• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/include/linux/
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
14#include <linux/bitops.h>
15#include <linux/hardirq.h> /* for in_interrupt() */
16#include <linux/hugetlb_inline.h>
17
18/*
19 * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22enum mapping_flags {
23	AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */
24	AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */
25	AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */
26	AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */
27};
28
29static inline void mapping_set_error(struct address_space *mapping, int error)
30{
31	if (unlikely(error)) {
32		if (error == -ENOSPC)
33			set_bit(AS_ENOSPC, &mapping->flags);
34		else
35			set_bit(AS_EIO, &mapping->flags);
36	}
37}
38
39static inline void mapping_set_unevictable(struct address_space *mapping)
40{
41	set_bit(AS_UNEVICTABLE, &mapping->flags);
42}
43
44static inline void mapping_clear_unevictable(struct address_space *mapping)
45{
46	clear_bit(AS_UNEVICTABLE, &mapping->flags);
47}
48
49static inline int mapping_unevictable(struct address_space *mapping)
50{
51	if (likely(mapping))
52		return test_bit(AS_UNEVICTABLE, &mapping->flags);
53	return !!mapping;
54}
55
56static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
57{
58	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
59}
60
61/*
62 * This is non-atomic.  Only to be used before the mapping is activated.
63 * Probably needs a barrier...
64 */
65static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
66{
67	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
68				(__force unsigned long)mask;
69}
70
71/*
72 * The page cache can done in larger chunks than
73 * one page, because it allows for more efficient
74 * throughput (it can then be mapped into user
75 * space in smaller chunks for same flexibility).
76 *
77 * Or rather, it _will_ be done in larger chunks.
78 */
79#define PAGE_CACHE_SHIFT	PAGE_SHIFT
80#define PAGE_CACHE_SIZE		PAGE_SIZE
81#define PAGE_CACHE_MASK		PAGE_MASK
82#define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
83
84#define page_cache_get(page)		get_page(page)
85#define page_cache_release(page)	put_page(page)
86void release_pages(struct page **pages, int nr, int cold);
87
88/*
89 * speculatively take a reference to a page.
90 * If the page is free (_count == 0), then _count is untouched, and 0
91 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
92 *
93 * This function must be called inside the same rcu_read_lock() section as has
94 * been used to lookup the page in the pagecache radix-tree (or page table):
95 * this allows allocators to use a synchronize_rcu() to stabilize _count.
96 *
97 * Unless an RCU grace period has passed, the count of all pages coming out
98 * of the allocator must be considered unstable. page_count may return higher
99 * than expected, and put_page must be able to do the right thing when the
100 * page has been finished with, no matter what it is subsequently allocated
101 * for (because put_page is what is used here to drop an invalid speculative
102 * reference).
103 *
104 * This is the interesting part of the lockless pagecache (and lockless
105 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
106 * has the following pattern:
107 * 1. find page in radix tree
108 * 2. conditionally increment refcount
109 * 3. check the page is still in pagecache (if no, goto 1)
110 *
111 * Remove-side that cares about stability of _count (eg. reclaim) has the
112 * following (with tree_lock held for write):
113 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
114 * B. remove page from pagecache
115 * C. free the page
116 *
117 * There are 2 critical interleavings that matter:
118 * - 2 runs before A: in this case, A sees elevated refcount and bails out
119 * - A runs before 2: in this case, 2 sees zero refcount and retries;
120 *   subsequently, B will complete and 1 will find no page, causing the
121 *   lookup to return NULL.
122 *
123 * It is possible that between 1 and 2, the page is removed then the exact same
124 * page is inserted into the same position in pagecache. That's OK: the
125 * old find_get_page using tree_lock could equally have run before or after
126 * such a re-insertion, depending on order that locks are granted.
127 *
128 * Lookups racing against pagecache insertion isn't a big problem: either 1
129 * will find the page or it will not. Likewise, the old find_get_page could run
130 * either before the insertion or afterwards, depending on timing.
131 */
132static inline int page_cache_get_speculative(struct page *page)
133{
134	VM_BUG_ON(in_interrupt());
135
136#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
137# ifdef CONFIG_PREEMPT
138	VM_BUG_ON(!in_atomic());
139# endif
140	/*
141	 * Preempt must be disabled here - we rely on rcu_read_lock doing
142	 * this for us.
143	 *
144	 * Pagecache won't be truncated from interrupt context, so if we have
145	 * found a page in the radix tree here, we have pinned its refcount by
146	 * disabling preempt, and hence no need for the "speculative get" that
147	 * SMP requires.
148	 */
149	VM_BUG_ON(page_count(page) == 0);
150	atomic_inc(&page->_count);
151
152#else
153	if (unlikely(!get_page_unless_zero(page))) {
154		/*
155		 * Either the page has been freed, or will be freed.
156		 * In either case, retry here and the caller should
157		 * do the right thing (see comments above).
158		 */
159		return 0;
160	}
161#endif
162	VM_BUG_ON(PageTail(page));
163
164	return 1;
165}
166
167/*
168 * Same as above, but add instead of inc (could just be merged)
169 */
170static inline int page_cache_add_speculative(struct page *page, int count)
171{
172	VM_BUG_ON(in_interrupt());
173
174#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
175# ifdef CONFIG_PREEMPT
176	VM_BUG_ON(!in_atomic());
177# endif
178	VM_BUG_ON(page_count(page) == 0);
179	atomic_add(count, &page->_count);
180
181#else
182	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
183		return 0;
184#endif
185	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
186
187	return 1;
188}
189
190static inline int page_freeze_refs(struct page *page, int count)
191{
192	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
193}
194
195static inline void page_unfreeze_refs(struct page *page, int count)
196{
197	VM_BUG_ON(page_count(page) != 0);
198	VM_BUG_ON(count == 0);
199
200	atomic_set(&page->_count, count);
201}
202
203#ifdef CONFIG_NUMA
204extern struct page *__page_cache_alloc(gfp_t gfp);
205#else
206static inline struct page *__page_cache_alloc(gfp_t gfp)
207{
208	return alloc_pages(gfp, 0);
209}
210#endif
211
212static inline struct page *page_cache_alloc(struct address_space *x)
213{
214	return __page_cache_alloc(mapping_gfp_mask(x));
215}
216
217static inline struct page *page_cache_alloc_cold(struct address_space *x)
218{
219	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
220}
221
222typedef int filler_t(void *, struct page *);
223
224extern struct page * find_get_page(struct address_space *mapping,
225				pgoff_t index);
226extern struct page * find_lock_page(struct address_space *mapping,
227				pgoff_t index);
228extern struct page * find_or_create_page(struct address_space *mapping,
229				pgoff_t index, gfp_t gfp_mask);
230unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
231			unsigned int nr_pages, struct page **pages);
232unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
233			       unsigned int nr_pages, struct page **pages);
234unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
235			int tag, unsigned int nr_pages, struct page **pages);
236
237struct page *grab_cache_page_write_begin(struct address_space *mapping,
238			pgoff_t index, unsigned flags);
239
240/*
241 * Returns locked page at given index in given cache, creating it if needed.
242 */
243static inline struct page *grab_cache_page(struct address_space *mapping,
244								pgoff_t index)
245{
246	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
247}
248
249extern struct page * grab_cache_page_nowait(struct address_space *mapping,
250				pgoff_t index);
251extern struct page * read_cache_page_async(struct address_space *mapping,
252				pgoff_t index, filler_t *filler,
253				void *data);
254extern struct page * read_cache_page(struct address_space *mapping,
255				pgoff_t index, filler_t *filler,
256				void *data);
257extern struct page * read_cache_page_gfp(struct address_space *mapping,
258				pgoff_t index, gfp_t gfp_mask);
259extern int read_cache_pages(struct address_space *mapping,
260		struct list_head *pages, filler_t *filler, void *data);
261
262static inline struct page *read_mapping_page_async(
263						struct address_space *mapping,
264						     pgoff_t index, void *data)
265{
266	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
267	return read_cache_page_async(mapping, index, filler, data);
268}
269
270static inline struct page *read_mapping_page(struct address_space *mapping,
271					     pgoff_t index, void *data)
272{
273	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
274	return read_cache_page(mapping, index, filler, data);
275}
276
277/*
278 * Return byte-offset into filesystem object for page.
279 */
280static inline loff_t page_offset(struct page *page)
281{
282	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
283}
284
285extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
286				     unsigned long address);
287
288static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
289					unsigned long address)
290{
291	pgoff_t pgoff;
292	if (unlikely(is_vm_hugetlb_page(vma)))
293		return linear_hugepage_index(vma, address);
294	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
295	pgoff += vma->vm_pgoff;
296	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
297}
298
299extern void __lock_page(struct page *page);
300extern int __lock_page_killable(struct page *page);
301extern void __lock_page_nosync(struct page *page);
302extern void unlock_page(struct page *page);
303
304static inline void __set_page_locked(struct page *page)
305{
306	__set_bit(PG_locked, &page->flags);
307}
308
309static inline void __clear_page_locked(struct page *page)
310{
311	__clear_bit(PG_locked, &page->flags);
312}
313
314static inline int trylock_page(struct page *page)
315{
316	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
317}
318
319/*
320 * lock_page may only be called if we have the page's inode pinned.
321 */
322static inline void lock_page(struct page *page)
323{
324	might_sleep();
325	if (!trylock_page(page))
326		__lock_page(page);
327}
328
329/*
330 * lock_page_killable is like lock_page but can be interrupted by fatal
331 * signals.  It returns 0 if it locked the page and -EINTR if it was
332 * killed while waiting.
333 */
334static inline int lock_page_killable(struct page *page)
335{
336	might_sleep();
337	if (!trylock_page(page))
338		return __lock_page_killable(page);
339	return 0;
340}
341
342/*
343 * lock_page_nosync should only be used if we can't pin the page's inode.
344 * Doesn't play quite so well with block device plugging.
345 */
346static inline void lock_page_nosync(struct page *page)
347{
348	might_sleep();
349	if (!trylock_page(page))
350		__lock_page_nosync(page);
351}
352
353/*
354 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
355 * Never use this directly!
356 */
357extern void wait_on_page_bit(struct page *page, int bit_nr);
358
359/*
360 * Wait for a page to be unlocked.
361 *
362 * This must be called with the caller "holding" the page,
363 * ie with increased "page->count" so that the page won't
364 * go away during the wait..
365 */
366static inline void wait_on_page_locked(struct page *page)
367{
368	if (PageLocked(page))
369		wait_on_page_bit(page, PG_locked);
370}
371
372/*
373 * Wait for a page to complete writeback
374 */
375static inline void wait_on_page_writeback(struct page *page)
376{
377	if (PageWriteback(page))
378		wait_on_page_bit(page, PG_writeback);
379}
380
381extern void end_page_writeback(struct page *page);
382
383/*
384 * Add an arbitrary waiter to a page's wait queue
385 */
386extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
387
388/*
389 * Fault a userspace page into pagetables.  Return non-zero on a fault.
390 *
391 * This assumes that two userspace pages are always sufficient.  That's
392 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
393 */
394static inline int fault_in_pages_writeable(char __user *uaddr, int size)
395{
396	int ret;
397
398	if (unlikely(size == 0))
399		return 0;
400
401	/*
402	 * Writing zeroes into userspace here is OK, because we know that if
403	 * the zero gets there, we'll be overwriting it.
404	 */
405	ret = __put_user(0, uaddr);
406	if (ret == 0) {
407		char __user *end = uaddr + size - 1;
408
409		/*
410		 * If the page was already mapped, this will get a cache miss
411		 * for sure, so try to avoid doing it.
412		 */
413		if (((unsigned long)uaddr & PAGE_MASK) !=
414				((unsigned long)end & PAGE_MASK))
415		 	ret = __put_user(0, end);
416	}
417	return ret;
418}
419
420static inline int fault_in_pages_readable(const char __user *uaddr, int size)
421{
422	volatile char c;
423	int ret;
424
425	if (unlikely(size == 0))
426		return 0;
427
428	ret = __get_user(c, uaddr);
429	if (ret == 0) {
430		const char __user *end = uaddr + size - 1;
431
432		if (((unsigned long)uaddr & PAGE_MASK) !=
433				((unsigned long)end & PAGE_MASK)) {
434		 	ret = __get_user(c, end);
435			(void)c;
436		}
437	}
438	return ret;
439}
440
441int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
442				pgoff_t index, gfp_t gfp_mask);
443int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
444				pgoff_t index, gfp_t gfp_mask);
445extern void remove_from_page_cache(struct page *page);
446extern void __remove_from_page_cache(struct page *page);
447
448/*
449 * Like add_to_page_cache_locked, but used to add newly allocated pages:
450 * the page is new, so we can just run __set_page_locked() against it.
451 */
452static inline int add_to_page_cache(struct page *page,
453		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
454{
455	int error;
456
457	__set_page_locked(page);
458	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
459	if (unlikely(error))
460		__clear_page_locked(page);
461	return error;
462}
463
464#endif /* _LINUX_PAGEMAP_H */
465