1/*
2 * lib/btree.c	- Simple In-memory B+Tree
3 *
4 * As should be obvious for Linux kernel code, license is GPLv2
5 *
6 * Copyright (c) 2007-2008 Joern Engel <joern@logfs.org>
7 * Bits and pieces stolen from Peter Zijlstra's code, which is
8 * Copyright 2007, Red Hat Inc. Peter Zijlstra <pzijlstr@redhat.com>
9 * GPLv2
10 *
11 * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
12 *
13 * A relatively simple B+Tree implementation.  I have written it as a learning
14 * excercise to understand how B+Trees work.  Turned out to be useful as well.
15 *
16 * B+Trees can be used similar to Linux radix trees (which don't have anything
17 * in common with textbook radix trees, beware).  Prerequisite for them working
18 * well is that access to a random tree node is much faster than a large number
19 * of operations within each node.
20 *
21 * Disks have fulfilled the prerequisite for a long time.  More recently DRAM
22 * has gained similar properties, as memory access times, when measured in cpu
23 * cycles, have increased.  Cacheline sizes have increased as well, which also
24 * helps B+Trees.
25 *
26 * Compared to radix trees, B+Trees are more efficient when dealing with a
27 * sparsely populated address space.  Between 25% and 50% of the memory is
28 * occupied with valid pointers.  When densely populated, radix trees contain
29 * ~98% pointers - hard to beat.  Very sparse radix trees contain only ~2%
30 * pointers.
31 *
32 * This particular implementation stores pointers identified by a long value.
33 * Storing NULL pointers is illegal, lookup will return NULL when no entry
34 * was found.
35 *
36 * A tricks was used that is not commonly found in textbooks.  The lowest
37 * values are to the right, not to the left.  All used slots within a node
38 * are on the left, all unused slots contain NUL values.  Most operations
39 * simply loop once over all slots and terminate on the first NUL.
40 */
41
42#include <linux/btree.h>
43#include <linux/cache.h>
44#include <linux/kernel.h>
45#include <linux/slab.h>
46#include <linux/module.h>
47
48#define MAX(a, b) ((a) > (b) ? (a) : (b))
49#define NODESIZE MAX(L1_CACHE_BYTES, 128)
50
51struct btree_geo {
52	int keylen;
53	int no_pairs;
54	int no_longs;
55};
56
57struct btree_geo btree_geo32 = {
58	.keylen = 1,
59	.no_pairs = NODESIZE / sizeof(long) / 2,
60	.no_longs = NODESIZE / sizeof(long) / 2,
61};
62EXPORT_SYMBOL_GPL(btree_geo32);
63
64#define LONG_PER_U64 (64 / BITS_PER_LONG)
65struct btree_geo btree_geo64 = {
66	.keylen = LONG_PER_U64,
67	.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
68	.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
69};
70EXPORT_SYMBOL_GPL(btree_geo64);
71
72struct btree_geo btree_geo128 = {
73	.keylen = 2 * LONG_PER_U64,
74	.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
75	.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
76};
77EXPORT_SYMBOL_GPL(btree_geo128);
78
79static struct kmem_cache *btree_cachep;
80
81void *btree_alloc(gfp_t gfp_mask, void *pool_data)
82{
83	return kmem_cache_alloc(btree_cachep, gfp_mask);
84}
85EXPORT_SYMBOL_GPL(btree_alloc);
86
87void btree_free(void *element, void *pool_data)
88{
89	kmem_cache_free(btree_cachep, element);
90}
91EXPORT_SYMBOL_GPL(btree_free);
92
93static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
94{
95	unsigned long *node;
96
97	node = mempool_alloc(head->mempool, gfp);
98	if (likely(node))
99		memset(node, 0, NODESIZE);
100	return node;
101}
102
103static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
104{
105	size_t i;
106
107	for (i = 0; i < n; i++) {
108		if (l1[i] < l2[i])
109			return -1;
110		if (l1[i] > l2[i])
111			return 1;
112	}
113	return 0;
114}
115
116static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
117		size_t n)
118{
119	size_t i;
120
121	for (i = 0; i < n; i++)
122		dest[i] = src[i];
123	return dest;
124}
125
126static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
127{
128	size_t i;
129
130	for (i = 0; i < n; i++)
131		s[i] = c;
132	return s;
133}
134
135static void dec_key(struct btree_geo *geo, unsigned long *key)
136{
137	unsigned long val;
138	int i;
139
140	for (i = geo->keylen - 1; i >= 0; i--) {
141		val = key[i];
142		key[i] = val - 1;
143		if (val)
144			break;
145	}
146}
147
148static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
149{
150	return &node[n * geo->keylen];
151}
152
153static void *bval(struct btree_geo *geo, unsigned long *node, int n)
154{
155	return (void *)node[geo->no_longs + n];
156}
157
158static void setkey(struct btree_geo *geo, unsigned long *node, int n,
159		   unsigned long *key)
160{
161	longcpy(bkey(geo, node, n), key, geo->keylen);
162}
163
164static void setval(struct btree_geo *geo, unsigned long *node, int n,
165		   void *val)
166{
167	node[geo->no_longs + n] = (unsigned long) val;
168}
169
170static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
171{
172	longset(bkey(geo, node, n), 0, geo->keylen);
173	node[geo->no_longs + n] = 0;
174}
175
176static inline void __btree_init(struct btree_head *head)
177{
178	head->node = NULL;
179	head->height = 0;
180}
181
182void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
183{
184	__btree_init(head);
185	head->mempool = mempool;
186}
187EXPORT_SYMBOL_GPL(btree_init_mempool);
188
189int btree_init(struct btree_head *head)
190{
191	__btree_init(head);
192	head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
193	if (!head->mempool)
194		return -ENOMEM;
195	return 0;
196}
197EXPORT_SYMBOL_GPL(btree_init);
198
199void btree_destroy(struct btree_head *head)
200{
201	mempool_destroy(head->mempool);
202	head->mempool = NULL;
203}
204EXPORT_SYMBOL_GPL(btree_destroy);
205
206void *btree_last(struct btree_head *head, struct btree_geo *geo,
207		 unsigned long *key)
208{
209	int height = head->height;
210	unsigned long *node = head->node;
211
212	if (height == 0)
213		return NULL;
214
215	for ( ; height > 1; height--)
216		node = bval(geo, node, 0);
217
218	longcpy(key, bkey(geo, node, 0), geo->keylen);
219	return bval(geo, node, 0);
220}
221EXPORT_SYMBOL_GPL(btree_last);
222
223static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
224		  unsigned long *key)
225{
226	return longcmp(bkey(geo, node, pos), key, geo->keylen);
227}
228
229static int keyzero(struct btree_geo *geo, unsigned long *key)
230{
231	int i;
232
233	for (i = 0; i < geo->keylen; i++)
234		if (key[i])
235			return 0;
236
237	return 1;
238}
239
240void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
241		unsigned long *key)
242{
243	int i, height = head->height;
244	unsigned long *node = head->node;
245
246	if (height == 0)
247		return NULL;
248
249	for ( ; height > 1; height--) {
250		for (i = 0; i < geo->no_pairs; i++)
251			if (keycmp(geo, node, i, key) <= 0)
252				break;
253		if (i == geo->no_pairs)
254			return NULL;
255		node = bval(geo, node, i);
256		if (!node)
257			return NULL;
258	}
259
260	if (!node)
261		return NULL;
262
263	for (i = 0; i < geo->no_pairs; i++)
264		if (keycmp(geo, node, i, key) == 0)
265			return bval(geo, node, i);
266	return NULL;
267}
268EXPORT_SYMBOL_GPL(btree_lookup);
269
270int btree_update(struct btree_head *head, struct btree_geo *geo,
271		 unsigned long *key, void *val)
272{
273	int i, height = head->height;
274	unsigned long *node = head->node;
275
276	if (height == 0)
277		return -ENOENT;
278
279	for ( ; height > 1; height--) {
280		for (i = 0; i < geo->no_pairs; i++)
281			if (keycmp(geo, node, i, key) <= 0)
282				break;
283		if (i == geo->no_pairs)
284			return -ENOENT;
285		node = bval(geo, node, i);
286		if (!node)
287			return -ENOENT;
288	}
289
290	if (!node)
291		return -ENOENT;
292
293	for (i = 0; i < geo->no_pairs; i++)
294		if (keycmp(geo, node, i, key) == 0) {
295			setval(geo, node, i, val);
296			return 0;
297		}
298	return -ENOENT;
299}
300EXPORT_SYMBOL_GPL(btree_update);
301
302/*
303 * Usually this function is quite similar to normal lookup.  But the key of
304 * a parent node may be smaller than the smallest key of all its siblings.
305 * In such a case we cannot just return NULL, as we have only proven that no
306 * key smaller than __key, but larger than this parent key exists.
307 * So we set __key to the parent key and retry.  We have to use the smallest
308 * such parent key, which is the last parent key we encountered.
309 */
310void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
311		     unsigned long *__key)
312{
313	int i, height;
314	unsigned long *node, *oldnode;
315	unsigned long *retry_key = NULL, key[geo->keylen];
316
317	if (keyzero(geo, __key))
318		return NULL;
319
320	if (head->height == 0)
321		return NULL;
322retry:
323	longcpy(key, __key, geo->keylen);
324	dec_key(geo, key);
325
326	node = head->node;
327	for (height = head->height ; height > 1; height--) {
328		for (i = 0; i < geo->no_pairs; i++)
329			if (keycmp(geo, node, i, key) <= 0)
330				break;
331		if (i == geo->no_pairs)
332			goto miss;
333		oldnode = node;
334		node = bval(geo, node, i);
335		if (!node)
336			goto miss;
337		retry_key = bkey(geo, oldnode, i);
338	}
339
340	if (!node)
341		goto miss;
342
343	for (i = 0; i < geo->no_pairs; i++) {
344		if (keycmp(geo, node, i, key) <= 0) {
345			if (bval(geo, node, i)) {
346				longcpy(__key, bkey(geo, node, i), geo->keylen);
347				return bval(geo, node, i);
348			} else
349				goto miss;
350		}
351	}
352miss:
353	if (retry_key) {
354		__key = retry_key;
355		retry_key = NULL;
356		goto retry;
357	}
358	return NULL;
359}
360
361static int getpos(struct btree_geo *geo, unsigned long *node,
362		unsigned long *key)
363{
364	int i;
365
366	for (i = 0; i < geo->no_pairs; i++) {
367		if (keycmp(geo, node, i, key) <= 0)
368			break;
369	}
370	return i;
371}
372
373static int getfill(struct btree_geo *geo, unsigned long *node, int start)
374{
375	int i;
376
377	for (i = start; i < geo->no_pairs; i++)
378		if (!bval(geo, node, i))
379			break;
380	return i;
381}
382
383/*
384 * locate the correct leaf node in the btree
385 */
386static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
387		unsigned long *key, int level)
388{
389	unsigned long *node = head->node;
390	int i, height;
391
392	for (height = head->height; height > level; height--) {
393		for (i = 0; i < geo->no_pairs; i++)
394			if (keycmp(geo, node, i, key) <= 0)
395				break;
396
397		if ((i == geo->no_pairs) || !bval(geo, node, i)) {
398			/* right-most key is too large, update it */
399			i--;
400			setkey(geo, node, i, key);
401		}
402		BUG_ON(i < 0);
403		node = bval(geo, node, i);
404	}
405	BUG_ON(!node);
406	return node;
407}
408
409static int btree_grow(struct btree_head *head, struct btree_geo *geo,
410		      gfp_t gfp)
411{
412	unsigned long *node;
413	int fill;
414
415	node = btree_node_alloc(head, gfp);
416	if (!node)
417		return -ENOMEM;
418	if (head->node) {
419		fill = getfill(geo, head->node, 0);
420		setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
421		setval(geo, node, 0, head->node);
422	}
423	head->node = node;
424	head->height++;
425	return 0;
426}
427
428static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
429{
430	unsigned long *node;
431	int fill;
432
433	if (head->height <= 1)
434		return;
435
436	node = head->node;
437	fill = getfill(geo, node, 0);
438	BUG_ON(fill > 1);
439	head->node = bval(geo, node, 0);
440	head->height--;
441	mempool_free(node, head->mempool);
442}
443
444static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
445			      unsigned long *key, void *val, int level,
446			      gfp_t gfp)
447{
448	unsigned long *node;
449	int i, pos, fill, err;
450
451	BUG_ON(!val);
452	if (head->height < level) {
453		err = btree_grow(head, geo, gfp);
454		if (err)
455			return err;
456	}
457
458retry:
459	node = find_level(head, geo, key, level);
460	pos = getpos(geo, node, key);
461	fill = getfill(geo, node, pos);
462	/* two identical keys are not allowed */
463	BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
464
465	if (fill == geo->no_pairs) {
466		/* need to split node */
467		unsigned long *new;
468
469		new = btree_node_alloc(head, gfp);
470		if (!new)
471			return -ENOMEM;
472		err = btree_insert_level(head, geo,
473				bkey(geo, node, fill / 2 - 1),
474				new, level + 1, gfp);
475		if (err) {
476			mempool_free(new, head->mempool);
477			return err;
478		}
479		for (i = 0; i < fill / 2; i++) {
480			setkey(geo, new, i, bkey(geo, node, i));
481			setval(geo, new, i, bval(geo, node, i));
482			setkey(geo, node, i, bkey(geo, node, i + fill / 2));
483			setval(geo, node, i, bval(geo, node, i + fill / 2));
484			clearpair(geo, node, i + fill / 2);
485		}
486		if (fill & 1) {
487			setkey(geo, node, i, bkey(geo, node, fill - 1));
488			setval(geo, node, i, bval(geo, node, fill - 1));
489			clearpair(geo, node, fill - 1);
490		}
491		goto retry;
492	}
493	BUG_ON(fill >= geo->no_pairs);
494
495	/* shift and insert */
496	for (i = fill; i > pos; i--) {
497		setkey(geo, node, i, bkey(geo, node, i - 1));
498		setval(geo, node, i, bval(geo, node, i - 1));
499	}
500	setkey(geo, node, pos, key);
501	setval(geo, node, pos, val);
502
503	return 0;
504}
505
506int btree_insert(struct btree_head *head, struct btree_geo *geo,
507		unsigned long *key, void *val, gfp_t gfp)
508{
509	return btree_insert_level(head, geo, key, val, 1, gfp);
510}
511EXPORT_SYMBOL_GPL(btree_insert);
512
513static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
514		unsigned long *key, int level);
515static void merge(struct btree_head *head, struct btree_geo *geo, int level,
516		unsigned long *left, int lfill,
517		unsigned long *right, int rfill,
518		unsigned long *parent, int lpos)
519{
520	int i;
521
522	for (i = 0; i < rfill; i++) {
523		/* Move all keys to the left */
524		setkey(geo, left, lfill + i, bkey(geo, right, i));
525		setval(geo, left, lfill + i, bval(geo, right, i));
526	}
527	/* Exchange left and right child in parent */
528	setval(geo, parent, lpos, right);
529	setval(geo, parent, lpos + 1, left);
530	/* Remove left (formerly right) child from parent */
531	btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
532	mempool_free(right, head->mempool);
533}
534
535static void rebalance(struct btree_head *head, struct btree_geo *geo,
536		unsigned long *key, int level, unsigned long *child, int fill)
537{
538	unsigned long *parent, *left = NULL, *right = NULL;
539	int i, no_left, no_right;
540
541	if (fill == 0) {
542		/* Because we don't steal entries from a neigbour, this case
543		 * can happen.  Parent node contains a single child, this
544		 * node, so merging with a sibling never happens.
545		 */
546		btree_remove_level(head, geo, key, level + 1);
547		mempool_free(child, head->mempool);
548		return;
549	}
550
551	parent = find_level(head, geo, key, level + 1);
552	i = getpos(geo, parent, key);
553	BUG_ON(bval(geo, parent, i) != child);
554
555	if (i > 0) {
556		left = bval(geo, parent, i - 1);
557		no_left = getfill(geo, left, 0);
558		if (fill + no_left <= geo->no_pairs) {
559			merge(head, geo, level,
560					left, no_left,
561					child, fill,
562					parent, i - 1);
563			return;
564		}
565	}
566	if (i + 1 < getfill(geo, parent, i)) {
567		right = bval(geo, parent, i + 1);
568		no_right = getfill(geo, right, 0);
569		if (fill + no_right <= geo->no_pairs) {
570			merge(head, geo, level,
571					child, fill,
572					right, no_right,
573					parent, i);
574			return;
575		}
576	}
577	/*
578	 * We could also try to steal one entry from the left or right
579	 * neighbor.  By not doing so we changed the invariant from
580	 * "all nodes are at least half full" to "no two neighboring
581	 * nodes can be merged".  Which means that the average fill of
582	 * all nodes is still half or better.
583	 */
584}
585
586static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
587		unsigned long *key, int level)
588{
589	unsigned long *node;
590	int i, pos, fill;
591	void *ret;
592
593	if (level > head->height) {
594		/* we recursed all the way up */
595		head->height = 0;
596		head->node = NULL;
597		return NULL;
598	}
599
600	node = find_level(head, geo, key, level);
601	pos = getpos(geo, node, key);
602	fill = getfill(geo, node, pos);
603	if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
604		return NULL;
605	ret = bval(geo, node, pos);
606
607	/* remove and shift */
608	for (i = pos; i < fill - 1; i++) {
609		setkey(geo, node, i, bkey(geo, node, i + 1));
610		setval(geo, node, i, bval(geo, node, i + 1));
611	}
612	clearpair(geo, node, fill - 1);
613
614	if (fill - 1 < geo->no_pairs / 2) {
615		if (level < head->height)
616			rebalance(head, geo, key, level, node, fill - 1);
617		else if (fill - 1 == 1)
618			btree_shrink(head, geo);
619	}
620
621	return ret;
622}
623
624void *btree_remove(struct btree_head *head, struct btree_geo *geo,
625		unsigned long *key)
626{
627	if (head->height == 0)
628		return NULL;
629
630	return btree_remove_level(head, geo, key, 1);
631}
632EXPORT_SYMBOL_GPL(btree_remove);
633
634int btree_merge(struct btree_head *target, struct btree_head *victim,
635		struct btree_geo *geo, gfp_t gfp)
636{
637	unsigned long key[geo->keylen];
638	unsigned long dup[geo->keylen];
639	void *val;
640	int err;
641
642	BUG_ON(target == victim);
643
644	if (!(target->node)) {
645		/* target is empty, just copy fields over */
646		target->node = victim->node;
647		target->height = victim->height;
648		__btree_init(victim);
649		return 0;
650	}
651
652	/* TODO: This needs some optimizations.  Currently we do three tree
653	 * walks to remove a single object from the victim.
654	 */
655	for (;;) {
656		if (!btree_last(victim, geo, key))
657			break;
658		val = btree_lookup(victim, geo, key);
659		err = btree_insert(target, geo, key, val, gfp);
660		if (err)
661			return err;
662		/* We must make a copy of the key, as the original will get
663		 * mangled inside btree_remove. */
664		longcpy(dup, key, geo->keylen);
665		btree_remove(victim, geo, dup);
666	}
667	return 0;
668}
669EXPORT_SYMBOL_GPL(btree_merge);
670
671static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
672			       unsigned long *node, unsigned long opaque,
673			       void (*func)(void *elem, unsigned long opaque,
674					    unsigned long *key, size_t index,
675					    void *func2),
676			       void *func2, int reap, int height, size_t count)
677{
678	int i;
679	unsigned long *child;
680
681	for (i = 0; i < geo->no_pairs; i++) {
682		child = bval(geo, node, i);
683		if (!child)
684			break;
685		if (height > 1)
686			count = __btree_for_each(head, geo, child, opaque,
687					func, func2, reap, height - 1, count);
688		else
689			func(child, opaque, bkey(geo, node, i), count++,
690					func2);
691	}
692	if (reap)
693		mempool_free(node, head->mempool);
694	return count;
695}
696
697static void empty(void *elem, unsigned long opaque, unsigned long *key,
698		  size_t index, void *func2)
699{
700}
701
702void visitorl(void *elem, unsigned long opaque, unsigned long *key,
703	      size_t index, void *__func)
704{
705	visitorl_t func = __func;
706
707	func(elem, opaque, *key, index);
708}
709EXPORT_SYMBOL_GPL(visitorl);
710
711void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
712	       size_t index, void *__func)
713{
714	visitor32_t func = __func;
715	u32 *key = (void *)__key;
716
717	func(elem, opaque, *key, index);
718}
719EXPORT_SYMBOL_GPL(visitor32);
720
721void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
722	       size_t index, void *__func)
723{
724	visitor64_t func = __func;
725	u64 *key = (void *)__key;
726
727	func(elem, opaque, *key, index);
728}
729EXPORT_SYMBOL_GPL(visitor64);
730
731void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
732		size_t index, void *__func)
733{
734	visitor128_t func = __func;
735	u64 *key = (void *)__key;
736
737	func(elem, opaque, key[0], key[1], index);
738}
739EXPORT_SYMBOL_GPL(visitor128);
740
741size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
742		     unsigned long opaque,
743		     void (*func)(void *elem, unsigned long opaque,
744		     		  unsigned long *key,
745		     		  size_t index, void *func2),
746		     void *func2)
747{
748	size_t count = 0;
749
750	if (!func2)
751		func = empty;
752	if (head->node)
753		count = __btree_for_each(head, geo, head->node, opaque, func,
754				func2, 0, head->height, 0);
755	return count;
756}
757EXPORT_SYMBOL_GPL(btree_visitor);
758
759size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
760			  unsigned long opaque,
761			  void (*func)(void *elem, unsigned long opaque,
762				       unsigned long *key,
763				       size_t index, void *func2),
764			  void *func2)
765{
766	size_t count = 0;
767
768	if (!func2)
769		func = empty;
770	if (head->node)
771		count = __btree_for_each(head, geo, head->node, opaque, func,
772				func2, 1, head->height, 0);
773	__btree_init(head);
774	return count;
775}
776EXPORT_SYMBOL_GPL(btree_grim_visitor);
777
778static int __init btree_module_init(void)
779{
780	btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
781			SLAB_HWCACHE_ALIGN, NULL);
782	return 0;
783}
784
785static void __exit btree_module_exit(void)
786{
787	kmem_cache_destroy(btree_cachep);
788}
789
790/* If core code starts using btree, initialization should happen even earlier */
791module_init(btree_module_init);
792module_exit(btree_module_exit);
793
794MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
795MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
796MODULE_LICENSE("GPL");
797