to NULL if we don't have thresholds */
3743	if (!size) {
3744		kfree(new);
3745		new = NULL;
3746		goto swap_buffers;
3747	}
3748
3749	new->size = size;
3750
3751	/* Copy thresholds and find current threshold */
3752	new->current_threshold = -1;
3753	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3754		if (thresholds->primary->entries[i].eventfd == eventfd)
3755			continue;
3756
3757		new->entries[j] = thresholds->primary->entries[i];
3758		if (new->entries[j].threshold < usage) {
3759			/*
3760			 * new->current_threshold will not be used
3761			 * until rcu_assign_pointer(), so it's safe to increment
3762			 * it here.
3763			 */
3764			++new->current_threshold;
3765		}
3766		j++;
3767	}
3768
3769swap_buffers:
3770	/* Swap primary and spare array */
3771	thresholds->spare = thresholds->primary;
3772	rcu_assign_pointer(thresholds->primary, new);
3773
3774	/* To be sure that nobody uses thresholds */
3775	synchronize_rcu();
3776
3777	mutex_unlock(&memcg->thresholds_lock);
3778}
3779
3780static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3781	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3782{
3783	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3784	struct mem_cgroup_eventfd_list *event;
3785	int type = MEMFILE_TYPE(cft->private);
3786
3787	BUG_ON(type != _OOM_TYPE);
3788	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3789	if (!event)
3790		return -ENOMEM;
3791
3792	mutex_lock(&memcg_oom_mutex);
3793
3794	event->eventfd = eventfd;
3795	list_add(&event->list, &memcg->oom_notify);
3796
3797	/* already in OOM ? */
3798	if (atomic_read(&memcg->oom_lock))
3799		eventfd_signal(eventfd, 1);
3800	mutex_unlock(&memcg_oom_mutex);
3801
3802	return 0;
3803}
3804
3805static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3806	struct cftype *cft, struct eventfd_ctx *eventfd)
3807{
3808	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3809	struct mem_cgroup_eventfd_list *ev, *tmp;
3810	int type = MEMFILE_TYPE(cft->private);
3811
3812	BUG_ON(type != _OOM_TYPE);
3813
3814	mutex_lock(&memcg_oom_mutex);
3815
3816	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3817		if (ev->eventfd == eventfd) {
3818			list_del(&ev->list);
3819			kfree(ev);
3820		}
3821	}
3822
3823	mutex_unlock(&memcg_oom_mutex);
3824}
3825
3826static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3827	struct cftype *cft,  struct cgroup_map_cb *cb)
3828{
3829	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3830
3831	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3832
3833	if (atomic_read(&mem->oom_lock))
3834		cb->fill(cb, "under_oom", 1);
3835	else
3836		cb->fill(cb, "under_oom", 0);
3837	return 0;
3838}
3839
3840static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3841	struct cftype *cft, u64 val)
3842{
3843	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3844	struct mem_cgroup *parent;
3845
3846	/* cannot set to root cgroup and only 0 and 1 are allowed */
3847	if (!cgrp->parent || !((val == 0) || (val == 1)))
3848		return -EINVAL;
3849
3850	parent = mem_cgroup_from_cont(cgrp->parent);
3851
3852	cgroup_lock();
3853	/* oom-kill-disable is a flag for subhierarchy. */
3854	if ((parent->use_hierarchy) ||
3855	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3856		cgroup_unlock();
3857		return -EINVAL;
3858	}
3859	mem->oom_kill_disable = val;
3860	if (!val)
3861		memcg_oom_recover(mem);
3862	cgroup_unlock();
3863	return 0;
3864}
3865
3866static struct cftype mem_cgroup_files[] = {
3867	{
3868		.name = "usage_in_bytes",
3869		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3870		.read_u64 = mem_cgroup_read,
3871		.register_event = mem_cgroup_usage_register_event,
3872		.unregister_event = mem_cgroup_usage_unregister_event,
3873	},
3874	{
3875		.name = "max_usage_in_bytes",
3876		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3877		.trigger = mem_cgroup_reset,
3878		.read_u64 = mem_cgroup_read,
3879	},
3880	{
3881		.name = "limit_in_bytes",
3882		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3883		.write_string = mem_cgroup_write,
3884		.read_u64 = mem_cgroup_read,
3885	},
3886	{
3887		.name = "soft_limit_in_bytes",
3888		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3889		.write_string = mem_cgroup_write,
3890		.read_u64 = mem_cgroup_read,
3891	},
3892	{
3893		.name = "failcnt",
3894		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3895		.trigger = mem_cgroup_reset,
3896		.read_u64 = mem_cgroup_read,
3897	},
3898	{
3899		.name = "stat",
3900		.read_map = mem_control_stat_show,
3901	},
3902	{
3903		.name = "force_empty",
3904		.trigger = mem_cgroup_force_empty_write,
3905	},
3906	{
3907		.name = "use_hierarchy",
3908		.write_u64 = mem_cgroup_hierarchy_write,
3909		.read_u64 = mem_cgroup_hierarchy_read,
3910	},
3911	{
3912		.name = "swappiness",
3913		.read_u64 = mem_cgroup_swappiness_read,
3914		.write_u64 = mem_cgroup_swappiness_write,
3915	},
3916	{
3917		.name = "move_charge_at_immigrate",
3918		.read_u64 = mem_cgroup_move_charge_read,
3919		.write_u64 = mem_cgroup_move_charge_write,
3920	},
3921	{
3922		.name = "oom_control",
3923		.read_map = mem_cgroup_oom_control_read,
3924		.write_u64 = mem_cgroup_oom_control_write,
3925		.register_event = mem_cgroup_oom_register_event,
3926		.unregister_event = mem_cgroup_oom_unregister_event,
3927		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3928	},
3929};
3930
3931#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3932static struct cftype memsw_cgroup_files[] = {
3933	{
3934		.name = "memsw.usage_in_bytes",
3935		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3936		.read_u64 = mem_cgroup_read,
3937		.register_event = mem_cgroup_usage_register_event,
3938		.unregister_event = mem_cgroup_usage_unregister_event,
3939	},
3940	{
3941		.name = "memsw.max_usage_in_bytes",
3942		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3943		.trigger = mem_cgroup_reset,
3944		.read_u64 = mem_cgroup_read,
3945	},
3946	{
3947		.name = "memsw.limit_in_bytes",
3948		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3949		.write_string = mem_cgroup_write,
3950		.read_u64 = mem_cgroup_read,
3951	},
3952	{
3953		.name = "memsw.failcnt",
3954		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3955		.trigger = mem_cgroup_reset,
3956		.read_u64 = mem_cgroup_read,
3957	},
3958};
3959
3960static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3961{
3962	if (!do_swap_account)
3963		return 0;
3964	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3965				ARRAY_SIZE(memsw_cgroup_files));
3966};
3967#else
3968static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3969{
3970	return 0;
3971}
3972#endif
3973
3974static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3975{
3976	struct mem_cgroup_per_node *pn;
3977	struct mem_cgroup_per_zone *mz;
3978	enum lru_list l;
3979	int zone, tmp = node;
3980	/*
3981	 * This routine is called against possible nodes.
3982	 * But it's BUG to call kmalloc() against offline node.
3983	 *
3984	 * TODO: this routine can waste much memory for nodes which will
3985	 *       never be onlined. It's better to use memory hotplug callback
3986	 *       function.
3987	 */
3988	if (!node_state(node, N_NORMAL_MEMORY))
3989		tmp = -1;
3990	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3991	if (!pn)
3992		return 1;
3993
3994	mem->info.nodeinfo[node] = pn;
3995	memset(pn, 0, sizeof(*pn));
3996
3997	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3998		mz = &pn->zoneinfo[zone];
3999		for_each_lru(l)
4000			INIT_LIST_HEAD(&mz->lists[l]);
4001		mz->usage_in_excess = 0;
4002		mz->on_tree = false;
4003		mz->mem = mem;
4004	}
4005	return 0;
4006}
4007
4008static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4009{
4010	kfree(mem->info.nodeinfo[node]);
4011}
4012
4013static struct mem_cgroup *mem_cgroup_alloc(void)
4014{
4015	struct mem_cgroup *mem;
4016	int size = sizeof(struct mem_cgroup);
4017
4018	/* Can be very big if MAX_NUMNODES is very big */
4019	if (size < PAGE_SIZE)
4020		mem = kmalloc(size, GFP_KERNEL);
4021	else
4022		mem = vmalloc(size);
4023
4024	if (!mem)
4025		return NULL;
4026
4027	memset(mem, 0, size);
4028	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4029	if (!mem->stat) {
4030		if (size < PAGE_SIZE)
4031			kfree(mem);
4032		else
4033			vfree(mem);
4034		mem = NULL;
4035	}
4036	return mem;
4037}
4038
4039/*
4040 * At destroying mem_cgroup, references from swap_cgroup can remain.
4041 * (scanning all at force_empty is too costly...)
4042 *
4043 * Instead of clearing all references at force_empty, we remember
4044 * the number of reference from swap_cgroup and free mem_cgroup when
4045 * it goes down to 0.
4046 *
4047 * Removal of cgroup itself succeeds regardless of refs from swap.
4048 */
4049
4050static void __mem_cgroup_free(struct mem_cgroup *mem)
4051{
4052	int node;
4053
4054	mem_cgroup_remove_from_trees(mem);
4055	free_css_id(&mem_cgroup_subsys, &mem->css);
4056
4057	for_each_node_state(node, N_POSSIBLE)
4058		free_mem_cgroup_per_zone_info(mem, node);
4059
4060	free_percpu(mem->stat);
4061	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4062		kfree(mem);
4063	else
4064		vfree(mem);
4065}
4066
4067static void mem_cgroup_get(struct mem_cgroup *mem)
4068{
4069	atomic_inc(&mem->refcnt);
4070}
4071
4072static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4073{
4074	if (atomic_sub_and_test(count, &mem->refcnt)) {
4075		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4076		__mem_cgroup_free(mem);
4077		if (parent)
4078			mem_cgroup_put(parent);
4079	}
4080}
4081
4082static void mem_cgroup_put(struct mem_cgroup *mem)
4083{
4084	__mem_cgroup_put(mem, 1);
4085}
4086
4087/*
4088 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4089 */
4090static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4091{
4092	if (!mem->res.parent)
4093		return NULL;
4094	return mem_cgroup_from_res_counter(mem->res.parent, res);
4095}
4096
4097#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4098static void __init enable_swap_cgroup(void)
4099{
4100	if (!mem_cgroup_disabled() && really_do_swap_account)
4101		do_swap_account = 1;
4102}
4103#else
4104static void __init enable_swap_cgroup(void)
4105{
4106}
4107#endif
4108
4109static int mem_cgroup_soft_limit_tree_init(void)
4110{
4111	struct mem_cgroup_tree_per_node *rtpn;
4112	struct mem_cgroup_tree_per_zone *rtpz;
4113	int tmp, node, zone;
4114
4115	for_each_node_state(node, N_POSSIBLE) {
4116		tmp = node;
4117		if (!node_state(node, N_NORMAL_MEMORY))
4118			tmp = -1;
4119		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4120		if (!rtpn)
4121			return 1;
4122
4123		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4124
4125		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4126			rtpz = &rtpn->rb_tree_per_zone[zone];
4127			rtpz->rb_root = RB_ROOT;
4128			spin_lock_init(&rtpz->lock);
4129		}
4130	}
4131	return 0;
4132}
4133
4134static struct cgroup_subsys_state * __ref
4135mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4136{
4137	struct mem_cgroup *mem, *parent;
4138	long error = -ENOMEM;
4139	int node;
4140
4141	mem = mem_cgroup_alloc();
4142	if (!mem)
4143		return ERR_PTR(error);
4144
4145	for_each_node_state(node, N_POSSIBLE)
4146		if (alloc_mem_cgroup_per_zone_info(mem, node))
4147			goto free_out;
4148
4149	/* root ? */
4150	if (cont->parent == NULL) {
4151		int cpu;
4152		enable_swap_cgroup();
4153		parent = NULL;
4154		root_mem_cgroup = mem;
4155		if (mem_cgroup_soft_limit_tree_init())
4156			goto free_out;
4157		for_each_possible_cpu(cpu) {
4158			struct memcg_stock_pcp *stock =
4159						&per_cpu(memcg_stock, cpu);
4160			INIT_WORK(&stock->work, drain_local_stock);
4161		}
4162		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4163	} else {
4164		parent = mem_cgroup_from_cont(cont->parent);
4165		mem->use_hierarchy = parent->use_hierarchy;
4166		mem->oom_kill_disable = parent->oom_kill_disable;
4167	}
4168
4169	if (parent && parent->use_hierarchy) {
4170		res_counter_init(&mem->res, &parent->res);
4171		res_counter_init(&mem->memsw, &parent->memsw);
4172		/*
4173		 * We increment refcnt of the parent to ensure that we can
4174		 * safely access it on res_counter_charge/uncharge.
4175		 * This refcnt will be decremented when freeing this
4176		 * mem_cgroup(see mem_cgroup_put).
4177		 */
4178		mem_cgroup_get(parent);
4179	} else {
4180		res_counter_init(&mem->res, NULL);
4181		res_counter_init(&mem->memsw, NULL);
4182	}
4183	mem->last_scanned_child = 0;
4184	spin_lock_init(&mem->reclaim_param_lock);
4185	INIT_LIST_HEAD(&mem->oom_notify);
4186
4187	if (parent)
4188		mem->swappiness = get_swappiness(parent);
4189	atomic_set(&mem->refcnt, 1);
4190	mem->move_charge_at_immigrate = 0;
4191	mutex_init(&mem->thresholds_lock);
4192	return &mem->css;
4193free_out:
4194	__mem_cgroup_free(mem);
4195	root_mem_cgroup = NULL;
4196	return ERR_PTR(error);
4197}
4198
4199static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4200					struct cgroup *cont)
4201{
4202	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4203
4204	return mem_cgroup_force_empty(mem, false);
4205}
4206
4207static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4208				struct cgroup *cont)
4209{
4210	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4211
4212	mem_cgroup_put(mem);
4213}
4214
4215static int mem_cgroup_populate(struct cgroup_subsys *ss,
4216				struct cgroup *cont)
4217{
4218	int ret;
4219
4220	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4221				ARRAY_SIZE(mem_cgroup_files));
4222
4223	if (!ret)
4224		ret = register_memsw_files(cont, ss);
4225	return ret;
4226}
4227
4228#ifdef CONFIG_MMU
4229/* Handlers for move charge at task migration. */
4230#define PRECHARGE_COUNT_AT_ONCE	256
4231static int mem_cgroup_do_precharge(unsigned long count)
4232{
4233	int ret = 0;
4234	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4235	struct mem_cgroup *mem = mc.to;
4236
4237	if (mem_cgroup_is_root(mem)) {
4238		mc.precharge += count;
4239		/* we don't need css_get for root */
4240		return ret;
4241	}
4242	/* try to charge at once */
4243	if (count > 1) {
4244		struct res_counter *dummy;
4245		/*
4246		 * "mem" cannot be under rmdir() because we've already checked
4247		 * by cgroup_lock_live_cgroup() that it is not removed and we
4248		 * are still under the same cgroup_mutex. So we can postpone
4249		 * css_get().
4250		 */
4251		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4252			goto one_by_one;
4253		if (do_swap_account && res_counter_charge(&mem->memsw,
4254						PAGE_SIZE * count, &dummy)) {
4255			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4256			goto one_by_one;
4257		}
4258		mc.precharge += count;
4259		return ret;
4260	}
4261one_by_one:
4262	/* fall back to one by one charge */
4263	while (count--) {
4264		if (signal_pending(current)) {
4265			ret = -EINTR;
4266			break;
4267		}
4268		if (!batch_count--) {
4269			batch_count = PRECHARGE_COUNT_AT_ONCE;
4270			cond_resched();
4271		}
4272		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4273		if (ret || !mem)
4274			/* mem_cgroup_clear_mc() will do uncharge later */
4275			return -ENOMEM;
4276		mc.precharge++;
4277	}
4278	return ret;
4279}
4280
4281/**
4282 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4283 * @vma: the vma the pte to be checked belongs
4284 * @addr: the address corresponding to the pte to be checked
4285 * @ptent: the pte to be checked
4286 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4287 *
4288 * Returns
4289 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4290 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4291 *     move charge. if @target is not NULL, the page is stored in target->page
4292 *     with extra refcnt got(Callers should handle it).
4293 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4294 *     target for charge migration. if @target is not NULL, the entry is stored
4295 *     in target->ent.
4296 *
4297 * Called with pte lock held.
4298 */
4299union mc_target {
4300	struct page	*page;
4301	swp_entry_t	ent;
4302};
4303
4304enum mc_target_type {
4305	MC_TARGET_NONE,	/* not used */
4306	MC_TARGET_PAGE,
4307	MC_TARGET_SWAP,
4308};
4309
4310static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4311						unsigned long addr, pte_t ptent)
4312{
4313	struct page *page = vm_normal_page(vma, addr, ptent);
4314
4315	if (!page || !page_mapped(page))
4316		return NULL;
4317	if (PageAnon(page)) {
4318		/* we don't move shared anon */
4319		if (!move_anon() || page_mapcount(page) > 2)
4320			return NULL;
4321	} else if (!move_file())
4322		/* we ignore mapcount for file pages */
4323		return NULL;
4324	if (!get_page_unless_zero(page))
4325		return NULL;
4326
4327	return page;
4328}
4329
4330static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4331			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4332{
4333	int usage_count;
4334	struct page *page = NULL;
4335	swp_entry_t ent = pte_to_swp_entry(ptent);
4336
4337	if (!move_anon() || non_swap_entry(ent))
4338		return NULL;
4339	usage_count = mem_cgroup_count_swap_user(ent, &page);
4340	if (usage_count > 1) { /* we don't move shared anon */
4341		if (page)
4342			put_page(page);
4343		return NULL;
4344	}
4345	if (do_swap_account)
4346		entry->val = ent.val;
4347
4348	return page;
4349}
4350
4351static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4352			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4353{
4354	struct page *page = NULL;
4355	struct inode *inode;
4356	struct address_space *mapping;
4357	pgoff_t pgoff;
4358
4359	if (!vma->vm_file) /* anonymous vma */
4360		return NULL;
4361	if (!move_file())
4362		return NULL;
4363
4364	inode = vma->vm_file->f_path.dentry->d_inode;
4365	mapping = vma->vm_file->f_mapping;
4366	if (pte_none(ptent))
4367		pgoff = linear_page_index(vma, addr);
4368	else /* pte_file(ptent) is true */
4369		pgoff = pte_to_pgoff(ptent);
4370
4371	/* page is moved even if it's not RSS of this task(page-faulted). */
4372	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4373		page = find_get_page(mapping, pgoff);
4374	} else { /* shmem/tmpfs file. we should take account of swap too. */
4375		swp_entry_t ent;
4376		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4377		if (do_swap_account)
4378			entry->val = ent.val;
4379	}
4380
4381	return page;
4382}
4383
4384static int is_target_pte_for_mc(struct vm_area_struct *vma,
4385		unsigned long addr, pte_t ptent, union mc_target *target)
4386{
4387	struct page *page = NULL;
4388	struct page_cgroup *pc;
4389	int ret = 0;
4390	swp_entry_t ent = { .val = 0 };
4391
4392	if (pte_present(ptent))
4393		page = mc_handle_present_pte(vma, addr, ptent);
4394	else if (is_swap_pte(ptent))
4395		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4396	else if (pte_none(ptent) || pte_file(ptent))
4397		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4398
4399	if (!page && !ent.val)
4400		return 0;
4401	if (page) {
4402		pc = lookup_page_cgroup(page);
4403		/*
4404		 * Do only loose check w/o page_cgroup lock.
4405		 * mem_cgroup_move_account() checks the pc is valid or not under
4406		 * the lock.
4407		 */
4408		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4409			ret = MC_TARGET_PAGE;
4410			if (target)
4411				target->page = page;
4412		}
4413		if (!ret || !target)
4414			put_page(page);
4415	}
4416	/* There is a swap entry and a page doesn't exist or isn't charged */
4417	if (ent.val && !ret &&
4418			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4419		ret = MC_TARGET_SWAP;
4420		if (target)
4421			target->ent = ent;
4422	}
4423	return ret;
4424}
4425
4426static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4427					unsigned long addr, unsigned long end,
4428					struct mm_walk *walk)
4429{
4430	struct vm_area_struct *vma = walk->private;
4431	pte_t *pte;
4432	spinlock_t *ptl;
4433
4434	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4435	for (; addr != end; pte++, addr += PAGE_SIZE)
4436		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4437			mc.precharge++;	/* increment precharge temporarily */
4438	pte_unmap_unlock(pte - 1, ptl);
4439	cond_resched();
4440
4441	return 0;
4442}
4443
4444static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4445{
4446	unsigned long precharge;
4447	struct vm_area_struct *vma;
4448
4449	/* We've already held the mmap_sem */
4450	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4451		struct mm_walk mem_cgroup_count_precharge_walk = {
4452			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4453			.mm = mm,
4454			.private = vma,
4455		};
4456		if (is_vm_hugetlb_page(vma))
4457			continue;
4458		walk_page_range(vma->vm_start, vma->vm_end,
4459					&mem_cgroup_count_precharge_walk);
4460	}
4461
4462	precharge = mc.precharge;
4463	mc.precharge = 0;
4464
4465	return precharge;
4466}
4467
4468static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4469{
4470	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4471}
4472
4473static void mem_cgroup_clear_mc(void)
4474{
4475	struct mem_cgroup *from = mc.from;
4476	struct mem_cgroup *to = mc.to;
4477
4478	/* we must uncharge all the leftover precharges from mc.to */
4479	if (mc.precharge) {
4480		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4481		mc.precharge = 0;
4482	}
4483	/*
4484	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4485	 * we must uncharge here.
4486	 */
4487	if (mc.moved_charge) {
4488		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4489		mc.moved_charge = 0;
4490	}
4491	/* we must fixup refcnts and charges */
4492	if (mc.moved_swap) {
4493		/* uncharge swap account from the old cgroup */
4494		if (!mem_cgroup_is_root(mc.from))
4495			res_counter_uncharge(&mc.from->memsw,
4496						PAGE_SIZE * mc.moved_swap);
4497		__mem_cgroup_put(mc.from, mc.moved_swap);
4498
4499		if (!mem_cgroup_is_root(mc.to)) {
4500			/*
4501			 * we charged both to->res and to->memsw, so we should
4502			 * uncharge to->res.
4503			 */
4504			res_counter_uncharge(&mc.to->res,
4505						PAGE_SIZE * mc.moved_swap);
4506		}
4507		/* we've already done mem_cgroup_get(mc.to) */
4508
4509		mc.moved_swap = 0;
4510	}
4511	if (mc.mm) {
4512		up_read(&mc.mm->mmap_sem);
4513		mmput(mc.mm);
4514	}
4515	spin_lock(&mc.lock);
4516	mc.from = NULL;
4517	mc.to = NULL;
4518	spin_unlock(&mc.lock);
4519	mc.moving_task = NULL;
4520	mc.mm = NULL;
4521	memcg_oom_recover(from);
4522	memcg_oom_recover(to);
4523	wake_up_all(&mc.waitq);
4524}
4525
4526static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4527				struct cgroup *cgroup,
4528				struct task_struct *p,
4529				bool threadgroup)
4530{
4531	int ret = 0;
4532	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4533
4534	if (mem->move_charge_at_immigrate) {
4535		struct mm_struct *mm;
4536		struct mem_cgroup *from = mem_cgroup_from_task(p);
4537
4538		VM_BUG_ON(from == mem);
4539
4540		mm = get_task_mm(p);
4541		if (!mm)
4542			return 0;
4543		/* We move charges only when we move a owner of the mm */
4544		if (mm->owner == p) {
4545			/*
4546			 * We do all the move charge works under one mmap_sem to
4547			 * avoid deadlock with down_write(&mmap_sem)
4548			 * -> try_charge() -> if (mc.moving_task) -> sleep.
4549			 */
4550			down_read(&mm->mmap_sem);
4551
4552			VM_BUG_ON(mc.from);
4553			VM_BUG_ON(mc.to);
4554			VM_BUG_ON(mc.precharge);
4555			VM_BUG_ON(mc.moved_charge);
4556			VM_BUG_ON(mc.moved_swap);
4557			VM_BUG_ON(mc.moving_task);
4558			VM_BUG_ON(mc.mm);
4559
4560			spin_lock(&mc.lock);
4561			mc.from = from;
4562			mc.to = mem;
4563			mc.precharge = 0;
4564			mc.moved_charge = 0;
4565			mc.moved_swap = 0;
4566			spin_unlock(&mc.lock);
4567			mc.moving_task = current;
4568			mc.mm = mm;
4569
4570			ret = mem_cgroup_precharge_mc(mm);
4571			if (ret)
4572				mem_cgroup_clear_mc();
4573			/* We call up_read() and mmput() in clear_mc(). */
4574		} else
4575			mmput(mm);
4576	}
4577	return ret;
4578}
4579
4580static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4581				struct cgroup *cgroup,
4582				struct task_struct *p,
4583				bool threadgroup)
4584{
4585	mem_cgroup_clear_mc();
4586}
4587
4588static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4589				unsigned long addr, unsigned long end,
4590				struct mm_walk *walk)
4591{
4592	int ret = 0;
4593	struct vm_area_struct *vma = walk->private;
4594	pte_t *pte;
4595	spinlock_t *ptl;
4596
4597retry:
4598	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4599	for (; addr != end; addr += PAGE_SIZE) {
4600		pte_t ptent = *(pte++);
4601		union mc_target target;
4602		int type;
4603		struct page *page;
4604		struct page_cgroup *pc;
4605		swp_entry_t ent;
4606
4607		if (!mc.precharge)
4608			break;
4609
4610		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4611		switch (type) {
4612		case MC_TARGET_PAGE:
4613			page = target.page;
4614			if (isolate_lru_page(page))
4615				goto put;
4616			pc = lookup_page_cgroup(page);
4617			if (!mem_cgroup_move_account(pc,
4618						mc.from, mc.to, false)) {
4619				mc.precharge--;
4620				/* we uncharge from mc.from later. */
4621				mc.moved_charge++;
4622			}
4623			putback_lru_page(page);
4624put:			/* is_target_pte_for_mc() gets the page */
4625			put_page(page);
4626			break;
4627		case MC_TARGET_SWAP:
4628			ent = target.ent;
4629			if (!mem_cgroup_move_swap_account(ent,
4630						mc.from, mc.to, false)) {
4631				mc.precharge--;
4632				/* we fixup refcnts and charges later. */
4633				mc.moved_swap++;
4634			}
4635			break;
4636		default:
4637			break;
4638		}
4639	}
4640	pte_unmap_unlock(pte - 1, ptl);
4641	cond_resched();
4642
4643	if (addr != end) {
4644		/*
4645		 * We have consumed all precharges we got in can_attach().
4646		 * We try charge one by one, but don't do any additional
4647		 * charges to mc.to if we have failed in charge once in attach()
4648		 * phase.
4649		 */
4650		ret = mem_cgroup_do_precharge(1);
4651		if (!ret)
4652			goto retry;
4653	}
4654
4655	return ret;
4656}
4657
4658static void mem_cgroup_move_charge(struct mm_struct *mm)
4659{
4660	struct vm_area_struct *vma;
4661
4662	lru_add_drain_all();
4663	/* We've already held the mmap_sem */
4664	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4665		int ret;
4666		struct mm_walk mem_cgroup_move_charge_walk = {
4667			.pmd_entry = mem_cgroup_move_charge_pte_range,
4668			.mm = mm,
4669			.private = vma,
4670		};
4671		if (is_vm_hugetlb_page(vma))
4672			continue;
4673		ret = walk_page_range(vma->vm_start, vma->vm_end,
4674						&mem_cgroup_move_charge_walk);
4675		if (ret)
4676			/*
4677			 * means we have consumed all precharges and failed in
4678			 * doing additional charge. Just abandon here.
4679			 */
4680			break;
4681	}
4682}
4683
4684static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4685				struct cgroup *cont,
4686				struct cgroup *old_cont,
4687				struct task_struct *p,
4688				bool threadgroup)
4689{
4690	if (!mc.mm)
4691		/* no need to move charge */
4692		return;
4693
4694	mem_cgroup_move_charge(mc.mm);
4695	mem_cgroup_clear_mc();
4696}
4697#else	/* !CONFIG_MMU */
4698static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4699				struct cgroup *cgroup,
4700				struct task_struct *p,
4701				bool threadgroup)
4702{
4703	return 0;
4704}
4705static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4706				struct cgroup *cgroup,
4707				struct task_struct *p,
4708				bool threadgroup)
4709{
4710}
4711static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4712				struct cgroup *cont,
4713				struct cgroup *old_cont,
4714				struct task_struct *p,
4715				bool threadgroup)
4716{
4717}
4718#endif
4719
4720struct cgroup_subsys mem_cgroup_subsys = {
4721	.name = "memory",
4722	.subsys_id = mem_cgroup_subsys_id,
4723	.create = mem_cgroup_create,
4724	.pre_destroy = mem_cgroup_pre_destroy,
4725	.destroy = mem_cgroup_destroy,
4726	.populate = mem_cgroup_populate,
4727	.can_attach = mem_cgroup_can_attach,
4728	.cancel_attach = mem_cgroup_cancel_attach,
4729	.attach = mem_cgroup_move_task,
4730	.early_init = 0,
4731	.use_id = 1,
4732};
4733
4734#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4735
4736static int __init disable_swap_account(char *s)
4737{
4738	really_do_swap_account = 0;
4739	return 1;
4740}
4741__setup("noswapaccount", disable_swap_account);
4742#endif
4743