1/*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * 	(mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15#include <linux/errno.h>
16#include <linux/stddef.h>
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/string.h>
20#include <linux/relay.h>
21#include <linux/vmalloc.h>
22#include <linux/mm.h>
23#include <linux/cpu.h>
24#include <linux/splice.h>
25
26/* list of open channels, for cpu hotplug */
27static DEFINE_MUTEX(relay_channels_mutex);
28static LIST_HEAD(relay_channels);
29
30/*
31 * close() vm_op implementation for relay file mapping.
32 */
33static void relay_file_mmap_close(struct vm_area_struct *vma)
34{
35	struct rchan_buf *buf = vma->vm_private_data;
36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37}
38
39/*
40 * fault() vm_op implementation for relay file mapping.
41 */
42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43{
44	struct page *page;
45	struct rchan_buf *buf = vma->vm_private_data;
46	pgoff_t pgoff = vmf->pgoff;
47
48	if (!buf)
49		return VM_FAULT_OOM;
50
51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52	if (!page)
53		return VM_FAULT_SIGBUS;
54	get_page(page);
55	vmf->page = page;
56
57	return 0;
58}
59
60/*
61 * vm_ops for relay file mappings.
62 */
63static const struct vm_operations_struct relay_file_mmap_ops = {
64	.fault = relay_buf_fault,
65	.close = relay_file_mmap_close,
66};
67
68/*
69 * allocate an array of pointers of struct page
70 */
71static struct page **relay_alloc_page_array(unsigned int n_pages)
72{
73	struct page **array;
74	size_t pa_size = n_pages * sizeof(struct page *);
75
76	if (pa_size > PAGE_SIZE) {
77		array = vmalloc(pa_size);
78		if (array)
79			memset(array, 0, pa_size);
80	} else {
81		array = kzalloc(pa_size, GFP_KERNEL);
82	}
83	return array;
84}
85
86/*
87 * free an array of pointers of struct page
88 */
89static void relay_free_page_array(struct page **array)
90{
91	if (is_vmalloc_addr(array))
92		vfree(array);
93	else
94		kfree(array);
95}
96
97/**
98 *	relay_mmap_buf: - mmap channel buffer to process address space
99 *	@buf: relay channel buffer
100 *	@vma: vm_area_struct describing memory to be mapped
101 *
102 *	Returns 0 if ok, negative on error
103 *
104 *	Caller should already have grabbed mmap_sem.
105 */
106static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107{
108	unsigned long length = vma->vm_end - vma->vm_start;
109	struct file *filp = vma->vm_file;
110
111	if (!buf)
112		return -EBADF;
113
114	if (length != (unsigned long)buf->chan->alloc_size)
115		return -EINVAL;
116
117	vma->vm_ops = &relay_file_mmap_ops;
118	vma->vm_flags |= VM_DONTEXPAND;
119	vma->vm_private_data = buf;
120	buf->chan->cb->buf_mapped(buf, filp);
121
122	return 0;
123}
124
125/**
126 *	relay_alloc_buf - allocate a channel buffer
127 *	@buf: the buffer struct
128 *	@size: total size of the buffer
129 *
130 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 *	passed in size will get page aligned, if it isn't already.
132 */
133static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134{
135	void *mem;
136	unsigned int i, j, n_pages;
137
138	*size = PAGE_ALIGN(*size);
139	n_pages = *size >> PAGE_SHIFT;
140
141	buf->page_array = relay_alloc_page_array(n_pages);
142	if (!buf->page_array)
143		return NULL;
144
145	for (i = 0; i < n_pages; i++) {
146		buf->page_array[i] = alloc_page(GFP_KERNEL);
147		if (unlikely(!buf->page_array[i]))
148			goto depopulate;
149		set_page_private(buf->page_array[i], (unsigned long)buf);
150	}
151	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152	if (!mem)
153		goto depopulate;
154
155	memset(mem, 0, *size);
156	buf->page_count = n_pages;
157	return mem;
158
159depopulate:
160	for (j = 0; j < i; j++)
161		__free_page(buf->page_array[j]);
162	relay_free_page_array(buf->page_array);
163	return NULL;
164}
165
166/**
167 *	relay_create_buf - allocate and initialize a channel buffer
168 *	@chan: the relay channel
169 *
170 *	Returns channel buffer if successful, %NULL otherwise.
171 */
172static struct rchan_buf *relay_create_buf(struct rchan *chan)
173{
174	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175	if (!buf)
176		return NULL;
177
178	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179	if (!buf->padding)
180		goto free_buf;
181
182	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183	if (!buf->start)
184		goto free_buf;
185
186	buf->chan = chan;
187	kref_get(&buf->chan->kref);
188	return buf;
189
190free_buf:
191	kfree(buf->padding);
192	kfree(buf);
193	return NULL;
194}
195
196/**
197 *	relay_destroy_channel - free the channel struct
198 *	@kref: target kernel reference that contains the relay channel
199 *
200 *	Should only be called from kref_put().
201 */
202static void relay_destroy_channel(struct kref *kref)
203{
204	struct rchan *chan = container_of(kref, struct rchan, kref);
205	kfree(chan);
206}
207
208/**
209 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 *	@buf: the buffer struct
211 */
212static void relay_destroy_buf(struct rchan_buf *buf)
213{
214	struct rchan *chan = buf->chan;
215	unsigned int i;
216
217	if (likely(buf->start)) {
218		vunmap(buf->start);
219		for (i = 0; i < buf->page_count; i++)
220			__free_page(buf->page_array[i]);
221		relay_free_page_array(buf->page_array);
222	}
223	chan->buf[buf->cpu] = NULL;
224	kfree(buf->padding);
225	kfree(buf);
226	kref_put(&chan->kref, relay_destroy_channel);
227}
228
229/**
230 *	relay_remove_buf - remove a channel buffer
231 *	@kref: target kernel reference that contains the relay buffer
232 *
233 *	Removes the file from the fileystem, which also frees the
234 *	rchan_buf_struct and the channel buffer.  Should only be called from
235 *	kref_put().
236 */
237static void relay_remove_buf(struct kref *kref)
238{
239	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240	buf->chan->cb->remove_buf_file(buf->dentry);
241	relay_destroy_buf(buf);
242}
243
244/**
245 *	relay_buf_empty - boolean, is the channel buffer empty?
246 *	@buf: channel buffer
247 *
248 *	Returns 1 if the buffer is empty, 0 otherwise.
249 */
250static int relay_buf_empty(struct rchan_buf *buf)
251{
252	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253}
254
255/**
256 *	relay_buf_full - boolean, is the channel buffer full?
257 *	@buf: channel buffer
258 *
259 *	Returns 1 if the buffer is full, 0 otherwise.
260 */
261int relay_buf_full(struct rchan_buf *buf)
262{
263	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265}
266EXPORT_SYMBOL_GPL(relay_buf_full);
267
268/*
269 * High-level relay kernel API and associated functions.
270 */
271
272/*
273 * rchan_callback implementations defining default channel behavior.  Used
274 * in place of corresponding NULL values in client callback struct.
275 */
276
277/*
278 * subbuf_start() default callback.  Does nothing.
279 */
280static int subbuf_start_default_callback (struct rchan_buf *buf,
281					  void *subbuf,
282					  void *prev_subbuf,
283					  size_t prev_padding)
284{
285	if (relay_buf_full(buf))
286		return 0;
287
288	return 1;
289}
290
291/*
292 * buf_mapped() default callback.  Does nothing.
293 */
294static void buf_mapped_default_callback(struct rchan_buf *buf,
295					struct file *filp)
296{
297}
298
299/*
300 * buf_unmapped() default callback.  Does nothing.
301 */
302static void buf_unmapped_default_callback(struct rchan_buf *buf,
303					  struct file *filp)
304{
305}
306
307/*
308 * create_buf_file_create() default callback.  Does nothing.
309 */
310static struct dentry *create_buf_file_default_callback(const char *filename,
311						       struct dentry *parent,
312						       int mode,
313						       struct rchan_buf *buf,
314						       int *is_global)
315{
316	return NULL;
317}
318
319/*
320 * remove_buf_file() default callback.  Does nothing.
321 */
322static int remove_buf_file_default_callback(struct dentry *dentry)
323{
324	return -EINVAL;
325}
326
327/* relay channel default callbacks */
328static struct rchan_callbacks default_channel_callbacks = {
329	.subbuf_start = subbuf_start_default_callback,
330	.buf_mapped = buf_mapped_default_callback,
331	.buf_unmapped = buf_unmapped_default_callback,
332	.create_buf_file = create_buf_file_default_callback,
333	.remove_buf_file = remove_buf_file_default_callback,
334};
335
336/**
337 *	wakeup_readers - wake up readers waiting on a channel
338 *	@data: contains the channel buffer
339 *
340 *	This is the timer function used to defer reader waking.
341 */
342static void wakeup_readers(unsigned long data)
343{
344	struct rchan_buf *buf = (struct rchan_buf *)data;
345	wake_up_interruptible(&buf->read_wait);
346}
347
348/**
349 *	__relay_reset - reset a channel buffer
350 *	@buf: the channel buffer
351 *	@init: 1 if this is a first-time initialization
352 *
353 *	See relay_reset() for description of effect.
354 */
355static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356{
357	size_t i;
358
359	if (init) {
360		init_waitqueue_head(&buf->read_wait);
361		kref_init(&buf->kref);
362		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363	} else
364		del_timer_sync(&buf->timer);
365
366	buf->subbufs_produced = 0;
367	buf->subbufs_consumed = 0;
368	buf->bytes_consumed = 0;
369	buf->finalized = 0;
370	buf->data = buf->start;
371	buf->offset = 0;
372
373	for (i = 0; i < buf->chan->n_subbufs; i++)
374		buf->padding[i] = 0;
375
376	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377}
378
379/**
380 *	relay_reset - reset the channel
381 *	@chan: the channel
382 *
383 *	This has the effect of erasing all data from all channel buffers
384 *	and restarting the channel in its initial state.  The buffers
385 *	are not freed, so any mappings are still in effect.
386 *
387 *	NOTE. Care should be taken that the channel isn't actually
388 *	being used by anything when this call is made.
389 */
390void relay_reset(struct rchan *chan)
391{
392	unsigned int i;
393
394	if (!chan)
395		return;
396
397	if (chan->is_global && chan->buf[0]) {
398		__relay_reset(chan->buf[0], 0);
399		return;
400	}
401
402	mutex_lock(&relay_channels_mutex);
403	for_each_possible_cpu(i)
404		if (chan->buf[i])
405			__relay_reset(chan->buf[i], 0);
406	mutex_unlock(&relay_channels_mutex);
407}
408EXPORT_SYMBOL_GPL(relay_reset);
409
410static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411					struct dentry *dentry)
412{
413	buf->dentry = dentry;
414	buf->dentry->d_inode->i_size = buf->early_bytes;
415}
416
417static struct dentry *relay_create_buf_file(struct rchan *chan,
418					    struct rchan_buf *buf,
419					    unsigned int cpu)
420{
421	struct dentry *dentry;
422	char *tmpname;
423
424	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425	if (!tmpname)
426		return NULL;
427	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428
429	/* Create file in fs */
430	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431					   S_IRUSR, buf,
432					   &chan->is_global);
433
434	kfree(tmpname);
435
436	return dentry;
437}
438
439/*
440 *	relay_open_buf - create a new relay channel buffer
441 *
442 *	used by relay_open() and CPU hotplug.
443 */
444static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445{
446 	struct rchan_buf *buf = NULL;
447	struct dentry *dentry;
448
449 	if (chan->is_global)
450		return chan->buf[0];
451
452	buf = relay_create_buf(chan);
453	if (!buf)
454		return NULL;
455
456	if (chan->has_base_filename) {
457		dentry = relay_create_buf_file(chan, buf, cpu);
458		if (!dentry)
459			goto free_buf;
460		relay_set_buf_dentry(buf, dentry);
461	}
462
463 	buf->cpu = cpu;
464 	__relay_reset(buf, 1);
465
466 	if(chan->is_global) {
467 		chan->buf[0] = buf;
468 		buf->cpu = 0;
469  	}
470
471	return buf;
472
473free_buf:
474 	relay_destroy_buf(buf);
475	return NULL;
476}
477
478/**
479 *	relay_close_buf - close a channel buffer
480 *	@buf: channel buffer
481 *
482 *	Marks the buffer finalized and restores the default callbacks.
483 *	The channel buffer and channel buffer data structure are then freed
484 *	automatically when the last reference is given up.
485 */
486static void relay_close_buf(struct rchan_buf *buf)
487{
488	buf->finalized = 1;
489	del_timer_sync(&buf->timer);
490	kref_put(&buf->kref, relay_remove_buf);
491}
492
493static void setup_callbacks(struct rchan *chan,
494				   struct rchan_callbacks *cb)
495{
496	if (!cb) {
497		chan->cb = &default_channel_callbacks;
498		return;
499	}
500
501	if (!cb->subbuf_start)
502		cb->subbuf_start = subbuf_start_default_callback;
503	if (!cb->buf_mapped)
504		cb->buf_mapped = buf_mapped_default_callback;
505	if (!cb->buf_unmapped)
506		cb->buf_unmapped = buf_unmapped_default_callback;
507	if (!cb->create_buf_file)
508		cb->create_buf_file = create_buf_file_default_callback;
509	if (!cb->remove_buf_file)
510		cb->remove_buf_file = remove_buf_file_default_callback;
511	chan->cb = cb;
512}
513
514/**
515 * 	relay_hotcpu_callback - CPU hotplug callback
516 * 	@nb: notifier block
517 * 	@action: hotplug action to take
518 * 	@hcpu: CPU number
519 *
520 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
521 */
522static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523				unsigned long action,
524				void *hcpu)
525{
526	unsigned int hotcpu = (unsigned long)hcpu;
527	struct rchan *chan;
528
529	switch(action) {
530	case CPU_UP_PREPARE:
531	case CPU_UP_PREPARE_FROZEN:
532		mutex_lock(&relay_channels_mutex);
533		list_for_each_entry(chan, &relay_channels, list) {
534			if (chan->buf[hotcpu])
535				continue;
536			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537			if(!chan->buf[hotcpu]) {
538				printk(KERN_ERR
539					"relay_hotcpu_callback: cpu %d buffer "
540					"creation failed\n", hotcpu);
541				mutex_unlock(&relay_channels_mutex);
542				return notifier_from_errno(-ENOMEM);
543			}
544		}
545		mutex_unlock(&relay_channels_mutex);
546		break;
547	case CPU_DEAD:
548	case CPU_DEAD_FROZEN:
549		/* No need to flush the cpu : will be flushed upon
550		 * final relay_flush() call. */
551		break;
552	}
553	return NOTIFY_OK;
554}
555
556/**
557 *	relay_open - create a new relay channel
558 *	@base_filename: base name of files to create, %NULL for buffering only
559 *	@parent: dentry of parent directory, %NULL for root directory or buffer
560 *	@subbuf_size: size of sub-buffers
561 *	@n_subbufs: number of sub-buffers
562 *	@cb: client callback functions
563 *	@private_data: user-defined data
564 *
565 *	Returns channel pointer if successful, %NULL otherwise.
566 *
567 *	Creates a channel buffer for each cpu using the sizes and
568 *	attributes specified.  The created channel buffer files
569 *	will be named base_filename0...base_filenameN-1.  File
570 *	permissions will be %S_IRUSR.
571 */
572struct rchan *relay_open(const char *base_filename,
573			 struct dentry *parent,
574			 size_t subbuf_size,
575			 size_t n_subbufs,
576			 struct rchan_callbacks *cb,
577			 void *private_data)
578{
579	unsigned int i;
580	struct rchan *chan;
581
582	if (!(subbuf_size && n_subbufs))
583		return NULL;
584
585	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586	if (!chan)
587		return NULL;
588
589	chan->version = RELAYFS_CHANNEL_VERSION;
590	chan->n_subbufs = n_subbufs;
591	chan->subbuf_size = subbuf_size;
592	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593	chan->parent = parent;
594	chan->private_data = private_data;
595	if (base_filename) {
596		chan->has_base_filename = 1;
597		strlcpy(chan->base_filename, base_filename, NAME_MAX);
598	}
599	setup_callbacks(chan, cb);
600	kref_init(&chan->kref);
601
602	mutex_lock(&relay_channels_mutex);
603	for_each_online_cpu(i) {
604		chan->buf[i] = relay_open_buf(chan, i);
605		if (!chan->buf[i])
606			goto free_bufs;
607	}
608	list_add(&chan->list, &relay_channels);
609	mutex_unlock(&relay_channels_mutex);
610
611	return chan;
612
613free_bufs:
614	for_each_possible_cpu(i) {
615		if (chan->buf[i])
616			relay_close_buf(chan->buf[i]);
617	}
618
619	kref_put(&chan->kref, relay_destroy_channel);
620	mutex_unlock(&relay_channels_mutex);
621	return NULL;
622}
623EXPORT_SYMBOL_GPL(relay_open);
624
625struct rchan_percpu_buf_dispatcher {
626	struct rchan_buf *buf;
627	struct dentry *dentry;
628};
629
630/* Called in atomic context. */
631static void __relay_set_buf_dentry(void *info)
632{
633	struct rchan_percpu_buf_dispatcher *p = info;
634
635	relay_set_buf_dentry(p->buf, p->dentry);
636}
637
638/**
639 *	relay_late_setup_files - triggers file creation
640 *	@chan: channel to operate on
641 *	@base_filename: base name of files to create
642 *	@parent: dentry of parent directory, %NULL for root directory
643 *
644 *	Returns 0 if successful, non-zero otherwise.
645 *
646 *	Use to setup files for a previously buffer-only channel.
647 *	Useful to do early tracing in kernel, before VFS is up, for example.
648 */
649int relay_late_setup_files(struct rchan *chan,
650			   const char *base_filename,
651			   struct dentry *parent)
652{
653	int err = 0;
654	unsigned int i, curr_cpu;
655	unsigned long flags;
656	struct dentry *dentry;
657	struct rchan_percpu_buf_dispatcher disp;
658
659	if (!chan || !base_filename)
660		return -EINVAL;
661
662	strlcpy(chan->base_filename, base_filename, NAME_MAX);
663
664	mutex_lock(&relay_channels_mutex);
665	/* Is chan already set up? */
666	if (unlikely(chan->has_base_filename)) {
667		mutex_unlock(&relay_channels_mutex);
668		return -EEXIST;
669	}
670	chan->has_base_filename = 1;
671	chan->parent = parent;
672	curr_cpu = get_cpu();
673	/*
674	 * The CPU hotplug notifier ran before us and created buffers with
675	 * no files associated. So it's safe to call relay_setup_buf_file()
676	 * on all currently online CPUs.
677	 */
678	for_each_online_cpu(i) {
679		if (unlikely(!chan->buf[i])) {
680			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
681			err = -EINVAL;
682			break;
683		}
684
685		dentry = relay_create_buf_file(chan, chan->buf[i], i);
686		if (unlikely(!dentry)) {
687			err = -EINVAL;
688			break;
689		}
690
691		if (curr_cpu == i) {
692			local_irq_save(flags);
693			relay_set_buf_dentry(chan->buf[i], dentry);
694			local_irq_restore(flags);
695		} else {
696			disp.buf = chan->buf[i];
697			disp.dentry = dentry;
698			smp_mb();
699			/* relay_channels_mutex must be held, so wait. */
700			err = smp_call_function_single(i,
701						       __relay_set_buf_dentry,
702						       &disp, 1);
703		}
704		if (unlikely(err))
705			break;
706	}
707	put_cpu();
708	mutex_unlock(&relay_channels_mutex);
709
710	return err;
711}
712
713/**
714 *	relay_switch_subbuf - switch to a new sub-buffer
715 *	@buf: channel buffer
716 *	@length: size of current event
717 *
718 *	Returns either the length passed in or 0 if full.
719 *
720 *	Performs sub-buffer-switch tasks such as invoking callbacks,
721 *	updating padding counts, waking up readers, etc.
722 */
723size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
724{
725	void *old, *new;
726	size_t old_subbuf, new_subbuf;
727
728	if (unlikely(length > buf->chan->subbuf_size))
729		goto toobig;
730
731	if (buf->offset != buf->chan->subbuf_size + 1) {
732		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
733		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
734		buf->padding[old_subbuf] = buf->prev_padding;
735		buf->subbufs_produced++;
736		if (buf->dentry)
737			buf->dentry->d_inode->i_size +=
738				buf->chan->subbuf_size -
739				buf->padding[old_subbuf];
740		else
741			buf->early_bytes += buf->chan->subbuf_size -
742					    buf->padding[old_subbuf];
743		smp_mb();
744		if (waitqueue_active(&buf->read_wait))
745			/*
746			 * Calling wake_up_interruptible() from here
747			 * will deadlock if we happen to be logging
748			 * from the scheduler (trying to re-grab
749			 * rq->lock), so defer it.
750			 */
751			mod_timer(&buf->timer, jiffies + 1);
752	}
753
754	old = buf->data;
755	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
756	new = buf->start + new_subbuf * buf->chan->subbuf_size;
757	buf->offset = 0;
758	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
759		buf->offset = buf->chan->subbuf_size + 1;
760		return 0;
761	}
762	buf->data = new;
763	buf->padding[new_subbuf] = 0;
764
765	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
766		goto toobig;
767
768	return length;
769
770toobig:
771	buf->chan->last_toobig = length;
772	return 0;
773}
774EXPORT_SYMBOL_GPL(relay_switch_subbuf);
775
776/**
777 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
778 *	@chan: the channel
779 *	@cpu: the cpu associated with the channel buffer to update
780 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
781 *
782 *	Adds to the channel buffer's consumed sub-buffer count.
783 *	subbufs_consumed should be the number of sub-buffers newly consumed,
784 *	not the total consumed.
785 *
786 *	NOTE. Kernel clients don't need to call this function if the channel
787 *	mode is 'overwrite'.
788 */
789void relay_subbufs_consumed(struct rchan *chan,
790			    unsigned int cpu,
791			    size_t subbufs_consumed)
792{
793	struct rchan_buf *buf;
794
795	if (!chan)
796		return;
797
798	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
799					subbufs_consumed > chan->n_subbufs)
800		return;
801
802	buf = chan->buf[cpu];
803	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
804		buf->subbufs_consumed = buf->subbufs_produced;
805	else
806		buf->subbufs_consumed += subbufs_consumed;
807}
808EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
809
810/**
811 *	relay_close - close the channel
812 *	@chan: the channel
813 *
814 *	Closes all channel buffers and frees the channel.
815 */
816void relay_close(struct rchan *chan)
817{
818	unsigned int i;
819
820	if (!chan)
821		return;
822
823	mutex_lock(&relay_channels_mutex);
824	if (chan->is_global && chan->buf[0])
825		relay_close_buf(chan->buf[0]);
826	else
827		for_each_possible_cpu(i)
828			if (chan->buf[i])
829				relay_close_buf(chan->buf[i]);
830
831	if (chan->last_toobig)
832		printk(KERN_WARNING "relay: one or more items not logged "
833		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
834		       chan->last_toobig, chan->subbuf_size);
835
836	list_del(&chan->list);
837	kref_put(&chan->kref, relay_destroy_channel);
838	mutex_unlock(&relay_channels_mutex);
839}
840EXPORT_SYMBOL_GPL(relay_close);
841
842/**
843 *	relay_flush - close the channel
844 *	@chan: the channel
845 *
846 *	Flushes all channel buffers, i.e. forces buffer switch.
847 */
848void relay_flush(struct rchan *chan)
849{
850	unsigned int i;
851
852	if (!chan)
853		return;
854
855	if (chan->is_global && chan->buf[0]) {
856		relay_switch_subbuf(chan->buf[0], 0);
857		return;
858	}
859
860	mutex_lock(&relay_channels_mutex);
861	for_each_possible_cpu(i)
862		if (chan->buf[i])
863			relay_switch_subbuf(chan->buf[i], 0);
864	mutex_unlock(&relay_channels_mutex);
865}
866EXPORT_SYMBOL_GPL(relay_flush);
867
868/**
869 *	relay_file_open - open file op for relay files
870 *	@inode: the inode
871 *	@filp: the file
872 *
873 *	Increments the channel buffer refcount.
874 */
875static int relay_file_open(struct inode *inode, struct file *filp)
876{
877	struct rchan_buf *buf = inode->i_private;
878	kref_get(&buf->kref);
879	filp->private_data = buf;
880
881	return nonseekable_open(inode, filp);
882}
883
884/**
885 *	relay_file_mmap - mmap file op for relay files
886 *	@filp: the file
887 *	@vma: the vma describing what to map
888 *
889 *	Calls upon relay_mmap_buf() to map the file into user space.
890 */
891static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
892{
893	struct rchan_buf *buf = filp->private_data;
894	return relay_mmap_buf(buf, vma);
895}
896
897/**
898 *	relay_file_poll - poll file op for relay files
899 *	@filp: the file
900 *	@wait: poll table
901 *
902 *	Poll implemention.
903 */
904static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
905{
906	unsigned int mask = 0;
907	struct rchan_buf *buf = filp->private_data;
908
909	if (buf->finalized)
910		return POLLERR;
911
912	if (filp->f_mode & FMODE_READ) {
913		poll_wait(filp, &buf->read_wait, wait);
914		if (!relay_buf_empty(buf))
915			mask |= POLLIN | POLLRDNORM;
916	}
917
918	return mask;
919}
920
921/**
922 *	relay_file_release - release file op for relay files
923 *	@inode: the inode
924 *	@filp: the file
925 *
926 *	Decrements the channel refcount, as the filesystem is
927 *	no longer using it.
928 */
929static int relay_file_release(struct inode *inode, struct file *filp)
930{
931	struct rchan_buf *buf = filp->private_data;
932	kref_put(&buf->kref, relay_remove_buf);
933
934	return 0;
935}
936
937/*
938 *	relay_file_read_consume - update the consumed count for the buffer
939 */
940static void relay_file_read_consume(struct rchan_buf *buf,
941				    size_t read_pos,
942				    size_t bytes_consumed)
943{
944	size_t subbuf_size = buf->chan->subbuf_size;
945	size_t n_subbufs = buf->chan->n_subbufs;
946	size_t read_subbuf;
947
948	if (buf->subbufs_produced == buf->subbufs_consumed &&
949	    buf->offset == buf->bytes_consumed)
950		return;
951
952	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
953		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
954		buf->bytes_consumed = 0;
955	}
956
957	buf->bytes_consumed += bytes_consumed;
958	if (!read_pos)
959		read_subbuf = buf->subbufs_consumed % n_subbufs;
960	else
961		read_subbuf = read_pos / buf->chan->subbuf_size;
962	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
963		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
964		    (buf->offset == subbuf_size))
965			return;
966		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
967		buf->bytes_consumed = 0;
968	}
969}
970
971/*
972 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
973 */
974static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
975{
976	size_t subbuf_size = buf->chan->subbuf_size;
977	size_t n_subbufs = buf->chan->n_subbufs;
978	size_t produced = buf->subbufs_produced;
979	size_t consumed = buf->subbufs_consumed;
980
981	relay_file_read_consume(buf, read_pos, 0);
982
983	consumed = buf->subbufs_consumed;
984
985	if (unlikely(buf->offset > subbuf_size)) {
986		if (produced == consumed)
987			return 0;
988		return 1;
989	}
990
991	if (unlikely(produced - consumed >= n_subbufs)) {
992		consumed = produced - n_subbufs + 1;
993		buf->subbufs_consumed = consumed;
994		buf->bytes_consumed = 0;
995	}
996
997	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
998	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
999
1000	if (consumed > produced)
1001		produced += n_subbufs * subbuf_size;
1002
1003	if (consumed == produced) {
1004		if (buf->offset == subbuf_size &&
1005		    buf->subbufs_produced > buf->subbufs_consumed)
1006			return 1;
1007		return 0;
1008	}
1009
1010	return 1;
1011}
1012
1013/**
1014 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1015 *	@read_pos: file read position
1016 *	@buf: relay channel buffer
1017 */
1018static size_t relay_file_read_subbuf_avail(size_t read_pos,
1019					   struct rchan_buf *buf)
1020{
1021	size_t padding, avail = 0;
1022	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1023	size_t subbuf_size = buf->chan->subbuf_size;
1024
1025	write_subbuf = (buf->data - buf->start) / subbuf_size;
1026	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1027	read_subbuf = read_pos / subbuf_size;
1028	read_offset = read_pos % subbuf_size;
1029	padding = buf->padding[read_subbuf];
1030
1031	if (read_subbuf == write_subbuf) {
1032		if (read_offset + padding < write_offset)
1033			avail = write_offset - (read_offset + padding);
1034	} else
1035		avail = (subbuf_size - padding) - read_offset;
1036
1037	return avail;
1038}
1039
1040/**
1041 *	relay_file_read_start_pos - find the first available byte to read
1042 *	@read_pos: file read position
1043 *	@buf: relay channel buffer
1044 *
1045 *	If the @read_pos is in the middle of padding, return the
1046 *	position of the first actually available byte, otherwise
1047 *	return the original value.
1048 */
1049static size_t relay_file_read_start_pos(size_t read_pos,
1050					struct rchan_buf *buf)
1051{
1052	size_t read_subbuf, padding, padding_start, padding_end;
1053	size_t subbuf_size = buf->chan->subbuf_size;
1054	size_t n_subbufs = buf->chan->n_subbufs;
1055	size_t consumed = buf->subbufs_consumed % n_subbufs;
1056
1057	if (!read_pos)
1058		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1059	read_subbuf = read_pos / subbuf_size;
1060	padding = buf->padding[read_subbuf];
1061	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1062	padding_end = (read_subbuf + 1) * subbuf_size;
1063	if (read_pos >= padding_start && read_pos < padding_end) {
1064		read_subbuf = (read_subbuf + 1) % n_subbufs;
1065		read_pos = read_subbuf * subbuf_size;
1066	}
1067
1068	return read_pos;
1069}
1070
1071/**
1072 *	relay_file_read_end_pos - return the new read position
1073 *	@read_pos: file read position
1074 *	@buf: relay channel buffer
1075 *	@count: number of bytes to be read
1076 */
1077static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1078				      size_t read_pos,
1079				      size_t count)
1080{
1081	size_t read_subbuf, padding, end_pos;
1082	size_t subbuf_size = buf->chan->subbuf_size;
1083	size_t n_subbufs = buf->chan->n_subbufs;
1084
1085	read_subbuf = read_pos / subbuf_size;
1086	padding = buf->padding[read_subbuf];
1087	if (read_pos % subbuf_size + count + padding == subbuf_size)
1088		end_pos = (read_subbuf + 1) * subbuf_size;
1089	else
1090		end_pos = read_pos + count;
1091	if (end_pos >= subbuf_size * n_subbufs)
1092		end_pos = 0;
1093
1094	return end_pos;
1095}
1096
1097/*
1098 *	subbuf_read_actor - read up to one subbuf's worth of data
1099 */
1100static int subbuf_read_actor(size_t read_start,
1101			     struct rchan_buf *buf,
1102			     size_t avail,
1103			     read_descriptor_t *desc,
1104			     read_actor_t actor)
1105{
1106	void *from;
1107	int ret = 0;
1108
1109	from = buf->start + read_start;
1110	ret = avail;
1111	if (copy_to_user(desc->arg.buf, from, avail)) {
1112		desc->error = -EFAULT;
1113		ret = 0;
1114	}
1115	desc->arg.data += ret;
1116	desc->written += ret;
1117	desc->count -= ret;
1118
1119	return ret;
1120}
1121
1122typedef int (*subbuf_actor_t) (size_t read_start,
1123			       struct rchan_buf *buf,
1124			       size_t avail,
1125			       read_descriptor_t *desc,
1126			       read_actor_t actor);
1127
1128/*
1129 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1130 */
1131static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1132					subbuf_actor_t subbuf_actor,
1133					read_actor_t actor,
1134					read_descriptor_t *desc)
1135{
1136	struct rchan_buf *buf = filp->private_data;
1137	size_t read_start, avail;
1138	int ret;
1139
1140	if (!desc->count)
1141		return 0;
1142
1143	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1144	do {
1145		if (!relay_file_read_avail(buf, *ppos))
1146			break;
1147
1148		read_start = relay_file_read_start_pos(*ppos, buf);
1149		avail = relay_file_read_subbuf_avail(read_start, buf);
1150		if (!avail)
1151			break;
1152
1153		avail = min(desc->count, avail);
1154		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1155		if (desc->error < 0)
1156			break;
1157
1158		if (ret) {
1159			relay_file_read_consume(buf, read_start, ret);
1160			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1161		}
1162	} while (desc->count && ret);
1163	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1164
1165	return desc->written;
1166}
1167
1168static ssize_t relay_file_read(struct file *filp,
1169			       char __user *buffer,
1170			       size_t count,
1171			       loff_t *ppos)
1172{
1173	read_descriptor_t desc;
1174	desc.written = 0;
1175	desc.count = count;
1176	desc.arg.buf = buffer;
1177	desc.error = 0;
1178	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1179				       NULL, &desc);
1180}
1181
1182static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1183{
1184	rbuf->bytes_consumed += bytes_consumed;
1185
1186	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1187		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1188		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1189	}
1190}
1191
1192static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1193				   struct pipe_buffer *buf)
1194{
1195	struct rchan_buf *rbuf;
1196
1197	rbuf = (struct rchan_buf *)page_private(buf->page);
1198	relay_consume_bytes(rbuf, buf->private);
1199}
1200
1201static const struct pipe_buf_operations relay_pipe_buf_ops = {
1202	.can_merge = 0,
1203	.map = generic_pipe_buf_map,
1204	.unmap = generic_pipe_buf_unmap,
1205	.confirm = generic_pipe_buf_confirm,
1206	.release = relay_pipe_buf_release,
1207	.steal = generic_pipe_buf_steal,
1208	.get = generic_pipe_buf_get,
1209};
1210
1211static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1212{
1213}
1214
1215/*
1216 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1217 */
1218static ssize_t subbuf_splice_actor(struct file *in,
1219			       loff_t *ppos,
1220			       struct pipe_inode_info *pipe,
1221			       size_t len,
1222			       unsigned int flags,
1223			       int *nonpad_ret)
1224{
1225	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1226	struct rchan_buf *rbuf = in->private_data;
1227	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1228	uint64_t pos = (uint64_t) *ppos;
1229	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1230	size_t read_start = (size_t) do_div(pos, alloc_size);
1231	size_t read_subbuf = read_start / subbuf_size;
1232	size_t padding = rbuf->padding[read_subbuf];
1233	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1234	struct page *pages[PIPE_DEF_BUFFERS];
1235	struct partial_page partial[PIPE_DEF_BUFFERS];
1236	struct splice_pipe_desc spd = {
1237		.pages = pages,
1238		.nr_pages = 0,
1239		.partial = partial,
1240		.flags = flags,
1241		.ops = &relay_pipe_buf_ops,
1242		.spd_release = relay_page_release,
1243	};
1244	ssize_t ret;
1245
1246	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1247		return 0;
1248	if (splice_grow_spd(pipe, &spd))
1249		return -ENOMEM;
1250
1251	/*
1252	 * Adjust read len, if longer than what is available
1253	 */
1254	if (len > (subbuf_size - read_start % subbuf_size))
1255		len = subbuf_size - read_start % subbuf_size;
1256
1257	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1258	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1259	poff = read_start & ~PAGE_MASK;
1260	nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1261
1262	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1263		unsigned int this_len, this_end, private;
1264		unsigned int cur_pos = read_start + total_len;
1265
1266		if (!len)
1267			break;
1268
1269		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1270		private = this_len;
1271
1272		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1273		spd.partial[spd.nr_pages].offset = poff;
1274
1275		this_end = cur_pos + this_len;
1276		if (this_end >= nonpad_end) {
1277			this_len = nonpad_end - cur_pos;
1278			private = this_len + padding;
1279		}
1280		spd.partial[spd.nr_pages].len = this_len;
1281		spd.partial[spd.nr_pages].private = private;
1282
1283		len -= this_len;
1284		total_len += this_len;
1285		poff = 0;
1286		pidx = (pidx + 1) % subbuf_pages;
1287
1288		if (this_end >= nonpad_end) {
1289			spd.nr_pages++;
1290			break;
1291		}
1292	}
1293
1294	ret = 0;
1295	if (!spd.nr_pages)
1296		goto out;
1297
1298	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1299	if (ret < 0 || ret < total_len)
1300		goto out;
1301
1302        if (read_start + ret == nonpad_end)
1303                ret += padding;
1304
1305out:
1306	splice_shrink_spd(pipe, &spd);
1307        return ret;
1308}
1309
1310static ssize_t relay_file_splice_read(struct file *in,
1311				      loff_t *ppos,
1312				      struct pipe_inode_info *pipe,
1313				      size_t len,
1314				      unsigned int flags)
1315{
1316	ssize_t spliced;
1317	int ret;
1318	int nonpad_ret = 0;
1319
1320	ret = 0;
1321	spliced = 0;
1322
1323	while (len && !spliced) {
1324		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1325		if (ret < 0)
1326			break;
1327		else if (!ret) {
1328			if (flags & SPLICE_F_NONBLOCK)
1329				ret = -EAGAIN;
1330			break;
1331		}
1332
1333		*ppos += ret;
1334		if (ret > len)
1335			len = 0;
1336		else
1337			len -= ret;
1338		spliced += nonpad_ret;
1339		nonpad_ret = 0;
1340	}
1341
1342	if (spliced)
1343		return spliced;
1344
1345	return ret;
1346}
1347
1348const struct file_operations relay_file_operations = {
1349	.open		= relay_file_open,
1350	.poll		= relay_file_poll,
1351	.mmap		= relay_file_mmap,
1352	.read		= relay_file_read,
1353	.llseek		= no_llseek,
1354	.release	= relay_file_release,
1355	.splice_read	= relay_file_splice_read,
1356};
1357EXPORT_SYMBOL_GPL(relay_file_operations);
1358
1359static __init int relay_init(void)
1360{
1361
1362	hotcpu_notifier(relay_hotcpu_callback, 0);
1363	return 0;
1364}
1365
1366early_initcall(relay_init);
1367