1/*
2 *  linux/kernel/hrtimer.c
3 *
4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 *
8 *  High-resolution kernel timers
9 *
10 *  In contrast to the low-resolution timeout API implemented in
11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12 *  depending on system configuration and capabilities.
13 *
14 *  These timers are currently used for:
15 *   - itimers
16 *   - POSIX timers
17 *   - nanosleep
18 *   - precise in-kernel timing
19 *
20 *  Started by: Thomas Gleixner and Ingo Molnar
21 *
22 *  Credits:
23 *	based on kernel/timer.c
24 *
25 *	Help, testing, suggestions, bugfixes, improvements were
26 *	provided by:
27 *
28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 *	et. al.
30 *
31 *  For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/tick.h>
43#include <linux/seq_file.h>
44#include <linux/err.h>
45#include <linux/debugobjects.h>
46#include <linux/sched.h>
47#include <linux/timer.h>
48
49#include <asm/uaccess.h>
50
51#include <trace/events/timer.h>
52
53/*
54 * The timer bases:
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
61 */
62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63{
64
65	.clock_base =
66	{
67		{
68			.index = CLOCK_REALTIME,
69			.get_time = &ktime_get_real,
70			.resolution = KTIME_LOW_RES,
71		},
72		{
73			.index = CLOCK_MONOTONIC,
74			.get_time = &ktime_get,
75			.resolution = KTIME_LOW_RES,
76		},
77	}
78};
79
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85{
86	ktime_t xtim, tomono;
87	struct timespec xts, tom;
88	unsigned long seq;
89
90	do {
91		seq = read_seqbegin(&xtime_lock);
92		xts = __current_kernel_time();
93		tom = __get_wall_to_monotonic();
94	} while (read_seqretry(&xtime_lock, seq));
95
96	xtim = timespec_to_ktime(xts);
97	tomono = timespec_to_ktime(tom);
98	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99	base->clock_base[CLOCK_MONOTONIC].softirq_time =
100		ktime_add(xtim, tomono);
101}
102
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123					     unsigned long *flags)
124{
125	struct hrtimer_clock_base *base;
126
127	for (;;) {
128		base = timer->base;
129		if (likely(base != NULL)) {
130			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131			if (likely(base == timer->base))
132				return base;
133			/* The timer has migrated to another CPU: */
134			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135		}
136		cpu_relax();
137	}
138}
139
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
147	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148		return get_nohz_timer_target();
149#endif
150	return this_cpu;
151}
152
153/*
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
157 *
158 * Called with cpu_base->lock of target cpu held.
159 */
160static int
161hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
162{
163#ifdef CONFIG_HIGH_RES_TIMERS
164	ktime_t expires;
165
166	if (!new_base->cpu_base->hres_active)
167		return 0;
168
169	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171#else
172	return 0;
173#endif
174}
175
176/*
177 * Switch the timer base to the current CPU when possible.
178 */
179static inline struct hrtimer_clock_base *
180switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181		    int pinned)
182{
183	struct hrtimer_clock_base *new_base;
184	struct hrtimer_cpu_base *new_cpu_base;
185	int this_cpu = smp_processor_id();
186	int cpu = hrtimer_get_target(this_cpu, pinned);
187
188again:
189	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190	new_base = &new_cpu_base->clock_base[base->index];
191
192	if (base != new_base) {
193		/*
194		 * We are trying to move timer to new_base.
195		 * However we can't change timer's base while it is running,
196		 * so we keep it on the same CPU. No hassle vs. reprogramming
197		 * the event source in the high resolution case. The softirq
198		 * code will take care of this when the timer function has
199		 * completed. There is no conflict as we hold the lock until
200		 * the timer is enqueued.
201		 */
202		if (unlikely(hrtimer_callback_running(timer)))
203			return base;
204
205		/* See the comment in lock_timer_base() */
206		timer->base = NULL;
207		raw_spin_unlock(&base->cpu_base->lock);
208		raw_spin_lock(&new_base->cpu_base->lock);
209
210		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211			cpu = this_cpu;
212			raw_spin_unlock(&new_base->cpu_base->lock);
213			raw_spin_lock(&base->cpu_base->lock);
214			timer->base = base;
215			goto again;
216		}
217		timer->base = new_base;
218	}
219	return new_base;
220}
221
222#else /* CONFIG_SMP */
223
224static inline struct hrtimer_clock_base *
225lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226{
227	struct hrtimer_clock_base *base = timer->base;
228
229	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
230
231	return base;
232}
233
234# define switch_hrtimer_base(t, b, p)	(b)
235
236#endif	/* !CONFIG_SMP */
237
238/*
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
241 */
242#if BITS_PER_LONG < 64
243# ifndef CONFIG_KTIME_SCALAR
244/**
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
246 * @kt:		addend
247 * @nsec:	the scalar nsec value to add
248 *
249 * Returns the sum of kt and nsec in ktime_t format
250 */
251ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252{
253	ktime_t tmp;
254
255	if (likely(nsec < NSEC_PER_SEC)) {
256		tmp.tv64 = nsec;
257	} else {
258		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259
260		tmp = ktime_set((long)nsec, rem);
261	}
262
263	return ktime_add(kt, tmp);
264}
265
266EXPORT_SYMBOL_GPL(ktime_add_ns);
267
268/**
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt:		minuend
271 * @nsec:	the scalar nsec value to subtract
272 *
273 * Returns the subtraction of @nsec from @kt in ktime_t format
274 */
275ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
276{
277	ktime_t tmp;
278
279	if (likely(nsec < NSEC_PER_SEC)) {
280		tmp.tv64 = nsec;
281	} else {
282		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284		tmp = ktime_set((long)nsec, rem);
285	}
286
287	return ktime_sub(kt, tmp);
288}
289
290EXPORT_SYMBOL_GPL(ktime_sub_ns);
291# endif /* !CONFIG_KTIME_SCALAR */
292
293/*
294 * Divide a ktime value by a nanosecond value
295 */
296u64 ktime_divns(const ktime_t kt, s64 div)
297{
298	u64 dclc;
299	int sft = 0;
300
301	dclc = ktime_to_ns(kt);
302	/* Make sure the divisor is less than 2^32: */
303	while (div >> 32) {
304		sft++;
305		div >>= 1;
306	}
307	dclc >>= sft;
308	do_div(dclc, (unsigned long) div);
309
310	return dclc;
311}
312#endif /* BITS_PER_LONG >= 64 */
313
314/*
315 * Add two ktime values and do a safety check for overflow:
316 */
317ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
318{
319	ktime_t res = ktime_add(lhs, rhs);
320
321	/*
322	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323	 * return to user space in a timespec:
324	 */
325	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326		res = ktime_set(KTIME_SEC_MAX, 0);
327
328	return res;
329}
330
331EXPORT_SYMBOL_GPL(ktime_add_safe);
332
333#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
334
335static struct debug_obj_descr hrtimer_debug_descr;
336
337/*
338 * fixup_init is called when:
339 * - an active object is initialized
340 */
341static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
342{
343	struct hrtimer *timer = addr;
344
345	switch (state) {
346	case ODEBUG_STATE_ACTIVE:
347		hrtimer_cancel(timer);
348		debug_object_init(timer, &hrtimer_debug_descr);
349		return 1;
350	default:
351		return 0;
352	}
353}
354
355/*
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
359 */
360static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
361{
362	switch (state) {
363
364	case ODEBUG_STATE_NOTAVAILABLE:
365		WARN_ON_ONCE(1);
366		return 0;
367
368	case ODEBUG_STATE_ACTIVE:
369		WARN_ON(1);
370
371	default:
372		return 0;
373	}
374}
375
376/*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
381{
382	struct hrtimer *timer = addr;
383
384	switch (state) {
385	case ODEBUG_STATE_ACTIVE:
386		hrtimer_cancel(timer);
387		debug_object_free(timer, &hrtimer_debug_descr);
388		return 1;
389	default:
390		return 0;
391	}
392}
393
394static struct debug_obj_descr hrtimer_debug_descr = {
395	.name		= "hrtimer",
396	.fixup_init	= hrtimer_fixup_init,
397	.fixup_activate	= hrtimer_fixup_activate,
398	.fixup_free	= hrtimer_fixup_free,
399};
400
401static inline void debug_hrtimer_init(struct hrtimer *timer)
402{
403	debug_object_init(timer, &hrtimer_debug_descr);
404}
405
406static inline void debug_hrtimer_activate(struct hrtimer *timer)
407{
408	debug_object_activate(timer, &hrtimer_debug_descr);
409}
410
411static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
412{
413	debug_object_deactivate(timer, &hrtimer_debug_descr);
414}
415
416static inline void debug_hrtimer_free(struct hrtimer *timer)
417{
418	debug_object_free(timer, &hrtimer_debug_descr);
419}
420
421static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422			   enum hrtimer_mode mode);
423
424void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425			   enum hrtimer_mode mode)
426{
427	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428	__hrtimer_init(timer, clock_id, mode);
429}
430EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431
432void destroy_hrtimer_on_stack(struct hrtimer *timer)
433{
434	debug_object_free(timer, &hrtimer_debug_descr);
435}
436
437#else
438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441#endif
442
443static inline void
444debug_init(struct hrtimer *timer, clockid_t clockid,
445	   enum hrtimer_mode mode)
446{
447	debug_hrtimer_init(timer);
448	trace_hrtimer_init(timer, clockid, mode);
449}
450
451static inline void debug_activate(struct hrtimer *timer)
452{
453	debug_hrtimer_activate(timer);
454	trace_hrtimer_start(timer);
455}
456
457static inline void debug_deactivate(struct hrtimer *timer)
458{
459	debug_hrtimer_deactivate(timer);
460	trace_hrtimer_cancel(timer);
461}
462
463/* High resolution timer related functions */
464#ifdef CONFIG_HIGH_RES_TIMERS
465
466/*
467 * High resolution timer enabled ?
468 */
469static int hrtimer_hres_enabled __read_mostly  = 1;
470
471/*
472 * Enable / Disable high resolution mode
473 */
474static int __init setup_hrtimer_hres(char *str)
475{
476	if (!strcmp(str, "off"))
477		hrtimer_hres_enabled = 0;
478	else if (!strcmp(str, "on"))
479		hrtimer_hres_enabled = 1;
480	else
481		return 0;
482	return 1;
483}
484
485__setup("highres=", setup_hrtimer_hres);
486
487/*
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 */
490static inline int hrtimer_is_hres_enabled(void)
491{
492	return hrtimer_hres_enabled;
493}
494
495/*
496 * Is the high resolution mode active ?
497 */
498static inline int hrtimer_hres_active(void)
499{
500	return __get_cpu_var(hrtimer_bases).hres_active;
501}
502
503/*
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
507 */
508static void
509hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
510{
511	int i;
512	struct hrtimer_clock_base *base = cpu_base->clock_base;
513	ktime_t expires, expires_next;
514
515	expires_next.tv64 = KTIME_MAX;
516
517	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518		struct hrtimer *timer;
519
520		if (!base->first)
521			continue;
522		timer = rb_entry(base->first, struct hrtimer, node);
523		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
524		/*
525		 * clock_was_set() has changed base->offset so the
526		 * result might be negative. Fix it up to prevent a
527		 * false positive in clockevents_program_event()
528		 */
529		if (expires.tv64 < 0)
530			expires.tv64 = 0;
531		if (expires.tv64 < expires_next.tv64)
532			expires_next = expires;
533	}
534
535	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536		return;
537
538	cpu_base->expires_next.tv64 = expires_next.tv64;
539
540	if (cpu_base->expires_next.tv64 != KTIME_MAX)
541		tick_program_event(cpu_base->expires_next, 1);
542}
543
544/*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Called with interrupts disabled and base->cpu_base.lock held
552 */
553static int hrtimer_reprogram(struct hrtimer *timer,
554			     struct hrtimer_clock_base *base)
555{
556	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558	int res;
559
560	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
561
562	/*
563	 * When the callback is running, we do not reprogram the clock event
564	 * device. The timer callback is either running on a different CPU or
565	 * the callback is executed in the hrtimer_interrupt context. The
566	 * reprogramming is handled either by the softirq, which called the
567	 * callback or at the end of the hrtimer_interrupt.
568	 */
569	if (hrtimer_callback_running(timer))
570		return 0;
571
572	/*
573	 * CLOCK_REALTIME timer might be requested with an absolute
574	 * expiry time which is less than base->offset. Nothing wrong
575	 * about that, just avoid to call into the tick code, which
576	 * has now objections against negative expiry values.
577	 */
578	if (expires.tv64 < 0)
579		return -ETIME;
580
581	if (expires.tv64 >= cpu_base->expires_next.tv64)
582		return 0;
583
584	/*
585	 * If a hang was detected in the last timer interrupt then we
586	 * do not schedule a timer which is earlier than the expiry
587	 * which we enforced in the hang detection. We want the system
588	 * to make progress.
589	 */
590	if (cpu_base->hang_detected)
591		return 0;
592
593	/*
594	 * Clockevents returns -ETIME, when the event was in the past.
595	 */
596	res = tick_program_event(expires, 0);
597	if (!IS_ERR_VALUE(res))
598		cpu_base->expires_next = expires;
599	return res;
600}
601
602
603/*
604 * Retrigger next event is called after clock was set
605 *
606 * Called with interrupts disabled via on_each_cpu()
607 */
608static void retrigger_next_event(void *arg)
609{
610	struct hrtimer_cpu_base *base;
611	struct timespec realtime_offset, wtm;
612	unsigned long seq;
613
614	if (!hrtimer_hres_active())
615		return;
616
617	do {
618		seq = read_seqbegin(&xtime_lock);
619		wtm = __get_wall_to_monotonic();
620	} while (read_seqretry(&xtime_lock, seq));
621	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
622
623	base = &__get_cpu_var(hrtimer_bases);
624
625	/* Adjust CLOCK_REALTIME offset */
626	raw_spin_lock(&base->lock);
627	base->clock_base[CLOCK_REALTIME].offset =
628		timespec_to_ktime(realtime_offset);
629
630	hrtimer_force_reprogram(base, 0);
631	raw_spin_unlock(&base->lock);
632}
633
634/*
635 * Clock realtime was set
636 *
637 * Change the offset of the realtime clock vs. the monotonic
638 * clock.
639 *
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
644 */
645void clock_was_set(void)
646{
647	/* Retrigger the CPU local events everywhere */
648	on_each_cpu(retrigger_next_event, NULL, 1);
649}
650
651/*
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
654 */
655void hres_timers_resume(void)
656{
657	WARN_ONCE(!irqs_disabled(),
658		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");
659
660	retrigger_next_event(NULL);
661}
662
663/*
664 * Initialize the high resolution related parts of cpu_base
665 */
666static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
667{
668	base->expires_next.tv64 = KTIME_MAX;
669	base->hres_active = 0;
670}
671
672/*
673 * Initialize the high resolution related parts of a hrtimer
674 */
675static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
676{
677}
678
679
680/*
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
685 */
686static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687					    struct hrtimer_clock_base *base,
688					    int wakeup)
689{
690	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691		if (wakeup) {
692			raw_spin_unlock(&base->cpu_base->lock);
693			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694			raw_spin_lock(&base->cpu_base->lock);
695		} else
696			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
697
698		return 1;
699	}
700
701	return 0;
702}
703
704/*
705 * Switch to high resolution mode
706 */
707static int hrtimer_switch_to_hres(void)
708{
709	int cpu = smp_processor_id();
710	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711	unsigned long flags;
712
713	if (base->hres_active)
714		return 1;
715
716	local_irq_save(flags);
717
718	if (tick_init_highres()) {
719		local_irq_restore(flags);
720		printk(KERN_WARNING "Could not switch to high resolution "
721				    "mode on CPU %d\n", cpu);
722		return 0;
723	}
724	base->hres_active = 1;
725	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
727
728	tick_setup_sched_timer();
729
730	/* "Retrigger" the interrupt to get things going */
731	retrigger_next_event(NULL);
732	local_irq_restore(flags);
733	return 1;
734}
735
736#else
737
738static inline int hrtimer_hres_active(void) { return 0; }
739static inline int hrtimer_is_hres_enabled(void) { return 0; }
740static inline int hrtimer_switch_to_hres(void) { return 0; }
741static inline void
742hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
743static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
744					    struct hrtimer_clock_base *base,
745					    int wakeup)
746{
747	return 0;
748}
749static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
750static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
751
752#endif /* CONFIG_HIGH_RES_TIMERS */
753
754static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
755{
756#ifdef CONFIG_TIMER_STATS
757	if (timer->start_site)
758		return;
759	timer->start_site = __builtin_return_address(0);
760	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
761	timer->start_pid = current->pid;
762#endif
763}
764
765static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
766{
767#ifdef CONFIG_TIMER_STATS
768	timer->start_site = NULL;
769#endif
770}
771
772static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
773{
774#ifdef CONFIG_TIMER_STATS
775	if (likely(!timer_stats_active))
776		return;
777	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
778				 timer->function, timer->start_comm, 0);
779#endif
780}
781
782/*
783 * Counterpart to lock_hrtimer_base above:
784 */
785static inline
786void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
787{
788	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789}
790
791/**
792 * hrtimer_forward - forward the timer expiry
793 * @timer:	hrtimer to forward
794 * @now:	forward past this time
795 * @interval:	the interval to forward
796 *
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
799 */
800u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801{
802	u64 orun = 1;
803	ktime_t delta;
804
805	delta = ktime_sub(now, hrtimer_get_expires(timer));
806
807	if (delta.tv64 < 0)
808		return 0;
809
810	if (interval.tv64 < timer->base->resolution.tv64)
811		interval.tv64 = timer->base->resolution.tv64;
812
813	if (unlikely(delta.tv64 >= interval.tv64)) {
814		s64 incr = ktime_to_ns(interval);
815
816		orun = ktime_divns(delta, incr);
817		hrtimer_add_expires_ns(timer, incr * orun);
818		if (hrtimer_get_expires_tv64(timer) > now.tv64)
819			return orun;
820		/*
821		 * This (and the ktime_add() below) is the
822		 * correction for exact:
823		 */
824		orun++;
825	}
826	hrtimer_add_expires(timer, interval);
827
828	return orun;
829}
830EXPORT_SYMBOL_GPL(hrtimer_forward);
831
832/*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
839 */
840static int enqueue_hrtimer(struct hrtimer *timer,
841			   struct hrtimer_clock_base *base)
842{
843	struct rb_node **link = &base->active.rb_node;
844	struct rb_node *parent = NULL;
845	struct hrtimer *entry;
846	int leftmost = 1;
847
848	debug_activate(timer);
849
850	/*
851	 * Find the right place in the rbtree:
852	 */
853	while (*link) {
854		parent = *link;
855		entry = rb_entry(parent, struct hrtimer, node);
856		/*
857		 * We dont care about collisions. Nodes with
858		 * the same expiry time stay together.
859		 */
860		if (hrtimer_get_expires_tv64(timer) <
861				hrtimer_get_expires_tv64(entry)) {
862			link = &(*link)->rb_left;
863		} else {
864			link = &(*link)->rb_right;
865			leftmost = 0;
866		}
867	}
868
869	/*
870	 * Insert the timer to the rbtree and check whether it
871	 * replaces the first pending timer
872	 */
873	if (leftmost)
874		base->first = &timer->node;
875
876	rb_link_node(&timer->node, parent, link);
877	rb_insert_color(&timer->node, &base->active);
878	/*
879	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880	 * state of a possibly running callback.
881	 */
882	timer->state |= HRTIMER_STATE_ENQUEUED;
883
884	return leftmost;
885}
886
887/*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
896 */
897static void __remove_hrtimer(struct hrtimer *timer,
898			     struct hrtimer_clock_base *base,
899			     unsigned long newstate, int reprogram)
900{
901	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902		goto out;
903
904	/*
905	 * Remove the timer from the rbtree and replace the first
906	 * entry pointer if necessary.
907	 */
908	if (base->first == &timer->node) {
909		base->first = rb_next(&timer->node);
910#ifdef CONFIG_HIGH_RES_TIMERS
911		/* Reprogram the clock event device. if enabled */
912		if (reprogram && hrtimer_hres_active()) {
913			ktime_t expires;
914
915			expires = ktime_sub(hrtimer_get_expires(timer),
916					    base->offset);
917			if (base->cpu_base->expires_next.tv64 == expires.tv64)
918				hrtimer_force_reprogram(base->cpu_base, 1);
919		}
920#endif
921	}
922	rb_erase(&timer->node, &base->active);
923out:
924	timer->state = newstate;
925}
926
927/*
928 * remove hrtimer, called with base lock held
929 */
930static inline int
931remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
932{
933	if (hrtimer_is_queued(timer)) {
934		unsigned long state;
935		int reprogram;
936
937		/*
938		 * Remove the timer and force reprogramming when high
939		 * resolution mode is active and the timer is on the current
940		 * CPU. If we remove a timer on another CPU, reprogramming is
941		 * skipped. The interrupt event on this CPU is fired and
942		 * reprogramming happens in the interrupt handler. This is a
943		 * rare case and less expensive than a smp call.
944		 */
945		debug_deactivate(timer);
946		timer_stats_hrtimer_clear_start_info(timer);
947		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
948		/*
949		 * We must preserve the CALLBACK state flag here,
950		 * otherwise we could move the timer base in
951		 * switch_hrtimer_base.
952		 */
953		state = timer->state & HRTIMER_STATE_CALLBACK;
954		__remove_hrtimer(timer, base, state, reprogram);
955		return 1;
956	}
957	return 0;
958}
959
960int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
961		unsigned long delta_ns, const enum hrtimer_mode mode,
962		int wakeup)
963{
964	struct hrtimer_clock_base *base, *new_base;
965	unsigned long flags;
966	int ret, leftmost;
967
968	base = lock_hrtimer_base(timer, &flags);
969
970	/* Remove an active timer from the queue: */
971	ret = remove_hrtimer(timer, base);
972
973	/* Switch the timer base, if necessary: */
974	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
975
976	if (mode & HRTIMER_MODE_REL) {
977		tim = ktime_add_safe(tim, new_base->get_time());
978		/*
979		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
980		 * to signal that they simply return xtime in
981		 * do_gettimeoffset(). In this case we want to round up by
982		 * resolution when starting a relative timer, to avoid short
983		 * timeouts. This will go away with the GTOD framework.
984		 */
985#ifdef CONFIG_TIME_LOW_RES
986		tim = ktime_add_safe(tim, base->resolution);
987#endif
988	}
989
990	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
991
992	timer_stats_hrtimer_set_start_info(timer);
993
994	leftmost = enqueue_hrtimer(timer, new_base);
995
996	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
997		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
998
999	unlock_hrtimer_base(timer, &flags);
1000
1001	return ret;
1002}
1003
1004/**
1005 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1006 * @timer:	the timer to be added
1007 * @tim:	expiry time
1008 * @delta_ns:	"slack" range for the timer
1009 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1010 *
1011 * Returns:
1012 *  0 on success
1013 *  1 when the timer was active
1014 */
1015int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1016		unsigned long delta_ns, const enum hrtimer_mode mode)
1017{
1018	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1019}
1020EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1021
1022/**
1023 * hrtimer_start - (re)start an hrtimer on the current CPU
1024 * @timer:	the timer to be added
1025 * @tim:	expiry time
1026 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1027 *
1028 * Returns:
1029 *  0 on success
1030 *  1 when the timer was active
1031 */
1032int
1033hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1034{
1035	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1036}
1037EXPORT_SYMBOL_GPL(hrtimer_start);
1038
1039
1040/**
1041 * hrtimer_try_to_cancel - try to deactivate a timer
1042 * @timer:	hrtimer to stop
1043 *
1044 * Returns:
1045 *  0 when the timer was not active
1046 *  1 when the timer was active
1047 * -1 when the timer is currently excuting the callback function and
1048 *    cannot be stopped
1049 */
1050int hrtimer_try_to_cancel(struct hrtimer *timer)
1051{
1052	struct hrtimer_clock_base *base;
1053	unsigned long flags;
1054	int ret = -1;
1055
1056	base = lock_hrtimer_base(timer, &flags);
1057
1058	if (!hrtimer_callback_running(timer))
1059		ret = remove_hrtimer(timer, base);
1060
1061	unlock_hrtimer_base(timer, &flags);
1062
1063	return ret;
1064
1065}
1066EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1067
1068/**
1069 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1070 * @timer:	the timer to be cancelled
1071 *
1072 * Returns:
1073 *  0 when the timer was not active
1074 *  1 when the timer was active
1075 */
1076int hrtimer_cancel(struct hrtimer *timer)
1077{
1078	for (;;) {
1079		int ret = hrtimer_try_to_cancel(timer);
1080
1081		if (ret >= 0)
1082			return ret;
1083		cpu_relax();
1084	}
1085}
1086EXPORT_SYMBOL_GPL(hrtimer_cancel);
1087
1088/**
1089 * hrtimer_get_remaining - get remaining time for the timer
1090 * @timer:	the timer to read
1091 */
1092ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1093{
1094	unsigned long flags;
1095	ktime_t rem;
1096
1097	lock_hrtimer_base(timer, &flags);
1098	rem = hrtimer_expires_remaining(timer);
1099	unlock_hrtimer_base(timer, &flags);
1100
1101	return rem;
1102}
1103EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1104
1105#ifdef CONFIG_NO_HZ
1106/**
1107 * hrtimer_get_next_event - get the time until next expiry event
1108 *
1109 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1110 * is pending.
1111 */
1112ktime_t hrtimer_get_next_event(void)
1113{
1114	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1115	struct hrtimer_clock_base *base = cpu_base->clock_base;
1116	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1117	unsigned long flags;
1118	int i;
1119
1120	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1121
1122	if (!hrtimer_hres_active()) {
1123		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1124			struct hrtimer *timer;
1125
1126			if (!base->first)
1127				continue;
1128
1129			timer = rb_entry(base->first, struct hrtimer, node);
1130			delta.tv64 = hrtimer_get_expires_tv64(timer);
1131			delta = ktime_sub(delta, base->get_time());
1132			if (delta.tv64 < mindelta.tv64)
1133				mindelta.tv64 = delta.tv64;
1134		}
1135	}
1136
1137	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1138
1139	if (mindelta.tv64 < 0)
1140		mindelta.tv64 = 0;
1141	return mindelta;
1142}
1143#endif
1144
1145static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1146			   enum hrtimer_mode mode)
1147{
1148	struct hrtimer_cpu_base *cpu_base;
1149
1150	memset(timer, 0, sizeof(struct hrtimer));
1151
1152	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1153
1154	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1155		clock_id = CLOCK_MONOTONIC;
1156
1157	timer->base = &cpu_base->clock_base[clock_id];
1158	hrtimer_init_timer_hres(timer);
1159
1160#ifdef CONFIG_TIMER_STATS
1161	timer->start_site = NULL;
1162	timer->start_pid = -1;
1163	memset(timer->start_comm, 0, TASK_COMM_LEN);
1164#endif
1165}
1166
1167/**
1168 * hrtimer_init - initialize a timer to the given clock
1169 * @timer:	the timer to be initialized
1170 * @clock_id:	the clock to be used
1171 * @mode:	timer mode abs/rel
1172 */
1173void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1174		  enum hrtimer_mode mode)
1175{
1176	debug_init(timer, clock_id, mode);
1177	__hrtimer_init(timer, clock_id, mode);
1178}
1179EXPORT_SYMBOL_GPL(hrtimer_init);
1180
1181/**
1182 * hrtimer_get_res - get the timer resolution for a clock
1183 * @which_clock: which clock to query
1184 * @tp:		 pointer to timespec variable to store the resolution
1185 *
1186 * Store the resolution of the clock selected by @which_clock in the
1187 * variable pointed to by @tp.
1188 */
1189int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1190{
1191	struct hrtimer_cpu_base *cpu_base;
1192
1193	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1194	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1195
1196	return 0;
1197}
1198EXPORT_SYMBOL_GPL(hrtimer_get_res);
1199
1200static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1201{
1202	struct hrtimer_clock_base *base = timer->base;
1203	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1204	enum hrtimer_restart (*fn)(struct hrtimer *);
1205	int restart;
1206
1207	WARN_ON(!irqs_disabled());
1208
1209	debug_deactivate(timer);
1210	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1211	timer_stats_account_hrtimer(timer);
1212	fn = timer->function;
1213
1214	/*
1215	 * Because we run timers from hardirq context, there is no chance
1216	 * they get migrated to another cpu, therefore its safe to unlock
1217	 * the timer base.
1218	 */
1219	raw_spin_unlock(&cpu_base->lock);
1220	trace_hrtimer_expire_entry(timer, now);
1221	restart = fn(timer);
1222	trace_hrtimer_expire_exit(timer);
1223	raw_spin_lock(&cpu_base->lock);
1224
1225	/*
1226	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1227	 * we do not reprogramm the event hardware. Happens either in
1228	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229	 */
1230	if (restart != HRTIMER_NORESTART) {
1231		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1232		enqueue_hrtimer(timer, base);
1233	}
1234
1235	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1236
1237	timer->state &= ~HRTIMER_STATE_CALLBACK;
1238}
1239
1240#ifdef CONFIG_HIGH_RES_TIMERS
1241
1242/*
1243 * High resolution timer interrupt
1244 * Called with interrupts disabled
1245 */
1246void hrtimer_interrupt(struct clock_event_device *dev)
1247{
1248	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1249	struct hrtimer_clock_base *base;
1250	ktime_t expires_next, now, entry_time, delta;
1251	int i, retries = 0;
1252
1253	BUG_ON(!cpu_base->hres_active);
1254	cpu_base->nr_events++;
1255	dev->next_event.tv64 = KTIME_MAX;
1256
1257	entry_time = now = ktime_get();
1258retry:
1259	expires_next.tv64 = KTIME_MAX;
1260
1261	raw_spin_lock(&cpu_base->lock);
1262	/*
1263	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1264	 * held to prevent that a timer is enqueued in our queue via
1265	 * the migration code. This does not affect enqueueing of
1266	 * timers which run their callback and need to be requeued on
1267	 * this CPU.
1268	 */
1269	cpu_base->expires_next.tv64 = KTIME_MAX;
1270
1271	base = cpu_base->clock_base;
1272
1273	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1274		ktime_t basenow;
1275		struct rb_node *node;
1276
1277		basenow = ktime_add(now, base->offset);
1278
1279		while ((node = base->first)) {
1280			struct hrtimer *timer;
1281
1282			timer = rb_entry(node, struct hrtimer, node);
1283
1284			/*
1285			 * The immediate goal for using the softexpires is
1286			 * minimizing wakeups, not running timers at the
1287			 * earliest interrupt after their soft expiration.
1288			 * This allows us to avoid using a Priority Search
1289			 * Tree, which can answer a stabbing querry for
1290			 * overlapping intervals and instead use the simple
1291			 * BST we already have.
1292			 * We don't add extra wakeups by delaying timers that
1293			 * are right-of a not yet expired timer, because that
1294			 * timer will have to trigger a wakeup anyway.
1295			 */
1296
1297			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1298				ktime_t expires;
1299
1300				expires = ktime_sub(hrtimer_get_expires(timer),
1301						    base->offset);
1302				if (expires.tv64 < expires_next.tv64)
1303					expires_next = expires;
1304				break;
1305			}
1306
1307			__run_hrtimer(timer, &basenow);
1308		}
1309		base++;
1310	}
1311
1312	/*
1313	 * Store the new expiry value so the migration code can verify
1314	 * against it.
1315	 */
1316	cpu_base->expires_next = expires_next;
1317	raw_spin_unlock(&cpu_base->lock);
1318
1319	/* Reprogramming necessary ? */
1320	if (expires_next.tv64 == KTIME_MAX ||
1321	    !tick_program_event(expires_next, 0)) {
1322		cpu_base->hang_detected = 0;
1323		return;
1324	}
1325
1326	/*
1327	 * The next timer was already expired due to:
1328	 * - tracing
1329	 * - long lasting callbacks
1330	 * - being scheduled away when running in a VM
1331	 *
1332	 * We need to prevent that we loop forever in the hrtimer
1333	 * interrupt routine. We give it 3 attempts to avoid
1334	 * overreacting on some spurious event.
1335	 */
1336	now = ktime_get();
1337	cpu_base->nr_retries++;
1338	if (++retries < 3)
1339		goto retry;
1340	/*
1341	 * Give the system a chance to do something else than looping
1342	 * here. We stored the entry time, so we know exactly how long
1343	 * we spent here. We schedule the next event this amount of
1344	 * time away.
1345	 */
1346	cpu_base->nr_hangs++;
1347	cpu_base->hang_detected = 1;
1348	delta = ktime_sub(now, entry_time);
1349	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1350		cpu_base->max_hang_time = delta;
1351	/*
1352	 * Limit it to a sensible value as we enforce a longer
1353	 * delay. Give the CPU at least 100ms to catch up.
1354	 */
1355	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1356		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1357	else
1358		expires_next = ktime_add(now, delta);
1359	tick_program_event(expires_next, 1);
1360	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1361		    ktime_to_ns(delta));
1362}
1363
1364/*
1365 * local version of hrtimer_peek_ahead_timers() called with interrupts
1366 * disabled.
1367 */
1368static void __hrtimer_peek_ahead_timers(void)
1369{
1370	struct tick_device *td;
1371
1372	if (!hrtimer_hres_active())
1373		return;
1374
1375	td = &__get_cpu_var(tick_cpu_device);
1376	if (td && td->evtdev)
1377		hrtimer_interrupt(td->evtdev);
1378}
1379
1380/**
1381 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1382 *
1383 * hrtimer_peek_ahead_timers will peek at the timer queue of
1384 * the current cpu and check if there are any timers for which
1385 * the soft expires time has passed. If any such timers exist,
1386 * they are run immediately and then removed from the timer queue.
1387 *
1388 */
1389void hrtimer_peek_ahead_timers(void)
1390{
1391	unsigned long flags;
1392
1393	local_irq_save(flags);
1394	__hrtimer_peek_ahead_timers();
1395	local_irq_restore(flags);
1396}
1397
1398static void run_hrtimer_softirq(struct softirq_action *h)
1399{
1400	hrtimer_peek_ahead_timers();
1401}
1402
1403#else /* CONFIG_HIGH_RES_TIMERS */
1404
1405static inline void __hrtimer_peek_ahead_timers(void) { }
1406
1407#endif	/* !CONFIG_HIGH_RES_TIMERS */
1408
1409/*
1410 * Called from timer softirq every jiffy, expire hrtimers:
1411 *
1412 * For HRT its the fall back code to run the softirq in the timer
1413 * softirq context in case the hrtimer initialization failed or has
1414 * not been done yet.
1415 */
1416void hrtimer_run_pending(void)
1417{
1418	if (hrtimer_hres_active())
1419		return;
1420
1421	/*
1422	 * This _is_ ugly: We have to check in the softirq context,
1423	 * whether we can switch to highres and / or nohz mode. The
1424	 * clocksource switch happens in the timer interrupt with
1425	 * xtime_lock held. Notification from there only sets the
1426	 * check bit in the tick_oneshot code, otherwise we might
1427	 * deadlock vs. xtime_lock.
1428	 */
1429	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1430		hrtimer_switch_to_hres();
1431}
1432
1433/*
1434 * Called from hardirq context every jiffy
1435 */
1436void hrtimer_run_queues(void)
1437{
1438	struct rb_node *node;
1439	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1440	struct hrtimer_clock_base *base;
1441	int index, gettime = 1;
1442
1443	if (hrtimer_hres_active())
1444		return;
1445
1446	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1447		base = &cpu_base->clock_base[index];
1448
1449		if (!base->first)
1450			continue;
1451
1452		if (gettime) {
1453			hrtimer_get_softirq_time(cpu_base);
1454			gettime = 0;
1455		}
1456
1457		raw_spin_lock(&cpu_base->lock);
1458
1459		while ((node = base->first)) {
1460			struct hrtimer *timer;
1461
1462			timer = rb_entry(node, struct hrtimer, node);
1463			if (base->softirq_time.tv64 <=
1464					hrtimer_get_expires_tv64(timer))
1465				break;
1466
1467			__run_hrtimer(timer, &base->softirq_time);
1468		}
1469		raw_spin_unlock(&cpu_base->lock);
1470	}
1471}
1472
1473/*
1474 * Sleep related functions:
1475 */
1476static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1477{
1478	struct hrtimer_sleeper *t =
1479		container_of(timer, struct hrtimer_sleeper, timer);
1480	struct task_struct *task = t->task;
1481
1482	t->task = NULL;
1483	if (task)
1484		wake_up_process(task);
1485
1486	return HRTIMER_NORESTART;
1487}
1488
1489void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1490{
1491	sl->timer.function = hrtimer_wakeup;
1492	sl->task = task;
1493}
1494EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1495
1496static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1497{
1498	hrtimer_init_sleeper(t, current);
1499
1500	do {
1501		set_current_state(TASK_INTERRUPTIBLE);
1502		hrtimer_start_expires(&t->timer, mode);
1503		if (!hrtimer_active(&t->timer))
1504			t->task = NULL;
1505
1506		if (likely(t->task))
1507			schedule();
1508
1509		hrtimer_cancel(&t->timer);
1510		mode = HRTIMER_MODE_ABS;
1511
1512	} while (t->task && !signal_pending(current));
1513
1514	__set_current_state(TASK_RUNNING);
1515
1516	return t->task == NULL;
1517}
1518
1519static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1520{
1521	struct timespec rmt;
1522	ktime_t rem;
1523
1524	rem = hrtimer_expires_remaining(timer);
1525	if (rem.tv64 <= 0)
1526		return 0;
1527	rmt = ktime_to_timespec(rem);
1528
1529	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1530		return -EFAULT;
1531
1532	return 1;
1533}
1534
1535long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1536{
1537	struct hrtimer_sleeper t;
1538	struct timespec __user  *rmtp;
1539	int ret = 0;
1540
1541	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1542				HRTIMER_MODE_ABS);
1543	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1544
1545	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1546		goto out;
1547
1548	rmtp = restart->nanosleep.rmtp;
1549	if (rmtp) {
1550		ret = update_rmtp(&t.timer, rmtp);
1551		if (ret <= 0)
1552			goto out;
1553	}
1554
1555	/* The other values in restart are already filled in */
1556	ret = -ERESTART_RESTARTBLOCK;
1557out:
1558	destroy_hrtimer_on_stack(&t.timer);
1559	return ret;
1560}
1561
1562long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1563		       const enum hrtimer_mode mode, const clockid_t clockid)
1564{
1565	struct restart_block *restart;
1566	struct hrtimer_sleeper t;
1567	int ret = 0;
1568	unsigned long slack;
1569
1570	slack = current->timer_slack_ns;
1571	if (rt_task(current))
1572		slack = 0;
1573
1574	hrtimer_init_on_stack(&t.timer, clockid, mode);
1575	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1576	if (do_nanosleep(&t, mode))
1577		goto out;
1578
1579	/* Absolute timers do not update the rmtp value and restart: */
1580	if (mode == HRTIMER_MODE_ABS) {
1581		ret = -ERESTARTNOHAND;
1582		goto out;
1583	}
1584
1585	if (rmtp) {
1586		ret = update_rmtp(&t.timer, rmtp);
1587		if (ret <= 0)
1588			goto out;
1589	}
1590
1591	restart = &current_thread_info()->restart_block;
1592	restart->fn = hrtimer_nanosleep_restart;
1593	restart->nanosleep.index = t.timer.base->index;
1594	restart->nanosleep.rmtp = rmtp;
1595	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1596
1597	ret = -ERESTART_RESTARTBLOCK;
1598out:
1599	destroy_hrtimer_on_stack(&t.timer);
1600	return ret;
1601}
1602
1603SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1604		struct timespec __user *, rmtp)
1605{
1606	struct timespec tu;
1607
1608	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1609		return -EFAULT;
1610
1611	if (!timespec_valid(&tu))
1612		return -EINVAL;
1613
1614	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1615}
1616
1617/*
1618 * Functions related to boot-time initialization:
1619 */
1620static void __cpuinit init_hrtimers_cpu(int cpu)
1621{
1622	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1623	int i;
1624
1625	raw_spin_lock_init(&cpu_base->lock);
1626
1627	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1628		cpu_base->clock_base[i].cpu_base = cpu_base;
1629
1630	hrtimer_init_hres(cpu_base);
1631}
1632
1633#ifdef CONFIG_HOTPLUG_CPU
1634
1635static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1636				struct hrtimer_clock_base *new_base)
1637{
1638	struct hrtimer *timer;
1639	struct rb_node *node;
1640
1641	while ((node = rb_first(&old_base->active))) {
1642		timer = rb_entry(node, struct hrtimer, node);
1643		BUG_ON(hrtimer_callback_running(timer));
1644		debug_deactivate(timer);
1645
1646		/*
1647		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1648		 * timer could be seen as !active and just vanish away
1649		 * under us on another CPU
1650		 */
1651		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1652		timer->base = new_base;
1653		/*
1654		 * Enqueue the timers on the new cpu. This does not
1655		 * reprogram the event device in case the timer
1656		 * expires before the earliest on this CPU, but we run
1657		 * hrtimer_interrupt after we migrated everything to
1658		 * sort out already expired timers and reprogram the
1659		 * event device.
1660		 */
1661		enqueue_hrtimer(timer, new_base);
1662
1663		/* Clear the migration state bit */
1664		timer->state &= ~HRTIMER_STATE_MIGRATE;
1665	}
1666}
1667
1668static void migrate_hrtimers(int scpu)
1669{
1670	struct hrtimer_cpu_base *old_base, *new_base;
1671	int i;
1672
1673	BUG_ON(cpu_online(scpu));
1674	tick_cancel_sched_timer(scpu);
1675
1676	local_irq_disable();
1677	old_base = &per_cpu(hrtimer_bases, scpu);
1678	new_base = &__get_cpu_var(hrtimer_bases);
1679	/*
1680	 * The caller is globally serialized and nobody else
1681	 * takes two locks at once, deadlock is not possible.
1682	 */
1683	raw_spin_lock(&new_base->lock);
1684	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1685
1686	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1687		migrate_hrtimer_list(&old_base->clock_base[i],
1688				     &new_base->clock_base[i]);
1689	}
1690
1691	raw_spin_unlock(&old_base->lock);
1692	raw_spin_unlock(&new_base->lock);
1693
1694	/* Check, if we got expired work to do */
1695	__hrtimer_peek_ahead_timers();
1696	local_irq_enable();
1697}
1698
1699#endif /* CONFIG_HOTPLUG_CPU */
1700
1701static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1702					unsigned long action, void *hcpu)
1703{
1704	int scpu = (long)hcpu;
1705
1706	switch (action) {
1707
1708	case CPU_UP_PREPARE:
1709	case CPU_UP_PREPARE_FROZEN:
1710		init_hrtimers_cpu(scpu);
1711		break;
1712
1713#ifdef CONFIG_HOTPLUG_CPU
1714	case CPU_DYING:
1715	case CPU_DYING_FROZEN:
1716		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1717		break;
1718	case CPU_DEAD:
1719	case CPU_DEAD_FROZEN:
1720	{
1721		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1722		migrate_hrtimers(scpu);
1723		break;
1724	}
1725#endif
1726
1727	default:
1728		break;
1729	}
1730
1731	return NOTIFY_OK;
1732}
1733
1734static struct notifier_block __cpuinitdata hrtimers_nb = {
1735	.notifier_call = hrtimer_cpu_notify,
1736};
1737
1738void __init hrtimers_init(void)
1739{
1740	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1741			  (void *)(long)smp_processor_id());
1742	register_cpu_notifier(&hrtimers_nb);
1743#ifdef CONFIG_HIGH_RES_TIMERS
1744	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1745#endif
1746}
1747
1748/**
1749 * schedule_hrtimeout_range_clock - sleep until timeout
1750 * @expires:	timeout value (ktime_t)
1751 * @delta:	slack in expires timeout (ktime_t)
1752 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1753 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1754 */
1755int __sched
1756schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1757			       const enum hrtimer_mode mode, int clock)
1758{
1759	struct hrtimer_sleeper t;
1760
1761	/*
1762	 * Optimize when a zero timeout value is given. It does not
1763	 * matter whether this is an absolute or a relative time.
1764	 */
1765	if (expires && !expires->tv64) {
1766		__set_current_state(TASK_RUNNING);
1767		return 0;
1768	}
1769
1770	/*
1771	 * A NULL parameter means "inifinte"
1772	 */
1773	if (!expires) {
1774		schedule();
1775		__set_current_state(TASK_RUNNING);
1776		return -EINTR;
1777	}
1778
1779	hrtimer_init_on_stack(&t.timer, clock, mode);
1780	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1781
1782	hrtimer_init_sleeper(&t, current);
1783
1784	hrtimer_start_expires(&t.timer, mode);
1785	if (!hrtimer_active(&t.timer))
1786		t.task = NULL;
1787
1788	if (likely(t.task))
1789		schedule();
1790
1791	hrtimer_cancel(&t.timer);
1792	destroy_hrtimer_on_stack(&t.timer);
1793
1794	__set_current_state(TASK_RUNNING);
1795
1796	return !t.task ? 0 : -EINTR;
1797}
1798
1799/**
1800 * schedule_hrtimeout_range - sleep until timeout
1801 * @expires:	timeout value (ktime_t)
1802 * @delta:	slack in expires timeout (ktime_t)
1803 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1804 *
1805 * Make the current task sleep until the given expiry time has
1806 * elapsed. The routine will return immediately unless
1807 * the current task state has been set (see set_current_state()).
1808 *
1809 * The @delta argument gives the kernel the freedom to schedule the
1810 * actual wakeup to a time that is both power and performance friendly.
1811 * The kernel give the normal best effort behavior for "@expires+@delta",
1812 * but may decide to fire the timer earlier, but no earlier than @expires.
1813 *
1814 * You can set the task state as follows -
1815 *
1816 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1817 * pass before the routine returns.
1818 *
1819 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1820 * delivered to the current task.
1821 *
1822 * The current task state is guaranteed to be TASK_RUNNING when this
1823 * routine returns.
1824 *
1825 * Returns 0 when the timer has expired otherwise -EINTR
1826 */
1827int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1828				     const enum hrtimer_mode mode)
1829{
1830	return schedule_hrtimeout_range_clock(expires, delta, mode,
1831					      CLOCK_MONOTONIC);
1832}
1833EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1834
1835/**
1836 * schedule_hrtimeout - sleep until timeout
1837 * @expires:	timeout value (ktime_t)
1838 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1839 *
1840 * Make the current task sleep until the given expiry time has
1841 * elapsed. The routine will return immediately unless
1842 * the current task state has been set (see set_current_state()).
1843 *
1844 * You can set the task state as follows -
1845 *
1846 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1847 * pass before the routine returns.
1848 *
1849 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1850 * delivered to the current task.
1851 *
1852 * The current task state is guaranteed to be TASK_RUNNING when this
1853 * routine returns.
1854 *
1855 * Returns 0 when the timer has expired otherwise -EINTR
1856 */
1857int __sched schedule_hrtimeout(ktime_t *expires,
1858			       const enum hrtimer_mode mode)
1859{
1860	return schedule_hrtimeout_range(expires, 0, mode);
1861}
1862EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1863