1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
34#include "xfs_btree.h"
35#include "xfs_ialloc.h"
36#include "xfs_alloc.h"
37#include "xfs_rtalloc.h"
38#include "xfs_bmap.h"
39#include "xfs_error.h"
40#include "xfs_rw.h"
41#include "xfs_quota.h"
42#include "xfs_fsops.h"
43#include "xfs_utils.h"
44#include "xfs_trace.h"
45
46
47STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
48
49
50#ifdef HAVE_PERCPU_SB
51STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52						int);
53STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54						int);
55STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
56						int64_t, int);
57STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
58
59#else
60
61#define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
62#define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
63#define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
64
65#endif
66
67static const struct {
68	short offset;
69	short type;	/* 0 = integer
70			 * 1 = binary / string (no translation)
71			 */
72} xfs_sb_info[] = {
73    { offsetof(xfs_sb_t, sb_magicnum),   0 },
74    { offsetof(xfs_sb_t, sb_blocksize),  0 },
75    { offsetof(xfs_sb_t, sb_dblocks),    0 },
76    { offsetof(xfs_sb_t, sb_rblocks),    0 },
77    { offsetof(xfs_sb_t, sb_rextents),   0 },
78    { offsetof(xfs_sb_t, sb_uuid),       1 },
79    { offsetof(xfs_sb_t, sb_logstart),   0 },
80    { offsetof(xfs_sb_t, sb_rootino),    0 },
81    { offsetof(xfs_sb_t, sb_rbmino),     0 },
82    { offsetof(xfs_sb_t, sb_rsumino),    0 },
83    { offsetof(xfs_sb_t, sb_rextsize),   0 },
84    { offsetof(xfs_sb_t, sb_agblocks),   0 },
85    { offsetof(xfs_sb_t, sb_agcount),    0 },
86    { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
87    { offsetof(xfs_sb_t, sb_logblocks),  0 },
88    { offsetof(xfs_sb_t, sb_versionnum), 0 },
89    { offsetof(xfs_sb_t, sb_sectsize),   0 },
90    { offsetof(xfs_sb_t, sb_inodesize),  0 },
91    { offsetof(xfs_sb_t, sb_inopblock),  0 },
92    { offsetof(xfs_sb_t, sb_fname[0]),   1 },
93    { offsetof(xfs_sb_t, sb_blocklog),   0 },
94    { offsetof(xfs_sb_t, sb_sectlog),    0 },
95    { offsetof(xfs_sb_t, sb_inodelog),   0 },
96    { offsetof(xfs_sb_t, sb_inopblog),   0 },
97    { offsetof(xfs_sb_t, sb_agblklog),   0 },
98    { offsetof(xfs_sb_t, sb_rextslog),   0 },
99    { offsetof(xfs_sb_t, sb_inprogress), 0 },
100    { offsetof(xfs_sb_t, sb_imax_pct),   0 },
101    { offsetof(xfs_sb_t, sb_icount),     0 },
102    { offsetof(xfs_sb_t, sb_ifree),      0 },
103    { offsetof(xfs_sb_t, sb_fdblocks),   0 },
104    { offsetof(xfs_sb_t, sb_frextents),  0 },
105    { offsetof(xfs_sb_t, sb_uquotino),   0 },
106    { offsetof(xfs_sb_t, sb_gquotino),   0 },
107    { offsetof(xfs_sb_t, sb_qflags),     0 },
108    { offsetof(xfs_sb_t, sb_flags),      0 },
109    { offsetof(xfs_sb_t, sb_shared_vn),  0 },
110    { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
111    { offsetof(xfs_sb_t, sb_unit),	 0 },
112    { offsetof(xfs_sb_t, sb_width),	 0 },
113    { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
114    { offsetof(xfs_sb_t, sb_logsectlog), 0 },
115    { offsetof(xfs_sb_t, sb_logsectsize),0 },
116    { offsetof(xfs_sb_t, sb_logsunit),	 0 },
117    { offsetof(xfs_sb_t, sb_features2),	 0 },
118    { offsetof(xfs_sb_t, sb_bad_features2), 0 },
119    { sizeof(xfs_sb_t),			 0 }
120};
121
122static DEFINE_MUTEX(xfs_uuid_table_mutex);
123static int xfs_uuid_table_size;
124static uuid_t *xfs_uuid_table;
125
126/*
127 * See if the UUID is unique among mounted XFS filesystems.
128 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
129 */
130STATIC int
131xfs_uuid_mount(
132	struct xfs_mount	*mp)
133{
134	uuid_t			*uuid = &mp->m_sb.sb_uuid;
135	int			hole, i;
136
137	if (mp->m_flags & XFS_MOUNT_NOUUID)
138		return 0;
139
140	if (uuid_is_nil(uuid)) {
141		cmn_err(CE_WARN,
142			"XFS: Filesystem %s has nil UUID - can't mount",
143			mp->m_fsname);
144		return XFS_ERROR(EINVAL);
145	}
146
147	mutex_lock(&xfs_uuid_table_mutex);
148	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
149		if (uuid_is_nil(&xfs_uuid_table[i])) {
150			hole = i;
151			continue;
152		}
153		if (uuid_equal(uuid, &xfs_uuid_table[i]))
154			goto out_duplicate;
155	}
156
157	if (hole < 0) {
158		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
159			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
160			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
161			KM_SLEEP);
162		hole = xfs_uuid_table_size++;
163	}
164	xfs_uuid_table[hole] = *uuid;
165	mutex_unlock(&xfs_uuid_table_mutex);
166
167	return 0;
168
169 out_duplicate:
170	mutex_unlock(&xfs_uuid_table_mutex);
171	cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
172			 mp->m_fsname);
173	return XFS_ERROR(EINVAL);
174}
175
176STATIC void
177xfs_uuid_unmount(
178	struct xfs_mount	*mp)
179{
180	uuid_t			*uuid = &mp->m_sb.sb_uuid;
181	int			i;
182
183	if (mp->m_flags & XFS_MOUNT_NOUUID)
184		return;
185
186	mutex_lock(&xfs_uuid_table_mutex);
187	for (i = 0; i < xfs_uuid_table_size; i++) {
188		if (uuid_is_nil(&xfs_uuid_table[i]))
189			continue;
190		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191			continue;
192		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193		break;
194	}
195	ASSERT(i < xfs_uuid_table_size);
196	mutex_unlock(&xfs_uuid_table_mutex);
197}
198
199
200/*
201 * Reference counting access wrappers to the perag structures.
202 */
203struct xfs_perag *
204xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
205{
206	struct xfs_perag	*pag;
207	int			ref = 0;
208
209	spin_lock(&mp->m_perag_lock);
210	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
211	if (pag) {
212		ASSERT(atomic_read(&pag->pag_ref) >= 0);
213		/* catch leaks in the positive direction during testing */
214		ASSERT(atomic_read(&pag->pag_ref) < 1000);
215		ref = atomic_inc_return(&pag->pag_ref);
216	}
217	spin_unlock(&mp->m_perag_lock);
218	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219	return pag;
220}
221
222void
223xfs_perag_put(struct xfs_perag *pag)
224{
225	int	ref;
226
227	ASSERT(atomic_read(&pag->pag_ref) > 0);
228	ref = atomic_dec_return(&pag->pag_ref);
229	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
230}
231
232/*
233 * Free up the resources associated with a mount structure.  Assume that
234 * the structure was initially zeroed, so we can tell which fields got
235 * initialized.
236 */
237STATIC void
238xfs_free_perag(
239	xfs_mount_t	*mp)
240{
241	xfs_agnumber_t	agno;
242	struct xfs_perag *pag;
243
244	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
245		spin_lock(&mp->m_perag_lock);
246		pag = radix_tree_delete(&mp->m_perag_tree, agno);
247		ASSERT(pag);
248		ASSERT(atomic_read(&pag->pag_ref) == 0);
249		spin_unlock(&mp->m_perag_lock);
250		kmem_free(pag);
251	}
252}
253
254/*
255 * Check size of device based on the (data/realtime) block count.
256 * Note: this check is used by the growfs code as well as mount.
257 */
258int
259xfs_sb_validate_fsb_count(
260	xfs_sb_t	*sbp,
261	__uint64_t	nblocks)
262{
263	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
264	ASSERT(sbp->sb_blocklog >= BBSHIFT);
265
266#if XFS_BIG_BLKNOS         /* Limited by ULONG_MAX of page cache index */
267	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
268		return EFBIG;
269#else                  /* Limited by UINT_MAX of sectors */
270	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
271		return EFBIG;
272#endif
273	return 0;
274}
275
276/*
277 * Check the validity of the SB found.
278 */
279STATIC int
280xfs_mount_validate_sb(
281	xfs_mount_t	*mp,
282	xfs_sb_t	*sbp,
283	int		flags)
284{
285	/*
286	 * If the log device and data device have the
287	 * same device number, the log is internal.
288	 * Consequently, the sb_logstart should be non-zero.  If
289	 * we have a zero sb_logstart in this case, we may be trying to mount
290	 * a volume filesystem in a non-volume manner.
291	 */
292	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
293		xfs_fs_mount_cmn_err(flags, "bad magic number");
294		return XFS_ERROR(EWRONGFS);
295	}
296
297	if (!xfs_sb_good_version(sbp)) {
298		xfs_fs_mount_cmn_err(flags, "bad version");
299		return XFS_ERROR(EWRONGFS);
300	}
301
302	if (unlikely(
303	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
304		xfs_fs_mount_cmn_err(flags,
305			"filesystem is marked as having an external log; "
306			"specify logdev on the\nmount command line.");
307		return XFS_ERROR(EINVAL);
308	}
309
310	if (unlikely(
311	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
312		xfs_fs_mount_cmn_err(flags,
313			"filesystem is marked as having an internal log; "
314			"do not specify logdev on\nthe mount command line.");
315		return XFS_ERROR(EINVAL);
316	}
317
318	/*
319	 * More sanity checking. These were stolen directly from
320	 * xfs_repair.
321	 */
322	if (unlikely(
323	    sbp->sb_agcount <= 0					||
324	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
325	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
326	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
327	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
328	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
329	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
330	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
331	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
332	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
333	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
334	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
335	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
336	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
337	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
338	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
339	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
340	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
341	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
342	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
343		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
344		return XFS_ERROR(EFSCORRUPTED);
345	}
346
347	/*
348	 * Sanity check AG count, size fields against data size field
349	 */
350	if (unlikely(
351	    sbp->sb_dblocks == 0 ||
352	    sbp->sb_dblocks >
353	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
354	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
355			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
356		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
357		return XFS_ERROR(EFSCORRUPTED);
358	}
359
360	/*
361	 * Until this is fixed only page-sized or smaller data blocks work.
362	 */
363	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
364		xfs_fs_mount_cmn_err(flags,
365			"file system with blocksize %d bytes",
366			sbp->sb_blocksize);
367		xfs_fs_mount_cmn_err(flags,
368			"only pagesize (%ld) or less will currently work.",
369			PAGE_SIZE);
370		return XFS_ERROR(ENOSYS);
371	}
372
373	/*
374	 * Currently only very few inode sizes are supported.
375	 */
376	switch (sbp->sb_inodesize) {
377	case 256:
378	case 512:
379	case 1024:
380	case 2048:
381		break;
382	default:
383		xfs_fs_mount_cmn_err(flags,
384			"inode size of %d bytes not supported",
385			sbp->sb_inodesize);
386		return XFS_ERROR(ENOSYS);
387	}
388
389	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
390	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
391		xfs_fs_mount_cmn_err(flags,
392			"file system too large to be mounted on this system.");
393		return XFS_ERROR(EFBIG);
394	}
395
396	if (unlikely(sbp->sb_inprogress)) {
397		xfs_fs_mount_cmn_err(flags, "file system busy");
398		return XFS_ERROR(EFSCORRUPTED);
399	}
400
401	/*
402	 * Version 1 directory format has never worked on Linux.
403	 */
404	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
405		xfs_fs_mount_cmn_err(flags,
406			"file system using version 1 directory format");
407		return XFS_ERROR(ENOSYS);
408	}
409
410	return 0;
411}
412
413int
414xfs_initialize_perag(
415	xfs_mount_t	*mp,
416	xfs_agnumber_t	agcount,
417	xfs_agnumber_t	*maxagi)
418{
419	xfs_agnumber_t	index, max_metadata;
420	xfs_agnumber_t	first_initialised = 0;
421	xfs_perag_t	*pag;
422	xfs_agino_t	agino;
423	xfs_ino_t	ino;
424	xfs_sb_t	*sbp = &mp->m_sb;
425	int		error = -ENOMEM;
426
427	/*
428	 * Walk the current per-ag tree so we don't try to initialise AGs
429	 * that already exist (growfs case). Allocate and insert all the
430	 * AGs we don't find ready for initialisation.
431	 */
432	for (index = 0; index < agcount; index++) {
433		pag = xfs_perag_get(mp, index);
434		if (pag) {
435			xfs_perag_put(pag);
436			continue;
437		}
438		if (!first_initialised)
439			first_initialised = index;
440
441		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
442		if (!pag)
443			goto out_unwind;
444		pag->pag_agno = index;
445		pag->pag_mount = mp;
446		rwlock_init(&pag->pag_ici_lock);
447		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
448
449		if (radix_tree_preload(GFP_NOFS))
450			goto out_unwind;
451
452		spin_lock(&mp->m_perag_lock);
453		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
454			BUG();
455			spin_unlock(&mp->m_perag_lock);
456			radix_tree_preload_end();
457			error = -EEXIST;
458			goto out_unwind;
459		}
460		spin_unlock(&mp->m_perag_lock);
461		radix_tree_preload_end();
462	}
463
464	/*
465	 * If we mount with the inode64 option, or no inode overflows
466	 * the legacy 32-bit address space clear the inode32 option.
467	 */
468	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
469	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
470
471	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
472		mp->m_flags |= XFS_MOUNT_32BITINODES;
473	else
474		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
475
476	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
477		/*
478		 * Calculate how much should be reserved for inodes to meet
479		 * the max inode percentage.
480		 */
481		if (mp->m_maxicount) {
482			__uint64_t	icount;
483
484			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
485			do_div(icount, 100);
486			icount += sbp->sb_agblocks - 1;
487			do_div(icount, sbp->sb_agblocks);
488			max_metadata = icount;
489		} else {
490			max_metadata = agcount;
491		}
492
493		for (index = 0; index < agcount; index++) {
494			ino = XFS_AGINO_TO_INO(mp, index, agino);
495			if (ino > XFS_MAXINUMBER_32) {
496				index++;
497				break;
498			}
499
500			pag = xfs_perag_get(mp, index);
501			pag->pagi_inodeok = 1;
502			if (index < max_metadata)
503				pag->pagf_metadata = 1;
504			xfs_perag_put(pag);
505		}
506	} else {
507		for (index = 0; index < agcount; index++) {
508			pag = xfs_perag_get(mp, index);
509			pag->pagi_inodeok = 1;
510			xfs_perag_put(pag);
511		}
512	}
513
514	if (maxagi)
515		*maxagi = index;
516	return 0;
517
518out_unwind:
519	kmem_free(pag);
520	for (; index > first_initialised; index--) {
521		pag = radix_tree_delete(&mp->m_perag_tree, index);
522		kmem_free(pag);
523	}
524	return error;
525}
526
527void
528xfs_sb_from_disk(
529	xfs_sb_t	*to,
530	xfs_dsb_t	*from)
531{
532	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
533	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
534	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
535	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
536	to->sb_rextents = be64_to_cpu(from->sb_rextents);
537	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
538	to->sb_logstart = be64_to_cpu(from->sb_logstart);
539	to->sb_rootino = be64_to_cpu(from->sb_rootino);
540	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
541	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
542	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
543	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
544	to->sb_agcount = be32_to_cpu(from->sb_agcount);
545	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
546	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
547	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
548	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
549	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
550	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
551	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
552	to->sb_blocklog = from->sb_blocklog;
553	to->sb_sectlog = from->sb_sectlog;
554	to->sb_inodelog = from->sb_inodelog;
555	to->sb_inopblog = from->sb_inopblog;
556	to->sb_agblklog = from->sb_agblklog;
557	to->sb_rextslog = from->sb_rextslog;
558	to->sb_inprogress = from->sb_inprogress;
559	to->sb_imax_pct = from->sb_imax_pct;
560	to->sb_icount = be64_to_cpu(from->sb_icount);
561	to->sb_ifree = be64_to_cpu(from->sb_ifree);
562	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
563	to->sb_frextents = be64_to_cpu(from->sb_frextents);
564	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
565	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
566	to->sb_qflags = be16_to_cpu(from->sb_qflags);
567	to->sb_flags = from->sb_flags;
568	to->sb_shared_vn = from->sb_shared_vn;
569	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
570	to->sb_unit = be32_to_cpu(from->sb_unit);
571	to->sb_width = be32_to_cpu(from->sb_width);
572	to->sb_dirblklog = from->sb_dirblklog;
573	to->sb_logsectlog = from->sb_logsectlog;
574	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
575	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
576	to->sb_features2 = be32_to_cpu(from->sb_features2);
577	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
578}
579
580/*
581 * Copy in core superblock to ondisk one.
582 *
583 * The fields argument is mask of superblock fields to copy.
584 */
585void
586xfs_sb_to_disk(
587	xfs_dsb_t	*to,
588	xfs_sb_t	*from,
589	__int64_t	fields)
590{
591	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
592	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
593	xfs_sb_field_t	f;
594	int		first;
595	int		size;
596
597	ASSERT(fields);
598	if (!fields)
599		return;
600
601	while (fields) {
602		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
603		first = xfs_sb_info[f].offset;
604		size = xfs_sb_info[f + 1].offset - first;
605
606		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
607
608		if (size == 1 || xfs_sb_info[f].type == 1) {
609			memcpy(to_ptr + first, from_ptr + first, size);
610		} else {
611			switch (size) {
612			case 2:
613				*(__be16 *)(to_ptr + first) =
614					cpu_to_be16(*(__u16 *)(from_ptr + first));
615				break;
616			case 4:
617				*(__be32 *)(to_ptr + first) =
618					cpu_to_be32(*(__u32 *)(from_ptr + first));
619				break;
620			case 8:
621				*(__be64 *)(to_ptr + first) =
622					cpu_to_be64(*(__u64 *)(from_ptr + first));
623				break;
624			default:
625				ASSERT(0);
626			}
627		}
628
629		fields &= ~(1LL << f);
630	}
631}
632
633/*
634 * xfs_readsb
635 *
636 * Does the initial read of the superblock.
637 */
638int
639xfs_readsb(xfs_mount_t *mp, int flags)
640{
641	unsigned int	sector_size;
642	unsigned int	extra_flags;
643	xfs_buf_t	*bp;
644	int		error;
645
646	ASSERT(mp->m_sb_bp == NULL);
647	ASSERT(mp->m_ddev_targp != NULL);
648
649	/*
650	 * Allocate a (locked) buffer to hold the superblock.
651	 * This will be kept around at all times to optimize
652	 * access to the superblock.
653	 */
654	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
655	extra_flags = XBF_LOCK | XBF_FS_MANAGED | XBF_MAPPED;
656
657	bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
658			  extra_flags);
659	if (!bp || XFS_BUF_ISERROR(bp)) {
660		xfs_fs_mount_cmn_err(flags, "SB read failed");
661		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
662		goto fail;
663	}
664	ASSERT(XFS_BUF_ISBUSY(bp));
665	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
666
667	/*
668	 * Initialize the mount structure from the superblock.
669	 * But first do some basic consistency checking.
670	 */
671	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
672
673	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
674	if (error) {
675		xfs_fs_mount_cmn_err(flags, "SB validate failed");
676		goto fail;
677	}
678
679	/*
680	 * We must be able to do sector-sized and sector-aligned IO.
681	 */
682	if (sector_size > mp->m_sb.sb_sectsize) {
683		xfs_fs_mount_cmn_err(flags,
684			"device supports only %u byte sectors (not %u)",
685			sector_size, mp->m_sb.sb_sectsize);
686		error = ENOSYS;
687		goto fail;
688	}
689
690	/*
691	 * If device sector size is smaller than the superblock size,
692	 * re-read the superblock so the buffer is correctly sized.
693	 */
694	if (sector_size < mp->m_sb.sb_sectsize) {
695		XFS_BUF_UNMANAGE(bp);
696		xfs_buf_relse(bp);
697		sector_size = mp->m_sb.sb_sectsize;
698		bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
699				  BTOBB(sector_size), extra_flags);
700		if (!bp || XFS_BUF_ISERROR(bp)) {
701			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
702			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
703			goto fail;
704		}
705		ASSERT(XFS_BUF_ISBUSY(bp));
706		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
707	}
708
709	/* Initialize per-cpu counters */
710	xfs_icsb_reinit_counters(mp);
711
712	mp->m_sb_bp = bp;
713	xfs_buf_relse(bp);
714	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
715	return 0;
716
717 fail:
718	if (bp) {
719		XFS_BUF_UNMANAGE(bp);
720		xfs_buf_relse(bp);
721	}
722	return error;
723}
724
725
726/*
727 * xfs_mount_common
728 *
729 * Mount initialization code establishing various mount
730 * fields from the superblock associated with the given
731 * mount structure
732 */
733STATIC void
734xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
735{
736	mp->m_agfrotor = mp->m_agirotor = 0;
737	spin_lock_init(&mp->m_agirotor_lock);
738	mp->m_maxagi = mp->m_sb.sb_agcount;
739	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
740	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
741	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
742	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
743	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
744	mp->m_blockmask = sbp->sb_blocksize - 1;
745	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
746	mp->m_blockwmask = mp->m_blockwsize - 1;
747
748	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
749	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
750	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
751	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
752
753	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
754	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
755	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
756	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
757
758	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
759	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
760	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
761	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
762
763	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
764	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
765					sbp->sb_inopblock);
766	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
767}
768
769/*
770 * xfs_initialize_perag_data
771 *
772 * Read in each per-ag structure so we can count up the number of
773 * allocated inodes, free inodes and used filesystem blocks as this
774 * information is no longer persistent in the superblock. Once we have
775 * this information, write it into the in-core superblock structure.
776 */
777STATIC int
778xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
779{
780	xfs_agnumber_t	index;
781	xfs_perag_t	*pag;
782	xfs_sb_t	*sbp = &mp->m_sb;
783	uint64_t	ifree = 0;
784	uint64_t	ialloc = 0;
785	uint64_t	bfree = 0;
786	uint64_t	bfreelst = 0;
787	uint64_t	btree = 0;
788	int		error;
789
790	for (index = 0; index < agcount; index++) {
791		/*
792		 * read the agf, then the agi. This gets us
793		 * all the information we need and populates the
794		 * per-ag structures for us.
795		 */
796		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
797		if (error)
798			return error;
799
800		error = xfs_ialloc_pagi_init(mp, NULL, index);
801		if (error)
802			return error;
803		pag = xfs_perag_get(mp, index);
804		ifree += pag->pagi_freecount;
805		ialloc += pag->pagi_count;
806		bfree += pag->pagf_freeblks;
807		bfreelst += pag->pagf_flcount;
808		btree += pag->pagf_btreeblks;
809		xfs_perag_put(pag);
810	}
811	/*
812	 * Overwrite incore superblock counters with just-read data
813	 */
814	spin_lock(&mp->m_sb_lock);
815	sbp->sb_ifree = ifree;
816	sbp->sb_icount = ialloc;
817	sbp->sb_fdblocks = bfree + bfreelst + btree;
818	spin_unlock(&mp->m_sb_lock);
819
820	/* Fixup the per-cpu counters as well. */
821	xfs_icsb_reinit_counters(mp);
822
823	return 0;
824}
825
826/*
827 * Update alignment values based on mount options and sb values
828 */
829STATIC int
830xfs_update_alignment(xfs_mount_t *mp)
831{
832	xfs_sb_t	*sbp = &(mp->m_sb);
833
834	if (mp->m_dalign) {
835		/*
836		 * If stripe unit and stripe width are not multiples
837		 * of the fs blocksize turn off alignment.
838		 */
839		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
840		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
841			if (mp->m_flags & XFS_MOUNT_RETERR) {
842				cmn_err(CE_WARN,
843					"XFS: alignment check 1 failed");
844				return XFS_ERROR(EINVAL);
845			}
846			mp->m_dalign = mp->m_swidth = 0;
847		} else {
848			/*
849			 * Convert the stripe unit and width to FSBs.
850			 */
851			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
852			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
853				if (mp->m_flags & XFS_MOUNT_RETERR) {
854					return XFS_ERROR(EINVAL);
855				}
856				xfs_fs_cmn_err(CE_WARN, mp,
857"stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
858					mp->m_dalign, mp->m_swidth,
859					sbp->sb_agblocks);
860
861				mp->m_dalign = 0;
862				mp->m_swidth = 0;
863			} else if (mp->m_dalign) {
864				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
865			} else {
866				if (mp->m_flags & XFS_MOUNT_RETERR) {
867					xfs_fs_cmn_err(CE_WARN, mp,
868"stripe alignment turned off: sunit(%d) less than bsize(%d)",
869                                        	mp->m_dalign,
870						mp->m_blockmask +1);
871					return XFS_ERROR(EINVAL);
872				}
873				mp->m_swidth = 0;
874			}
875		}
876
877		/*
878		 * Update superblock with new values
879		 * and log changes
880		 */
881		if (xfs_sb_version_hasdalign(sbp)) {
882			if (sbp->sb_unit != mp->m_dalign) {
883				sbp->sb_unit = mp->m_dalign;
884				mp->m_update_flags |= XFS_SB_UNIT;
885			}
886			if (sbp->sb_width != mp->m_swidth) {
887				sbp->sb_width = mp->m_swidth;
888				mp->m_update_flags |= XFS_SB_WIDTH;
889			}
890		}
891	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
892		    xfs_sb_version_hasdalign(&mp->m_sb)) {
893			mp->m_dalign = sbp->sb_unit;
894			mp->m_swidth = sbp->sb_width;
895	}
896
897	return 0;
898}
899
900/*
901 * Set the maximum inode count for this filesystem
902 */
903STATIC void
904xfs_set_maxicount(xfs_mount_t *mp)
905{
906	xfs_sb_t	*sbp = &(mp->m_sb);
907	__uint64_t	icount;
908
909	if (sbp->sb_imax_pct) {
910		/*
911		 * Make sure the maximum inode count is a multiple
912		 * of the units we allocate inodes in.
913		 */
914		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
915		do_div(icount, 100);
916		do_div(icount, mp->m_ialloc_blks);
917		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
918				   sbp->sb_inopblog;
919	} else {
920		mp->m_maxicount = 0;
921	}
922}
923
924/*
925 * Set the default minimum read and write sizes unless
926 * already specified in a mount option.
927 * We use smaller I/O sizes when the file system
928 * is being used for NFS service (wsync mount option).
929 */
930STATIC void
931xfs_set_rw_sizes(xfs_mount_t *mp)
932{
933	xfs_sb_t	*sbp = &(mp->m_sb);
934	int		readio_log, writeio_log;
935
936	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
937		if (mp->m_flags & XFS_MOUNT_WSYNC) {
938			readio_log = XFS_WSYNC_READIO_LOG;
939			writeio_log = XFS_WSYNC_WRITEIO_LOG;
940		} else {
941			readio_log = XFS_READIO_LOG_LARGE;
942			writeio_log = XFS_WRITEIO_LOG_LARGE;
943		}
944	} else {
945		readio_log = mp->m_readio_log;
946		writeio_log = mp->m_writeio_log;
947	}
948
949	if (sbp->sb_blocklog > readio_log) {
950		mp->m_readio_log = sbp->sb_blocklog;
951	} else {
952		mp->m_readio_log = readio_log;
953	}
954	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
955	if (sbp->sb_blocklog > writeio_log) {
956		mp->m_writeio_log = sbp->sb_blocklog;
957	} else {
958		mp->m_writeio_log = writeio_log;
959	}
960	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
961}
962
963/*
964 * Set whether we're using inode alignment.
965 */
966STATIC void
967xfs_set_inoalignment(xfs_mount_t *mp)
968{
969	if (xfs_sb_version_hasalign(&mp->m_sb) &&
970	    mp->m_sb.sb_inoalignmt >=
971	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
972		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
973	else
974		mp->m_inoalign_mask = 0;
975	/*
976	 * If we are using stripe alignment, check whether
977	 * the stripe unit is a multiple of the inode alignment
978	 */
979	if (mp->m_dalign && mp->m_inoalign_mask &&
980	    !(mp->m_dalign & mp->m_inoalign_mask))
981		mp->m_sinoalign = mp->m_dalign;
982	else
983		mp->m_sinoalign = 0;
984}
985
986/*
987 * Check that the data (and log if separate) are an ok size.
988 */
989STATIC int
990xfs_check_sizes(xfs_mount_t *mp)
991{
992	xfs_buf_t	*bp;
993	xfs_daddr_t	d;
994	int		error;
995
996	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
997	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
998		cmn_err(CE_WARN, "XFS: size check 1 failed");
999		return XFS_ERROR(EFBIG);
1000	}
1001	error = xfs_read_buf(mp, mp->m_ddev_targp,
1002			     d - XFS_FSS_TO_BB(mp, 1),
1003			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
1004	if (!error) {
1005		xfs_buf_relse(bp);
1006	} else {
1007		cmn_err(CE_WARN, "XFS: size check 2 failed");
1008		if (error == ENOSPC)
1009			error = XFS_ERROR(EFBIG);
1010		return error;
1011	}
1012
1013	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1014		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1015		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1016			cmn_err(CE_WARN, "XFS: size check 3 failed");
1017			return XFS_ERROR(EFBIG);
1018		}
1019		error = xfs_read_buf(mp, mp->m_logdev_targp,
1020				     d - XFS_FSB_TO_BB(mp, 1),
1021				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
1022		if (!error) {
1023			xfs_buf_relse(bp);
1024		} else {
1025			cmn_err(CE_WARN, "XFS: size check 3 failed");
1026			if (error == ENOSPC)
1027				error = XFS_ERROR(EFBIG);
1028			return error;
1029		}
1030	}
1031	return 0;
1032}
1033
1034/*
1035 * Clear the quotaflags in memory and in the superblock.
1036 */
1037int
1038xfs_mount_reset_sbqflags(
1039	struct xfs_mount	*mp)
1040{
1041	int			error;
1042	struct xfs_trans	*tp;
1043
1044	mp->m_qflags = 0;
1045
1046	/*
1047	 * It is OK to look at sb_qflags here in mount path,
1048	 * without m_sb_lock.
1049	 */
1050	if (mp->m_sb.sb_qflags == 0)
1051		return 0;
1052	spin_lock(&mp->m_sb_lock);
1053	mp->m_sb.sb_qflags = 0;
1054	spin_unlock(&mp->m_sb_lock);
1055
1056	/*
1057	 * If the fs is readonly, let the incore superblock run
1058	 * with quotas off but don't flush the update out to disk
1059	 */
1060	if (mp->m_flags & XFS_MOUNT_RDONLY)
1061		return 0;
1062
1063#ifdef QUOTADEBUG
1064	xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1065#endif
1066
1067	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1068	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1069				      XFS_DEFAULT_LOG_COUNT);
1070	if (error) {
1071		xfs_trans_cancel(tp, 0);
1072		xfs_fs_cmn_err(CE_ALERT, mp,
1073			"xfs_mount_reset_sbqflags: Superblock update failed!");
1074		return error;
1075	}
1076
1077	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1078	return xfs_trans_commit(tp, 0);
1079}
1080
1081__uint64_t
1082xfs_default_resblks(xfs_mount_t *mp)
1083{
1084	__uint64_t resblks;
1085
1086	/*
1087	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1088	 * smaller.  This is intended to cover concurrent allocation
1089	 * transactions when we initially hit enospc. These each require a 4
1090	 * block reservation. Hence by default we cover roughly 2000 concurrent
1091	 * allocation reservations.
1092	 */
1093	resblks = mp->m_sb.sb_dblocks;
1094	do_div(resblks, 20);
1095	resblks = min_t(__uint64_t, resblks, 8192);
1096	return resblks;
1097}
1098
1099/*
1100 * This function does the following on an initial mount of a file system:
1101 *	- reads the superblock from disk and init the mount struct
1102 *	- if we're a 32-bit kernel, do a size check on the superblock
1103 *		so we don't mount terabyte filesystems
1104 *	- init mount struct realtime fields
1105 *	- allocate inode hash table for fs
1106 *	- init directory manager
1107 *	- perform recovery and init the log manager
1108 */
1109int
1110xfs_mountfs(
1111	xfs_mount_t	*mp)
1112{
1113	xfs_sb_t	*sbp = &(mp->m_sb);
1114	xfs_inode_t	*rip;
1115	__uint64_t	resblks;
1116	uint		quotamount = 0;
1117	uint		quotaflags = 0;
1118	int		error = 0;
1119
1120	xfs_mount_common(mp, sbp);
1121
1122	/*
1123	 * Check for a mismatched features2 values.  Older kernels
1124	 * read & wrote into the wrong sb offset for sb_features2
1125	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1126	 * when sb_features2 was added, which made older superblock
1127	 * reading/writing routines swap it as a 64-bit value.
1128	 *
1129	 * For backwards compatibility, we make both slots equal.
1130	 *
1131	 * If we detect a mismatched field, we OR the set bits into the
1132	 * existing features2 field in case it has already been modified; we
1133	 * don't want to lose any features.  We then update the bad location
1134	 * with the ORed value so that older kernels will see any features2
1135	 * flags, and mark the two fields as needing updates once the
1136	 * transaction subsystem is online.
1137	 */
1138	if (xfs_sb_has_mismatched_features2(sbp)) {
1139		cmn_err(CE_WARN,
1140			"XFS: correcting sb_features alignment problem");
1141		sbp->sb_features2 |= sbp->sb_bad_features2;
1142		sbp->sb_bad_features2 = sbp->sb_features2;
1143		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1144
1145		/*
1146		 * Re-check for ATTR2 in case it was found in bad_features2
1147		 * slot.
1148		 */
1149		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1150		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1151			mp->m_flags |= XFS_MOUNT_ATTR2;
1152	}
1153
1154	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1155	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1156		xfs_sb_version_removeattr2(&mp->m_sb);
1157		mp->m_update_flags |= XFS_SB_FEATURES2;
1158
1159		/* update sb_versionnum for the clearing of the morebits */
1160		if (!sbp->sb_features2)
1161			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1162	}
1163
1164	/*
1165	 * Check if sb_agblocks is aligned at stripe boundary
1166	 * If sb_agblocks is NOT aligned turn off m_dalign since
1167	 * allocator alignment is within an ag, therefore ag has
1168	 * to be aligned at stripe boundary.
1169	 */
1170	error = xfs_update_alignment(mp);
1171	if (error)
1172		goto out;
1173
1174	xfs_alloc_compute_maxlevels(mp);
1175	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1176	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1177	xfs_ialloc_compute_maxlevels(mp);
1178
1179	xfs_set_maxicount(mp);
1180
1181	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1182
1183	error = xfs_uuid_mount(mp);
1184	if (error)
1185		goto out;
1186
1187	/*
1188	 * Set the minimum read and write sizes
1189	 */
1190	xfs_set_rw_sizes(mp);
1191
1192	/*
1193	 * Set the inode cluster size.
1194	 * This may still be overridden by the file system
1195	 * block size if it is larger than the chosen cluster size.
1196	 */
1197	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1198
1199	/*
1200	 * Set inode alignment fields
1201	 */
1202	xfs_set_inoalignment(mp);
1203
1204	/*
1205	 * Check that the data (and log if separate) are an ok size.
1206	 */
1207	error = xfs_check_sizes(mp);
1208	if (error)
1209		goto out_remove_uuid;
1210
1211	/*
1212	 * Initialize realtime fields in the mount structure
1213	 */
1214	error = xfs_rtmount_init(mp);
1215	if (error) {
1216		cmn_err(CE_WARN, "XFS: RT mount failed");
1217		goto out_remove_uuid;
1218	}
1219
1220	/*
1221	 *  Copies the low order bits of the timestamp and the randomly
1222	 *  set "sequence" number out of a UUID.
1223	 */
1224	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1225
1226	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1227
1228	xfs_dir_mount(mp);
1229
1230	/*
1231	 * Initialize the attribute manager's entries.
1232	 */
1233	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1234
1235	/*
1236	 * Initialize the precomputed transaction reservations values.
1237	 */
1238	xfs_trans_init(mp);
1239
1240	/*
1241	 * Allocate and initialize the per-ag data.
1242	 */
1243	spin_lock_init(&mp->m_perag_lock);
1244	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1245	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1246	if (error) {
1247		cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1248		goto out_remove_uuid;
1249	}
1250
1251	if (!sbp->sb_logblocks) {
1252		cmn_err(CE_WARN, "XFS: no log defined");
1253		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1254		error = XFS_ERROR(EFSCORRUPTED);
1255		goto out_free_perag;
1256	}
1257
1258	/*
1259	 * log's mount-time initialization. Perform 1st part recovery if needed
1260	 */
1261	error = xfs_log_mount(mp, mp->m_logdev_targp,
1262			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1263			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1264	if (error) {
1265		cmn_err(CE_WARN, "XFS: log mount failed");
1266		goto out_free_perag;
1267	}
1268
1269	/*
1270	 * Now the log is mounted, we know if it was an unclean shutdown or
1271	 * not. If it was, with the first phase of recovery has completed, we
1272	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1273	 * but they are recovered transactionally in the second recovery phase
1274	 * later.
1275	 *
1276	 * Hence we can safely re-initialise incore superblock counters from
1277	 * the per-ag data. These may not be correct if the filesystem was not
1278	 * cleanly unmounted, so we need to wait for recovery to finish before
1279	 * doing this.
1280	 *
1281	 * If the filesystem was cleanly unmounted, then we can trust the
1282	 * values in the superblock to be correct and we don't need to do
1283	 * anything here.
1284	 *
1285	 * If we are currently making the filesystem, the initialisation will
1286	 * fail as the perag data is in an undefined state.
1287	 */
1288	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1289	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1290	     !mp->m_sb.sb_inprogress) {
1291		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1292		if (error)
1293			goto out_free_perag;
1294	}
1295
1296	/*
1297	 * Get and sanity-check the root inode.
1298	 * Save the pointer to it in the mount structure.
1299	 */
1300	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1301	if (error) {
1302		cmn_err(CE_WARN, "XFS: failed to read root inode");
1303		goto out_log_dealloc;
1304	}
1305
1306	ASSERT(rip != NULL);
1307
1308	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1309		cmn_err(CE_WARN, "XFS: corrupted root inode");
1310		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1311			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1312			(unsigned long long)rip->i_ino);
1313		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1314		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1315				 mp);
1316		error = XFS_ERROR(EFSCORRUPTED);
1317		goto out_rele_rip;
1318	}
1319	mp->m_rootip = rip;	/* save it */
1320
1321	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1322
1323	/*
1324	 * Initialize realtime inode pointers in the mount structure
1325	 */
1326	error = xfs_rtmount_inodes(mp);
1327	if (error) {
1328		/*
1329		 * Free up the root inode.
1330		 */
1331		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1332		goto out_rele_rip;
1333	}
1334
1335	/*
1336	 * If this is a read-only mount defer the superblock updates until
1337	 * the next remount into writeable mode.  Otherwise we would never
1338	 * perform the update e.g. for the root filesystem.
1339	 */
1340	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1341		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1342		if (error) {
1343			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1344			goto out_rtunmount;
1345		}
1346	}
1347
1348	/*
1349	 * Initialise the XFS quota management subsystem for this mount
1350	 */
1351	if (XFS_IS_QUOTA_RUNNING(mp)) {
1352		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1353		if (error)
1354			goto out_rtunmount;
1355	} else {
1356		ASSERT(!XFS_IS_QUOTA_ON(mp));
1357
1358		/*
1359		 * If a file system had quotas running earlier, but decided to
1360		 * mount without -o uquota/pquota/gquota options, revoke the
1361		 * quotachecked license.
1362		 */
1363		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1364			cmn_err(CE_NOTE,
1365				"XFS: resetting qflags for filesystem %s",
1366				mp->m_fsname);
1367
1368			error = xfs_mount_reset_sbqflags(mp);
1369			if (error)
1370				return error;
1371		}
1372	}
1373
1374	/*
1375	 * Finish recovering the file system.  This part needed to be
1376	 * delayed until after the root and real-time bitmap inodes
1377	 * were consistently read in.
1378	 */
1379	error = xfs_log_mount_finish(mp);
1380	if (error) {
1381		cmn_err(CE_WARN, "XFS: log mount finish failed");
1382		goto out_rtunmount;
1383	}
1384
1385	/*
1386	 * Complete the quota initialisation, post-log-replay component.
1387	 */
1388	if (quotamount) {
1389		ASSERT(mp->m_qflags == 0);
1390		mp->m_qflags = quotaflags;
1391
1392		xfs_qm_mount_quotas(mp);
1393	}
1394
1395	/*
1396	 * Now we are mounted, reserve a small amount of unused space for
1397	 * privileged transactions. This is needed so that transaction
1398	 * space required for critical operations can dip into this pool
1399	 * when at ENOSPC. This is needed for operations like create with
1400	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1401	 * are not allowed to use this reserved space.
1402	 *
1403	 * This may drive us straight to ENOSPC on mount, but that implies
1404	 * we were already there on the last unmount. Warn if this occurs.
1405	 */
1406	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1407		resblks = xfs_default_resblks(mp);
1408		error = xfs_reserve_blocks(mp, &resblks, NULL);
1409		if (error)
1410			cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1411				"blocks. Continuing without a reserve pool.");
1412	}
1413
1414	return 0;
1415
1416 out_rtunmount:
1417	xfs_rtunmount_inodes(mp);
1418 out_rele_rip:
1419	IRELE(rip);
1420 out_log_dealloc:
1421	xfs_log_unmount(mp);
1422 out_free_perag:
1423	xfs_free_perag(mp);
1424 out_remove_uuid:
1425	xfs_uuid_unmount(mp);
1426 out:
1427	return error;
1428}
1429
1430/*
1431 * This flushes out the inodes,dquots and the superblock, unmounts the
1432 * log and makes sure that incore structures are freed.
1433 */
1434void
1435xfs_unmountfs(
1436	struct xfs_mount	*mp)
1437{
1438	__uint64_t		resblks;
1439	int			error;
1440
1441	xfs_qm_unmount_quotas(mp);
1442	xfs_rtunmount_inodes(mp);
1443	IRELE(mp->m_rootip);
1444
1445	/*
1446	 * We can potentially deadlock here if we have an inode cluster
1447	 * that has been freed has its buffer still pinned in memory because
1448	 * the transaction is still sitting in a iclog. The stale inodes
1449	 * on that buffer will have their flush locks held until the
1450	 * transaction hits the disk and the callbacks run. the inode
1451	 * flush takes the flush lock unconditionally and with nothing to
1452	 * push out the iclog we will never get that unlocked. hence we
1453	 * need to force the log first.
1454	 */
1455	xfs_log_force(mp, XFS_LOG_SYNC);
1456
1457	/*
1458	 * Do a delwri reclaim pass first so that as many dirty inodes are
1459	 * queued up for IO as possible. Then flush the buffers before making
1460	 * a synchronous path to catch all the remaining inodes are reclaimed.
1461	 * This makes the reclaim process as quick as possible by avoiding
1462	 * synchronous writeout and blocking on inodes already in the delwri
1463	 * state as much as possible.
1464	 */
1465	xfs_reclaim_inodes(mp, 0);
1466	XFS_bflush(mp->m_ddev_targp);
1467	xfs_reclaim_inodes(mp, SYNC_WAIT);
1468
1469	xfs_qm_unmount(mp);
1470
1471	/*
1472	 * Flush out the log synchronously so that we know for sure
1473	 * that nothing is pinned.  This is important because bflush()
1474	 * will skip pinned buffers.
1475	 */
1476	xfs_log_force(mp, XFS_LOG_SYNC);
1477
1478	xfs_binval(mp->m_ddev_targp);
1479	if (mp->m_rtdev_targp) {
1480		xfs_binval(mp->m_rtdev_targp);
1481	}
1482
1483	/*
1484	 * Unreserve any blocks we have so that when we unmount we don't account
1485	 * the reserved free space as used. This is really only necessary for
1486	 * lazy superblock counting because it trusts the incore superblock
1487	 * counters to be absolutely correct on clean unmount.
1488	 *
1489	 * We don't bother correcting this elsewhere for lazy superblock
1490	 * counting because on mount of an unclean filesystem we reconstruct the
1491	 * correct counter value and this is irrelevant.
1492	 *
1493	 * For non-lazy counter filesystems, this doesn't matter at all because
1494	 * we only every apply deltas to the superblock and hence the incore
1495	 * value does not matter....
1496	 */
1497	resblks = 0;
1498	error = xfs_reserve_blocks(mp, &resblks, NULL);
1499	if (error)
1500		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1501				"Freespace may not be correct on next mount.");
1502
1503	error = xfs_log_sbcount(mp, 1);
1504	if (error)
1505		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1506				"Freespace may not be correct on next mount.");
1507	xfs_unmountfs_writesb(mp);
1508	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1509	xfs_log_unmount_write(mp);
1510	xfs_log_unmount(mp);
1511	xfs_uuid_unmount(mp);
1512
1513#if defined(DEBUG)
1514	xfs_errortag_clearall(mp, 0);
1515#endif
1516	xfs_free_perag(mp);
1517}
1518
1519STATIC void
1520xfs_unmountfs_wait(xfs_mount_t *mp)
1521{
1522	if (mp->m_logdev_targp != mp->m_ddev_targp)
1523		xfs_wait_buftarg(mp->m_logdev_targp);
1524	if (mp->m_rtdev_targp)
1525		xfs_wait_buftarg(mp->m_rtdev_targp);
1526	xfs_wait_buftarg(mp->m_ddev_targp);
1527}
1528
1529int
1530xfs_fs_writable(xfs_mount_t *mp)
1531{
1532	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1533		(mp->m_flags & XFS_MOUNT_RDONLY));
1534}
1535
1536/*
1537 * xfs_log_sbcount
1538 *
1539 * Called either periodically to keep the on disk superblock values
1540 * roughly up to date or from unmount to make sure the values are
1541 * correct on a clean unmount.
1542 *
1543 * Note this code can be called during the process of freezing, so
1544 * we may need to use the transaction allocator which does not not
1545 * block when the transaction subsystem is in its frozen state.
1546 */
1547int
1548xfs_log_sbcount(
1549	xfs_mount_t	*mp,
1550	uint		sync)
1551{
1552	xfs_trans_t	*tp;
1553	int		error;
1554
1555	if (!xfs_fs_writable(mp))
1556		return 0;
1557
1558	xfs_icsb_sync_counters(mp, 0);
1559
1560	/*
1561	 * we don't need to do this if we are updating the superblock
1562	 * counters on every modification.
1563	 */
1564	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1565		return 0;
1566
1567	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1568	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1569					XFS_DEFAULT_LOG_COUNT);
1570	if (error) {
1571		xfs_trans_cancel(tp, 0);
1572		return error;
1573	}
1574
1575	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1576	if (sync)
1577		xfs_trans_set_sync(tp);
1578	error = xfs_trans_commit(tp, 0);
1579	return error;
1580}
1581
1582int
1583xfs_unmountfs_writesb(xfs_mount_t *mp)
1584{
1585	xfs_buf_t	*sbp;
1586	int		error = 0;
1587
1588	/*
1589	 * skip superblock write if fs is read-only, or
1590	 * if we are doing a forced umount.
1591	 */
1592	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1593		XFS_FORCED_SHUTDOWN(mp))) {
1594
1595		sbp = xfs_getsb(mp, 0);
1596
1597		XFS_BUF_UNDONE(sbp);
1598		XFS_BUF_UNREAD(sbp);
1599		XFS_BUF_UNDELAYWRITE(sbp);
1600		XFS_BUF_WRITE(sbp);
1601		XFS_BUF_UNASYNC(sbp);
1602		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1603		xfsbdstrat(mp, sbp);
1604		error = xfs_iowait(sbp);
1605		if (error)
1606			xfs_ioerror_alert("xfs_unmountfs_writesb",
1607					  mp, sbp, XFS_BUF_ADDR(sbp));
1608		xfs_buf_relse(sbp);
1609	}
1610	return error;
1611}
1612
1613/*
1614 * xfs_mod_sb() can be used to copy arbitrary changes to the
1615 * in-core superblock into the superblock buffer to be logged.
1616 * It does not provide the higher level of locking that is
1617 * needed to protect the in-core superblock from concurrent
1618 * access.
1619 */
1620void
1621xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1622{
1623	xfs_buf_t	*bp;
1624	int		first;
1625	int		last;
1626	xfs_mount_t	*mp;
1627	xfs_sb_field_t	f;
1628
1629	ASSERT(fields);
1630	if (!fields)
1631		return;
1632	mp = tp->t_mountp;
1633	bp = xfs_trans_getsb(tp, mp, 0);
1634	first = sizeof(xfs_sb_t);
1635	last = 0;
1636
1637	/* translate/copy */
1638
1639	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1640
1641	/* find modified range */
1642	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1643	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1644	last = xfs_sb_info[f + 1].offset - 1;
1645
1646	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1647	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1648	first = xfs_sb_info[f].offset;
1649
1650	xfs_trans_log_buf(tp, bp, first, last);
1651}
1652
1653
1654/*
1655 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1656 * a delta to a specified field in the in-core superblock.  Simply
1657 * switch on the field indicated and apply the delta to that field.
1658 * Fields are not allowed to dip below zero, so if the delta would
1659 * do this do not apply it and return EINVAL.
1660 *
1661 * The m_sb_lock must be held when this routine is called.
1662 */
1663STATIC int
1664xfs_mod_incore_sb_unlocked(
1665	xfs_mount_t	*mp,
1666	xfs_sb_field_t	field,
1667	int64_t		delta,
1668	int		rsvd)
1669{
1670	int		scounter;	/* short counter for 32 bit fields */
1671	long long	lcounter;	/* long counter for 64 bit fields */
1672	long long	res_used, rem;
1673
1674	/*
1675	 * With the in-core superblock spin lock held, switch
1676	 * on the indicated field.  Apply the delta to the
1677	 * proper field.  If the fields value would dip below
1678	 * 0, then do not apply the delta and return EINVAL.
1679	 */
1680	switch (field) {
1681	case XFS_SBS_ICOUNT:
1682		lcounter = (long long)mp->m_sb.sb_icount;
1683		lcounter += delta;
1684		if (lcounter < 0) {
1685			ASSERT(0);
1686			return XFS_ERROR(EINVAL);
1687		}
1688		mp->m_sb.sb_icount = lcounter;
1689		return 0;
1690	case XFS_SBS_IFREE:
1691		lcounter = (long long)mp->m_sb.sb_ifree;
1692		lcounter += delta;
1693		if (lcounter < 0) {
1694			ASSERT(0);
1695			return XFS_ERROR(EINVAL);
1696		}
1697		mp->m_sb.sb_ifree = lcounter;
1698		return 0;
1699	case XFS_SBS_FDBLOCKS:
1700		lcounter = (long long)
1701			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1702		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1703
1704		if (delta > 0) {		/* Putting blocks back */
1705			if (res_used > delta) {
1706				mp->m_resblks_avail += delta;
1707			} else {
1708				rem = delta - res_used;
1709				mp->m_resblks_avail = mp->m_resblks;
1710				lcounter += rem;
1711			}
1712		} else {				/* Taking blocks away */
1713			lcounter += delta;
1714			if (lcounter >= 0) {
1715				mp->m_sb.sb_fdblocks = lcounter +
1716							XFS_ALLOC_SET_ASIDE(mp);
1717				return 0;
1718			}
1719
1720			/*
1721			 * We are out of blocks, use any available reserved
1722			 * blocks if were allowed to.
1723			 */
1724			if (!rsvd)
1725				return XFS_ERROR(ENOSPC);
1726
1727			lcounter = (long long)mp->m_resblks_avail + delta;
1728			if (lcounter >= 0) {
1729				mp->m_resblks_avail = lcounter;
1730				return 0;
1731			}
1732			printk_once(KERN_WARNING
1733				"Filesystem \"%s\": reserve blocks depleted! "
1734				"Consider increasing reserve pool size.",
1735				mp->m_fsname);
1736			return XFS_ERROR(ENOSPC);
1737		}
1738
1739		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1740		return 0;
1741	case XFS_SBS_FREXTENTS:
1742		lcounter = (long long)mp->m_sb.sb_frextents;
1743		lcounter += delta;
1744		if (lcounter < 0) {
1745			return XFS_ERROR(ENOSPC);
1746		}
1747		mp->m_sb.sb_frextents = lcounter;
1748		return 0;
1749	case XFS_SBS_DBLOCKS:
1750		lcounter = (long long)mp->m_sb.sb_dblocks;
1751		lcounter += delta;
1752		if (lcounter < 0) {
1753			ASSERT(0);
1754			return XFS_ERROR(EINVAL);
1755		}
1756		mp->m_sb.sb_dblocks = lcounter;
1757		return 0;
1758	case XFS_SBS_AGCOUNT:
1759		scounter = mp->m_sb.sb_agcount;
1760		scounter += delta;
1761		if (scounter < 0) {
1762			ASSERT(0);
1763			return XFS_ERROR(EINVAL);
1764		}
1765		mp->m_sb.sb_agcount = scounter;
1766		return 0;
1767	case XFS_SBS_IMAX_PCT:
1768		scounter = mp->m_sb.sb_imax_pct;
1769		scounter += delta;
1770		if (scounter < 0) {
1771			ASSERT(0);
1772			return XFS_ERROR(EINVAL);
1773		}
1774		mp->m_sb.sb_imax_pct = scounter;
1775		return 0;
1776	case XFS_SBS_REXTSIZE:
1777		scounter = mp->m_sb.sb_rextsize;
1778		scounter += delta;
1779		if (scounter < 0) {
1780			ASSERT(0);
1781			return XFS_ERROR(EINVAL);
1782		}
1783		mp->m_sb.sb_rextsize = scounter;
1784		return 0;
1785	case XFS_SBS_RBMBLOCKS:
1786		scounter = mp->m_sb.sb_rbmblocks;
1787		scounter += delta;
1788		if (scounter < 0) {
1789			ASSERT(0);
1790			return XFS_ERROR(EINVAL);
1791		}
1792		mp->m_sb.sb_rbmblocks = scounter;
1793		return 0;
1794	case XFS_SBS_RBLOCKS:
1795		lcounter = (long long)mp->m_sb.sb_rblocks;
1796		lcounter += delta;
1797		if (lcounter < 0) {
1798			ASSERT(0);
1799			return XFS_ERROR(EINVAL);
1800		}
1801		mp->m_sb.sb_rblocks = lcounter;
1802		return 0;
1803	case XFS_SBS_REXTENTS:
1804		lcounter = (long long)mp->m_sb.sb_rextents;
1805		lcounter += delta;
1806		if (lcounter < 0) {
1807			ASSERT(0);
1808			return XFS_ERROR(EINVAL);
1809		}
1810		mp->m_sb.sb_rextents = lcounter;
1811		return 0;
1812	case XFS_SBS_REXTSLOG:
1813		scounter = mp->m_sb.sb_rextslog;
1814		scounter += delta;
1815		if (scounter < 0) {
1816			ASSERT(0);
1817			return XFS_ERROR(EINVAL);
1818		}
1819		mp->m_sb.sb_rextslog = scounter;
1820		return 0;
1821	default:
1822		ASSERT(0);
1823		return XFS_ERROR(EINVAL);
1824	}
1825}
1826
1827/*
1828 * xfs_mod_incore_sb() is used to change a field in the in-core
1829 * superblock structure by the specified delta.  This modification
1830 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1831 * routine to do the work.
1832 */
1833int
1834xfs_mod_incore_sb(
1835	xfs_mount_t	*mp,
1836	xfs_sb_field_t	field,
1837	int64_t		delta,
1838	int		rsvd)
1839{
1840	int	status;
1841
1842	/* check for per-cpu counters */
1843	switch (field) {
1844#ifdef HAVE_PERCPU_SB
1845	case XFS_SBS_ICOUNT:
1846	case XFS_SBS_IFREE:
1847	case XFS_SBS_FDBLOCKS:
1848		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1849			status = xfs_icsb_modify_counters(mp, field,
1850							delta, rsvd);
1851			break;
1852		}
1853		/* FALLTHROUGH */
1854#endif
1855	default:
1856		spin_lock(&mp->m_sb_lock);
1857		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1858		spin_unlock(&mp->m_sb_lock);
1859		break;
1860	}
1861
1862	return status;
1863}
1864
1865/*
1866 * xfs_mod_incore_sb_batch() is used to change more than one field
1867 * in the in-core superblock structure at a time.  This modification
1868 * is protected by a lock internal to this module.  The fields and
1869 * changes to those fields are specified in the array of xfs_mod_sb
1870 * structures passed in.
1871 *
1872 * Either all of the specified deltas will be applied or none of
1873 * them will.  If any modified field dips below 0, then all modifications
1874 * will be backed out and EINVAL will be returned.
1875 */
1876int
1877xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1878{
1879	int		status=0;
1880	xfs_mod_sb_t	*msbp;
1881
1882	/*
1883	 * Loop through the array of mod structures and apply each
1884	 * individually.  If any fail, then back out all those
1885	 * which have already been applied.  Do all of this within
1886	 * the scope of the m_sb_lock so that all of the changes will
1887	 * be atomic.
1888	 */
1889	spin_lock(&mp->m_sb_lock);
1890	msbp = &msb[0];
1891	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1892		/*
1893		 * Apply the delta at index n.  If it fails, break
1894		 * from the loop so we'll fall into the undo loop
1895		 * below.
1896		 */
1897		switch (msbp->msb_field) {
1898#ifdef HAVE_PERCPU_SB
1899		case XFS_SBS_ICOUNT:
1900		case XFS_SBS_IFREE:
1901		case XFS_SBS_FDBLOCKS:
1902			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1903				spin_unlock(&mp->m_sb_lock);
1904				status = xfs_icsb_modify_counters(mp,
1905							msbp->msb_field,
1906							msbp->msb_delta, rsvd);
1907				spin_lock(&mp->m_sb_lock);
1908				break;
1909			}
1910			/* FALLTHROUGH */
1911#endif
1912		default:
1913			status = xfs_mod_incore_sb_unlocked(mp,
1914						msbp->msb_field,
1915						msbp->msb_delta, rsvd);
1916			break;
1917		}
1918
1919		if (status != 0) {
1920			break;
1921		}
1922	}
1923
1924	/*
1925	 * If we didn't complete the loop above, then back out
1926	 * any changes made to the superblock.  If you add code
1927	 * between the loop above and here, make sure that you
1928	 * preserve the value of status. Loop back until
1929	 * we step below the beginning of the array.  Make sure
1930	 * we don't touch anything back there.
1931	 */
1932	if (status != 0) {
1933		msbp--;
1934		while (msbp >= msb) {
1935			switch (msbp->msb_field) {
1936#ifdef HAVE_PERCPU_SB
1937			case XFS_SBS_ICOUNT:
1938			case XFS_SBS_IFREE:
1939			case XFS_SBS_FDBLOCKS:
1940				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1941					spin_unlock(&mp->m_sb_lock);
1942					status = xfs_icsb_modify_counters(mp,
1943							msbp->msb_field,
1944							-(msbp->msb_delta),
1945							rsvd);
1946					spin_lock(&mp->m_sb_lock);
1947					break;
1948				}
1949				/* FALLTHROUGH */
1950#endif
1951			default:
1952				status = xfs_mod_incore_sb_unlocked(mp,
1953							msbp->msb_field,
1954							-(msbp->msb_delta),
1955							rsvd);
1956				break;
1957			}
1958			ASSERT(status == 0);
1959			msbp--;
1960		}
1961	}
1962	spin_unlock(&mp->m_sb_lock);
1963	return status;
1964}
1965
1966/*
1967 * xfs_getsb() is called to obtain the buffer for the superblock.
1968 * The buffer is returned locked and read in from disk.
1969 * The buffer should be released with a call to xfs_brelse().
1970 *
1971 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1972 * the superblock buffer if it can be locked without sleeping.
1973 * If it can't then we'll return NULL.
1974 */
1975xfs_buf_t *
1976xfs_getsb(
1977	xfs_mount_t	*mp,
1978	int		flags)
1979{
1980	xfs_buf_t	*bp;
1981
1982	ASSERT(mp->m_sb_bp != NULL);
1983	bp = mp->m_sb_bp;
1984	if (flags & XBF_TRYLOCK) {
1985		if (!XFS_BUF_CPSEMA(bp)) {
1986			return NULL;
1987		}
1988	} else {
1989		XFS_BUF_PSEMA(bp, PRIBIO);
1990	}
1991	XFS_BUF_HOLD(bp);
1992	ASSERT(XFS_BUF_ISDONE(bp));
1993	return bp;
1994}
1995
1996/*
1997 * Used to free the superblock along various error paths.
1998 */
1999void
2000xfs_freesb(
2001	xfs_mount_t	*mp)
2002{
2003	xfs_buf_t	*bp;
2004
2005	/*
2006	 * Use xfs_getsb() so that the buffer will be locked
2007	 * when we call xfs_buf_relse().
2008	 */
2009	bp = xfs_getsb(mp, 0);
2010	XFS_BUF_UNMANAGE(bp);
2011	xfs_buf_relse(bp);
2012	mp->m_sb_bp = NULL;
2013}
2014
2015/*
2016 * Used to log changes to the superblock unit and width fields which could
2017 * be altered by the mount options, as well as any potential sb_features2
2018 * fixup. Only the first superblock is updated.
2019 */
2020int
2021xfs_mount_log_sb(
2022	xfs_mount_t	*mp,
2023	__int64_t	fields)
2024{
2025	xfs_trans_t	*tp;
2026	int		error;
2027
2028	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2029			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2030			 XFS_SB_VERSIONNUM));
2031
2032	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2033	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2034				XFS_DEFAULT_LOG_COUNT);
2035	if (error) {
2036		xfs_trans_cancel(tp, 0);
2037		return error;
2038	}
2039	xfs_mod_sb(tp, fields);
2040	error = xfs_trans_commit(tp, 0);
2041	return error;
2042}
2043
2044/*
2045 * If the underlying (data/log/rt) device is readonly, there are some
2046 * operations that cannot proceed.
2047 */
2048int
2049xfs_dev_is_read_only(
2050	struct xfs_mount	*mp,
2051	char			*message)
2052{
2053	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2054	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2055	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2056		cmn_err(CE_NOTE,
2057			"XFS: %s required on read-only device.", message);
2058		cmn_err(CE_NOTE,
2059			"XFS: write access unavailable, cannot proceed.");
2060		return EROFS;
2061	}
2062	return 0;
2063}
2064
2065#ifdef HAVE_PERCPU_SB
2066/*
2067 * Per-cpu incore superblock counters
2068 *
2069 * Simple concept, difficult implementation
2070 *
2071 * Basically, replace the incore superblock counters with a distributed per cpu
2072 * counter for contended fields (e.g.  free block count).
2073 *
2074 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2075 * hence needs to be accurately read when we are running low on space. Hence
2076 * there is a method to enable and disable the per-cpu counters based on how
2077 * much "stuff" is available in them.
2078 *
2079 * Basically, a counter is enabled if there is enough free resource to justify
2080 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2081 * ENOSPC), then we disable the counters to synchronise all callers and
2082 * re-distribute the available resources.
2083 *
2084 * If, once we redistributed the available resources, we still get a failure,
2085 * we disable the per-cpu counter and go through the slow path.
2086 *
2087 * The slow path is the current xfs_mod_incore_sb() function.  This means that
2088 * when we disable a per-cpu counter, we need to drain its resources back to
2089 * the global superblock. We do this after disabling the counter to prevent
2090 * more threads from queueing up on the counter.
2091 *
2092 * Essentially, this means that we still need a lock in the fast path to enable
2093 * synchronisation between the global counters and the per-cpu counters. This
2094 * is not a problem because the lock will be local to a CPU almost all the time
2095 * and have little contention except when we get to ENOSPC conditions.
2096 *
2097 * Basically, this lock becomes a barrier that enables us to lock out the fast
2098 * path while we do things like enabling and disabling counters and
2099 * synchronising the counters.
2100 *
2101 * Locking rules:
2102 *
2103 * 	1. m_sb_lock before picking up per-cpu locks
2104 * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2105 * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2106 * 	4. modifying per-cpu counters requires holding per-cpu lock
2107 * 	5. modifying global counters requires holding m_sb_lock
2108 *	6. enabling or disabling a counter requires holding the m_sb_lock
2109 *	   and _none_ of the per-cpu locks.
2110 *
2111 * Disabled counters are only ever re-enabled by a balance operation
2112 * that results in more free resources per CPU than a given threshold.
2113 * To ensure counters don't remain disabled, they are rebalanced when
2114 * the global resource goes above a higher threshold (i.e. some hysteresis
2115 * is present to prevent thrashing).
2116 */
2117
2118#ifdef CONFIG_HOTPLUG_CPU
2119/*
2120 * hot-plug CPU notifier support.
2121 *
2122 * We need a notifier per filesystem as we need to be able to identify
2123 * the filesystem to balance the counters out. This is achieved by
2124 * having a notifier block embedded in the xfs_mount_t and doing pointer
2125 * magic to get the mount pointer from the notifier block address.
2126 */
2127STATIC int
2128xfs_icsb_cpu_notify(
2129	struct notifier_block *nfb,
2130	unsigned long action,
2131	void *hcpu)
2132{
2133	xfs_icsb_cnts_t *cntp;
2134	xfs_mount_t	*mp;
2135
2136	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2137	cntp = (xfs_icsb_cnts_t *)
2138			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2139	switch (action) {
2140	case CPU_UP_PREPARE:
2141	case CPU_UP_PREPARE_FROZEN:
2142		/* Easy Case - initialize the area and locks, and
2143		 * then rebalance when online does everything else for us. */
2144		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2145		break;
2146	case CPU_ONLINE:
2147	case CPU_ONLINE_FROZEN:
2148		xfs_icsb_lock(mp);
2149		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2150		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2151		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2152		xfs_icsb_unlock(mp);
2153		break;
2154	case CPU_DEAD:
2155	case CPU_DEAD_FROZEN:
2156		/* Disable all the counters, then fold the dead cpu's
2157		 * count into the total on the global superblock and
2158		 * re-enable the counters. */
2159		xfs_icsb_lock(mp);
2160		spin_lock(&mp->m_sb_lock);
2161		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2162		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2163		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2164
2165		mp->m_sb.sb_icount += cntp->icsb_icount;
2166		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2167		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2168
2169		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2170
2171		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2172		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2173		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2174		spin_unlock(&mp->m_sb_lock);
2175		xfs_icsb_unlock(mp);
2176		break;
2177	}
2178
2179	return NOTIFY_OK;
2180}
2181#endif /* CONFIG_HOTPLUG_CPU */
2182
2183int
2184xfs_icsb_init_counters(
2185	xfs_mount_t	*mp)
2186{
2187	xfs_icsb_cnts_t *cntp;
2188	int		i;
2189
2190	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2191	if (mp->m_sb_cnts == NULL)
2192		return -ENOMEM;
2193
2194#ifdef CONFIG_HOTPLUG_CPU
2195	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2196	mp->m_icsb_notifier.priority = 0;
2197	register_hotcpu_notifier(&mp->m_icsb_notifier);
2198#endif /* CONFIG_HOTPLUG_CPU */
2199
2200	for_each_online_cpu(i) {
2201		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2202		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2203	}
2204
2205	mutex_init(&mp->m_icsb_mutex);
2206
2207	/*
2208	 * start with all counters disabled so that the
2209	 * initial balance kicks us off correctly
2210	 */
2211	mp->m_icsb_counters = -1;
2212	return 0;
2213}
2214
2215void
2216xfs_icsb_reinit_counters(
2217	xfs_mount_t	*mp)
2218{
2219	xfs_icsb_lock(mp);
2220	/*
2221	 * start with all counters disabled so that the
2222	 * initial balance kicks us off correctly
2223	 */
2224	mp->m_icsb_counters = -1;
2225	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2226	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2227	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2228	xfs_icsb_unlock(mp);
2229}
2230
2231void
2232xfs_icsb_destroy_counters(
2233	xfs_mount_t	*mp)
2234{
2235	if (mp->m_sb_cnts) {
2236		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2237		free_percpu(mp->m_sb_cnts);
2238	}
2239	mutex_destroy(&mp->m_icsb_mutex);
2240}
2241
2242STATIC void
2243xfs_icsb_lock_cntr(
2244	xfs_icsb_cnts_t	*icsbp)
2245{
2246	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2247		ndelay(1000);
2248	}
2249}
2250
2251STATIC void
2252xfs_icsb_unlock_cntr(
2253	xfs_icsb_cnts_t	*icsbp)
2254{
2255	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2256}
2257
2258
2259STATIC void
2260xfs_icsb_lock_all_counters(
2261	xfs_mount_t	*mp)
2262{
2263	xfs_icsb_cnts_t *cntp;
2264	int		i;
2265
2266	for_each_online_cpu(i) {
2267		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2268		xfs_icsb_lock_cntr(cntp);
2269	}
2270}
2271
2272STATIC void
2273xfs_icsb_unlock_all_counters(
2274	xfs_mount_t	*mp)
2275{
2276	xfs_icsb_cnts_t *cntp;
2277	int		i;
2278
2279	for_each_online_cpu(i) {
2280		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2281		xfs_icsb_unlock_cntr(cntp);
2282	}
2283}
2284
2285STATIC void
2286xfs_icsb_count(
2287	xfs_mount_t	*mp,
2288	xfs_icsb_cnts_t	*cnt,
2289	int		flags)
2290{
2291	xfs_icsb_cnts_t *cntp;
2292	int		i;
2293
2294	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2295
2296	if (!(flags & XFS_ICSB_LAZY_COUNT))
2297		xfs_icsb_lock_all_counters(mp);
2298
2299	for_each_online_cpu(i) {
2300		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2301		cnt->icsb_icount += cntp->icsb_icount;
2302		cnt->icsb_ifree += cntp->icsb_ifree;
2303		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2304	}
2305
2306	if (!(flags & XFS_ICSB_LAZY_COUNT))
2307		xfs_icsb_unlock_all_counters(mp);
2308}
2309
2310STATIC int
2311xfs_icsb_counter_disabled(
2312	xfs_mount_t	*mp,
2313	xfs_sb_field_t	field)
2314{
2315	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2316	return test_bit(field, &mp->m_icsb_counters);
2317}
2318
2319STATIC void
2320xfs_icsb_disable_counter(
2321	xfs_mount_t	*mp,
2322	xfs_sb_field_t	field)
2323{
2324	xfs_icsb_cnts_t	cnt;
2325
2326	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2327
2328	/*
2329	 * If we are already disabled, then there is nothing to do
2330	 * here. We check before locking all the counters to avoid
2331	 * the expensive lock operation when being called in the
2332	 * slow path and the counter is already disabled. This is
2333	 * safe because the only time we set or clear this state is under
2334	 * the m_icsb_mutex.
2335	 */
2336	if (xfs_icsb_counter_disabled(mp, field))
2337		return;
2338
2339	xfs_icsb_lock_all_counters(mp);
2340	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2341		/* drain back to superblock */
2342
2343		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2344		switch(field) {
2345		case XFS_SBS_ICOUNT:
2346			mp->m_sb.sb_icount = cnt.icsb_icount;
2347			break;
2348		case XFS_SBS_IFREE:
2349			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2350			break;
2351		case XFS_SBS_FDBLOCKS:
2352			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2353			break;
2354		default:
2355			BUG();
2356		}
2357	}
2358
2359	xfs_icsb_unlock_all_counters(mp);
2360}
2361
2362STATIC void
2363xfs_icsb_enable_counter(
2364	xfs_mount_t	*mp,
2365	xfs_sb_field_t	field,
2366	uint64_t	count,
2367	uint64_t	resid)
2368{
2369	xfs_icsb_cnts_t	*cntp;
2370	int		i;
2371
2372	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2373
2374	xfs_icsb_lock_all_counters(mp);
2375	for_each_online_cpu(i) {
2376		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2377		switch (field) {
2378		case XFS_SBS_ICOUNT:
2379			cntp->icsb_icount = count + resid;
2380			break;
2381		case XFS_SBS_IFREE:
2382			cntp->icsb_ifree = count + resid;
2383			break;
2384		case XFS_SBS_FDBLOCKS:
2385			cntp->icsb_fdblocks = count + resid;
2386			break;
2387		default:
2388			BUG();
2389			break;
2390		}
2391		resid = 0;
2392	}
2393	clear_bit(field, &mp->m_icsb_counters);
2394	xfs_icsb_unlock_all_counters(mp);
2395}
2396
2397void
2398xfs_icsb_sync_counters_locked(
2399	xfs_mount_t	*mp,
2400	int		flags)
2401{
2402	xfs_icsb_cnts_t	cnt;
2403
2404	xfs_icsb_count(mp, &cnt, flags);
2405
2406	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2407		mp->m_sb.sb_icount = cnt.icsb_icount;
2408	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2409		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2410	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2411		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2412}
2413
2414/*
2415 * Accurate update of per-cpu counters to incore superblock
2416 */
2417void
2418xfs_icsb_sync_counters(
2419	xfs_mount_t	*mp,
2420	int		flags)
2421{
2422	spin_lock(&mp->m_sb_lock);
2423	xfs_icsb_sync_counters_locked(mp, flags);
2424	spin_unlock(&mp->m_sb_lock);
2425}
2426
2427/*
2428 * Balance and enable/disable counters as necessary.
2429 *
2430 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2431 * chosen to be the same number as single on disk allocation chunk per CPU, and
2432 * free blocks is something far enough zero that we aren't going thrash when we
2433 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2434 * prevent looping endlessly when xfs_alloc_space asks for more than will
2435 * be distributed to a single CPU but each CPU has enough blocks to be
2436 * reenabled.
2437 *
2438 * Note that we can be called when counters are already disabled.
2439 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2440 * prevent locking every per-cpu counter needlessly.
2441 */
2442
2443#define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2444#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2445		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2446STATIC void
2447xfs_icsb_balance_counter_locked(
2448	xfs_mount_t	*mp,
2449	xfs_sb_field_t  field,
2450	int		min_per_cpu)
2451{
2452	uint64_t	count, resid;
2453	int		weight = num_online_cpus();
2454	uint64_t	min = (uint64_t)min_per_cpu;
2455
2456	/* disable counter and sync counter */
2457	xfs_icsb_disable_counter(mp, field);
2458
2459	/* update counters  - first CPU gets residual*/
2460	switch (field) {
2461	case XFS_SBS_ICOUNT:
2462		count = mp->m_sb.sb_icount;
2463		resid = do_div(count, weight);
2464		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2465			return;
2466		break;
2467	case XFS_SBS_IFREE:
2468		count = mp->m_sb.sb_ifree;
2469		resid = do_div(count, weight);
2470		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2471			return;
2472		break;
2473	case XFS_SBS_FDBLOCKS:
2474		count = mp->m_sb.sb_fdblocks;
2475		resid = do_div(count, weight);
2476		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2477			return;
2478		break;
2479	default:
2480		BUG();
2481		count = resid = 0;	/* quiet, gcc */
2482		break;
2483	}
2484
2485	xfs_icsb_enable_counter(mp, field, count, resid);
2486}
2487
2488STATIC void
2489xfs_icsb_balance_counter(
2490	xfs_mount_t	*mp,
2491	xfs_sb_field_t  fields,
2492	int		min_per_cpu)
2493{
2494	spin_lock(&mp->m_sb_lock);
2495	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2496	spin_unlock(&mp->m_sb_lock);
2497}
2498
2499STATIC int
2500xfs_icsb_modify_counters(
2501	xfs_mount_t	*mp,
2502	xfs_sb_field_t	field,
2503	int64_t		delta,
2504	int		rsvd)
2505{
2506	xfs_icsb_cnts_t	*icsbp;
2507	long long	lcounter;	/* long counter for 64 bit fields */
2508	int		ret = 0;
2509
2510	might_sleep();
2511again:
2512	preempt_disable();
2513	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2514
2515	/*
2516	 * if the counter is disabled, go to slow path
2517	 */
2518	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2519		goto slow_path;
2520	xfs_icsb_lock_cntr(icsbp);
2521	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2522		xfs_icsb_unlock_cntr(icsbp);
2523		goto slow_path;
2524	}
2525
2526	switch (field) {
2527	case XFS_SBS_ICOUNT:
2528		lcounter = icsbp->icsb_icount;
2529		lcounter += delta;
2530		if (unlikely(lcounter < 0))
2531			goto balance_counter;
2532		icsbp->icsb_icount = lcounter;
2533		break;
2534
2535	case XFS_SBS_IFREE:
2536		lcounter = icsbp->icsb_ifree;
2537		lcounter += delta;
2538		if (unlikely(lcounter < 0))
2539			goto balance_counter;
2540		icsbp->icsb_ifree = lcounter;
2541		break;
2542
2543	case XFS_SBS_FDBLOCKS:
2544		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2545
2546		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2547		lcounter += delta;
2548		if (unlikely(lcounter < 0))
2549			goto balance_counter;
2550		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2551		break;
2552	default:
2553		BUG();
2554		break;
2555	}
2556	xfs_icsb_unlock_cntr(icsbp);
2557	preempt_enable();
2558	return 0;
2559
2560slow_path:
2561	preempt_enable();
2562
2563	/*
2564	 * serialise with a mutex so we don't burn lots of cpu on
2565	 * the superblock lock. We still need to hold the superblock
2566	 * lock, however, when we modify the global structures.
2567	 */
2568	xfs_icsb_lock(mp);
2569
2570	/*
2571	 * Now running atomically.
2572	 *
2573	 * If the counter is enabled, someone has beaten us to rebalancing.
2574	 * Drop the lock and try again in the fast path....
2575	 */
2576	if (!(xfs_icsb_counter_disabled(mp, field))) {
2577		xfs_icsb_unlock(mp);
2578		goto again;
2579	}
2580
2581	/*
2582	 * The counter is currently disabled. Because we are
2583	 * running atomically here, we know a rebalance cannot
2584	 * be in progress. Hence we can go straight to operating
2585	 * on the global superblock. We do not call xfs_mod_incore_sb()
2586	 * here even though we need to get the m_sb_lock. Doing so
2587	 * will cause us to re-enter this function and deadlock.
2588	 * Hence we get the m_sb_lock ourselves and then call
2589	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2590	 * directly on the global counters.
2591	 */
2592	spin_lock(&mp->m_sb_lock);
2593	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2594	spin_unlock(&mp->m_sb_lock);
2595
2596	/*
2597	 * Now that we've modified the global superblock, we
2598	 * may be able to re-enable the distributed counters
2599	 * (e.g. lots of space just got freed). After that
2600	 * we are done.
2601	 */
2602	if (ret != ENOSPC)
2603		xfs_icsb_balance_counter(mp, field, 0);
2604	xfs_icsb_unlock(mp);
2605	return ret;
2606
2607balance_counter:
2608	xfs_icsb_unlock_cntr(icsbp);
2609	preempt_enable();
2610
2611	/*
2612	 * We may have multiple threads here if multiple per-cpu
2613	 * counters run dry at the same time. This will mean we can
2614	 * do more balances than strictly necessary but it is not
2615	 * the common slowpath case.
2616	 */
2617	xfs_icsb_lock(mp);
2618
2619	/*
2620	 * running atomically.
2621	 *
2622	 * This will leave the counter in the correct state for future
2623	 * accesses. After the rebalance, we simply try again and our retry
2624	 * will either succeed through the fast path or slow path without
2625	 * another balance operation being required.
2626	 */
2627	xfs_icsb_balance_counter(mp, field, delta);
2628	xfs_icsb_unlock(mp);
2629	goto again;
2630}
2631
2632#endif
2633