1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_mount.h"
28#include "xfs_buf_item.h"
29#include "xfs_trans_priv.h"
30#include "xfs_error.h"
31#include "xfs_trace.h"
32
33
34kmem_zone_t	*xfs_buf_item_zone;
35
36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37{
38	return container_of(lip, struct xfs_buf_log_item, bli_item);
39}
40
41
42#ifdef XFS_TRANS_DEBUG
43/*
44 * This function uses an alternate strategy for tracking the bytes
45 * that the user requests to be logged.  This can then be used
46 * in conjunction with the bli_orig array in the buf log item to
47 * catch bugs in our callers' code.
48 *
49 * We also double check the bits set in xfs_buf_item_log using a
50 * simple algorithm to check that every byte is accounted for.
51 */
52STATIC void
53xfs_buf_item_log_debug(
54	xfs_buf_log_item_t	*bip,
55	uint			first,
56	uint			last)
57{
58	uint	x;
59	uint	byte;
60	uint	nbytes;
61	uint	chunk_num;
62	uint	word_num;
63	uint	bit_num;
64	uint	bit_set;
65	uint	*wordp;
66
67	ASSERT(bip->bli_logged != NULL);
68	byte = first;
69	nbytes = last - first + 1;
70	bfset(bip->bli_logged, first, nbytes);
71	for (x = 0; x < nbytes; x++) {
72		chunk_num = byte >> XFS_BLF_SHIFT;
73		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74		bit_num = chunk_num & (NBWORD - 1);
75		wordp = &(bip->bli_format.blf_data_map[word_num]);
76		bit_set = *wordp & (1 << bit_num);
77		ASSERT(bit_set);
78		byte++;
79	}
80}
81
82/*
83 * This function is called when we flush something into a buffer without
84 * logging it.  This happens for things like inodes which are logged
85 * separately from the buffer.
86 */
87void
88xfs_buf_item_flush_log_debug(
89	xfs_buf_t	*bp,
90	uint		first,
91	uint		last)
92{
93	xfs_buf_log_item_t	*bip;
94	uint			nbytes;
95
96	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
97	if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
98		return;
99	}
100
101	ASSERT(bip->bli_logged != NULL);
102	nbytes = last - first + 1;
103	bfset(bip->bli_logged, first, nbytes);
104}
105
106/*
107 * This function is called to verify that our callers have logged
108 * all the bytes that they changed.
109 *
110 * It does this by comparing the original copy of the buffer stored in
111 * the buf log item's bli_orig array to the current copy of the buffer
112 * and ensuring that all bytes which mismatch are set in the bli_logged
113 * array of the buf log item.
114 */
115STATIC void
116xfs_buf_item_log_check(
117	xfs_buf_log_item_t	*bip)
118{
119	char		*orig;
120	char		*buffer;
121	int		x;
122	xfs_buf_t	*bp;
123
124	ASSERT(bip->bli_orig != NULL);
125	ASSERT(bip->bli_logged != NULL);
126
127	bp = bip->bli_buf;
128	ASSERT(XFS_BUF_COUNT(bp) > 0);
129	ASSERT(XFS_BUF_PTR(bp) != NULL);
130	orig = bip->bli_orig;
131	buffer = XFS_BUF_PTR(bp);
132	for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
133		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x))
134			cmn_err(CE_PANIC,
135	"xfs_buf_item_log_check bip %x buffer %x orig %x index %d",
136				bip, bp, orig, x);
137	}
138}
139#else
140#define		xfs_buf_item_log_debug(x,y,z)
141#define		xfs_buf_item_log_check(x)
142#endif
143
144STATIC void	xfs_buf_error_relse(xfs_buf_t *bp);
145STATIC void	xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip);
146
147/*
148 * This returns the number of log iovecs needed to log the
149 * given buf log item.
150 *
151 * It calculates this as 1 iovec for the buf log format structure
152 * and 1 for each stretch of non-contiguous chunks to be logged.
153 * Contiguous chunks are logged in a single iovec.
154 *
155 * If the XFS_BLI_STALE flag has been set, then log nothing.
156 */
157STATIC uint
158xfs_buf_item_size(
159	struct xfs_log_item	*lip)
160{
161	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
162	struct xfs_buf		*bp = bip->bli_buf;
163	uint			nvecs;
164	int			next_bit;
165	int			last_bit;
166
167	ASSERT(atomic_read(&bip->bli_refcount) > 0);
168	if (bip->bli_flags & XFS_BLI_STALE) {
169		/*
170		 * The buffer is stale, so all we need to log
171		 * is the buf log format structure with the
172		 * cancel flag in it.
173		 */
174		trace_xfs_buf_item_size_stale(bip);
175		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
176		return 1;
177	}
178
179	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
180	nvecs = 1;
181	last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
182					 bip->bli_format.blf_map_size, 0);
183	ASSERT(last_bit != -1);
184	nvecs++;
185	while (last_bit != -1) {
186		/*
187		 * This takes the bit number to start looking from and
188		 * returns the next set bit from there.  It returns -1
189		 * if there are no more bits set or the start bit is
190		 * beyond the end of the bitmap.
191		 */
192		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
193						 bip->bli_format.blf_map_size,
194						 last_bit + 1);
195		/*
196		 * If we run out of bits, leave the loop,
197		 * else if we find a new set of bits bump the number of vecs,
198		 * else keep scanning the current set of bits.
199		 */
200		if (next_bit == -1) {
201			last_bit = -1;
202		} else if (next_bit != last_bit + 1) {
203			last_bit = next_bit;
204			nvecs++;
205		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
206			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
207			    XFS_BLF_CHUNK)) {
208			last_bit = next_bit;
209			nvecs++;
210		} else {
211			last_bit++;
212		}
213	}
214
215	trace_xfs_buf_item_size(bip);
216	return nvecs;
217}
218
219/*
220 * This is called to fill in the vector of log iovecs for the
221 * given log buf item.  It fills the first entry with a buf log
222 * format structure, and the rest point to contiguous chunks
223 * within the buffer.
224 */
225STATIC void
226xfs_buf_item_format(
227	struct xfs_log_item	*lip,
228	struct xfs_log_iovec	*vecp)
229{
230	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
231	struct xfs_buf	*bp = bip->bli_buf;
232	uint		base_size;
233	uint		nvecs;
234	int		first_bit;
235	int		last_bit;
236	int		next_bit;
237	uint		nbits;
238	uint		buffer_offset;
239
240	ASSERT(atomic_read(&bip->bli_refcount) > 0);
241	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
242	       (bip->bli_flags & XFS_BLI_STALE));
243
244	/*
245	 * The size of the base structure is the size of the
246	 * declared structure plus the space for the extra words
247	 * of the bitmap.  We subtract one from the map size, because
248	 * the first element of the bitmap is accounted for in the
249	 * size of the base structure.
250	 */
251	base_size =
252		(uint)(sizeof(xfs_buf_log_format_t) +
253		       ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
254	vecp->i_addr = &bip->bli_format;
255	vecp->i_len = base_size;
256	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
257	vecp++;
258	nvecs = 1;
259
260	/*
261	 * If it is an inode buffer, transfer the in-memory state to the
262	 * format flags and clear the in-memory state. We do not transfer
263	 * this state if the inode buffer allocation has not yet been committed
264	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
265	 * correct replay of the inode allocation.
266	 */
267	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
268		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
269		      xfs_log_item_in_current_chkpt(lip)))
270			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
271		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
272	}
273
274	if (bip->bli_flags & XFS_BLI_STALE) {
275		/*
276		 * The buffer is stale, so all we need to log
277		 * is the buf log format structure with the
278		 * cancel flag in it.
279		 */
280		trace_xfs_buf_item_format_stale(bip);
281		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
282		bip->bli_format.blf_size = nvecs;
283		return;
284	}
285
286	/*
287	 * Fill in an iovec for each set of contiguous chunks.
288	 */
289	first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
290					 bip->bli_format.blf_map_size, 0);
291	ASSERT(first_bit != -1);
292	last_bit = first_bit;
293	nbits = 1;
294	for (;;) {
295		/*
296		 * This takes the bit number to start looking from and
297		 * returns the next set bit from there.  It returns -1
298		 * if there are no more bits set or the start bit is
299		 * beyond the end of the bitmap.
300		 */
301		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
302						 bip->bli_format.blf_map_size,
303						 (uint)last_bit + 1);
304		/*
305		 * If we run out of bits fill in the last iovec and get
306		 * out of the loop.
307		 * Else if we start a new set of bits then fill in the
308		 * iovec for the series we were looking at and start
309		 * counting the bits in the new one.
310		 * Else we're still in the same set of bits so just
311		 * keep counting and scanning.
312		 */
313		if (next_bit == -1) {
314			buffer_offset = first_bit * XFS_BLF_CHUNK;
315			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
316			vecp->i_len = nbits * XFS_BLF_CHUNK;
317			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
318			nvecs++;
319			break;
320		} else if (next_bit != last_bit + 1) {
321			buffer_offset = first_bit * XFS_BLF_CHUNK;
322			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
323			vecp->i_len = nbits * XFS_BLF_CHUNK;
324			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
325			nvecs++;
326			vecp++;
327			first_bit = next_bit;
328			last_bit = next_bit;
329			nbits = 1;
330		} else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
331			   (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
332			    XFS_BLF_CHUNK)) {
333			buffer_offset = first_bit * XFS_BLF_CHUNK;
334			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
335			vecp->i_len = nbits * XFS_BLF_CHUNK;
336			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
337/* You would think we need to bump the nvecs here too, but we do not
338 * this number is used by recovery, and it gets confused by the boundary
339 * split here
340 *			nvecs++;
341 */
342			vecp++;
343			first_bit = next_bit;
344			last_bit = next_bit;
345			nbits = 1;
346		} else {
347			last_bit++;
348			nbits++;
349		}
350	}
351	bip->bli_format.blf_size = nvecs;
352
353	/*
354	 * Check to make sure everything is consistent.
355	 */
356	trace_xfs_buf_item_format(bip);
357	xfs_buf_item_log_check(bip);
358}
359
360/*
361 * This is called to pin the buffer associated with the buf log item in memory
362 * so it cannot be written out.
363 *
364 * We also always take a reference to the buffer log item here so that the bli
365 * is held while the item is pinned in memory. This means that we can
366 * unconditionally drop the reference count a transaction holds when the
367 * transaction is completed.
368 */
369STATIC void
370xfs_buf_item_pin(
371	struct xfs_log_item	*lip)
372{
373	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
374
375	ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
376	ASSERT(atomic_read(&bip->bli_refcount) > 0);
377	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
378	       (bip->bli_flags & XFS_BLI_STALE));
379
380	trace_xfs_buf_item_pin(bip);
381
382	atomic_inc(&bip->bli_refcount);
383	atomic_inc(&bip->bli_buf->b_pin_count);
384}
385
386/*
387 * This is called to unpin the buffer associated with the buf log
388 * item which was previously pinned with a call to xfs_buf_item_pin().
389 *
390 * Also drop the reference to the buf item for the current transaction.
391 * If the XFS_BLI_STALE flag is set and we are the last reference,
392 * then free up the buf log item and unlock the buffer.
393 *
394 * If the remove flag is set we are called from uncommit in the
395 * forced-shutdown path.  If that is true and the reference count on
396 * the log item is going to drop to zero we need to free the item's
397 * descriptor in the transaction.
398 */
399STATIC void
400xfs_buf_item_unpin(
401	struct xfs_log_item	*lip,
402	int			remove)
403{
404	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
405	xfs_buf_t	*bp = bip->bli_buf;
406	struct xfs_ail	*ailp = lip->li_ailp;
407	int		stale = bip->bli_flags & XFS_BLI_STALE;
408	int		freed;
409
410	ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
411	ASSERT(atomic_read(&bip->bli_refcount) > 0);
412
413	trace_xfs_buf_item_unpin(bip);
414
415	freed = atomic_dec_and_test(&bip->bli_refcount);
416
417	if (atomic_dec_and_test(&bp->b_pin_count))
418		wake_up_all(&bp->b_waiters);
419
420	if (freed && stale) {
421		ASSERT(bip->bli_flags & XFS_BLI_STALE);
422		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
423		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
424		ASSERT(XFS_BUF_ISSTALE(bp));
425		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
426
427		trace_xfs_buf_item_unpin_stale(bip);
428
429		if (remove) {
430			/*
431			 * We have to remove the log item from the transaction
432			 * as we are about to release our reference to the
433			 * buffer.  If we don't, the unlock that occurs later
434			 * in xfs_trans_uncommit() will ry to reference the
435			 * buffer which we no longer have a hold on.
436			 */
437			xfs_trans_del_item(lip);
438
439			/*
440			 * Since the transaction no longer refers to the buffer,
441			 * the buffer should no longer refer to the transaction.
442			 */
443			XFS_BUF_SET_FSPRIVATE2(bp, NULL);
444		}
445
446		/*
447		 * If we get called here because of an IO error, we may
448		 * or may not have the item on the AIL. xfs_trans_ail_delete()
449		 * will take care of that situation.
450		 * xfs_trans_ail_delete() drops the AIL lock.
451		 */
452		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
453			xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip);
454			XFS_BUF_SET_FSPRIVATE(bp, NULL);
455			XFS_BUF_CLR_IODONE_FUNC(bp);
456		} else {
457			spin_lock(&ailp->xa_lock);
458			xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
459			xfs_buf_item_relse(bp);
460			ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
461		}
462		xfs_buf_relse(bp);
463	}
464}
465
466/*
467 * This is called to attempt to lock the buffer associated with this
468 * buf log item.  Don't sleep on the buffer lock.  If we can't get
469 * the lock right away, return 0.  If we can get the lock, take a
470 * reference to the buffer. If this is a delayed write buffer that
471 * needs AIL help to be written back, invoke the pushbuf routine
472 * rather than the normal success path.
473 */
474STATIC uint
475xfs_buf_item_trylock(
476	struct xfs_log_item	*lip)
477{
478	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
479	struct xfs_buf		*bp = bip->bli_buf;
480
481	if (XFS_BUF_ISPINNED(bp))
482		return XFS_ITEM_PINNED;
483	if (!XFS_BUF_CPSEMA(bp))
484		return XFS_ITEM_LOCKED;
485
486	/* take a reference to the buffer.  */
487	XFS_BUF_HOLD(bp);
488
489	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
490	trace_xfs_buf_item_trylock(bip);
491	if (XFS_BUF_ISDELAYWRITE(bp))
492		return XFS_ITEM_PUSHBUF;
493	return XFS_ITEM_SUCCESS;
494}
495
496/*
497 * Release the buffer associated with the buf log item.  If there is no dirty
498 * logged data associated with the buffer recorded in the buf log item, then
499 * free the buf log item and remove the reference to it in the buffer.
500 *
501 * This call ignores the recursion count.  It is only called when the buffer
502 * should REALLY be unlocked, regardless of the recursion count.
503 *
504 * We unconditionally drop the transaction's reference to the log item. If the
505 * item was logged, then another reference was taken when it was pinned, so we
506 * can safely drop the transaction reference now.  This also allows us to avoid
507 * potential races with the unpin code freeing the bli by not referencing the
508 * bli after we've dropped the reference count.
509 *
510 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
511 * if necessary but do not unlock the buffer.  This is for support of
512 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
513 * free the item.
514 */
515STATIC void
516xfs_buf_item_unlock(
517	struct xfs_log_item	*lip)
518{
519	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
520	struct xfs_buf		*bp = bip->bli_buf;
521	int			aborted;
522	uint			hold;
523
524	/* Clear the buffer's association with this transaction. */
525	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
526
527	/*
528	 * If this is a transaction abort, don't return early.  Instead, allow
529	 * the brelse to happen.  Normally it would be done for stale
530	 * (cancelled) buffers at unpin time, but we'll never go through the
531	 * pin/unpin cycle if we abort inside commit.
532	 */
533	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
534
535	/*
536	 * Before possibly freeing the buf item, determine if we should
537	 * release the buffer at the end of this routine.
538	 */
539	hold = bip->bli_flags & XFS_BLI_HOLD;
540
541	/* Clear the per transaction state. */
542	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
543
544	/*
545	 * If the buf item is marked stale, then don't do anything.  We'll
546	 * unlock the buffer and free the buf item when the buffer is unpinned
547	 * for the last time.
548	 */
549	if (bip->bli_flags & XFS_BLI_STALE) {
550		trace_xfs_buf_item_unlock_stale(bip);
551		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
552		if (!aborted) {
553			atomic_dec(&bip->bli_refcount);
554			return;
555		}
556	}
557
558	trace_xfs_buf_item_unlock(bip);
559
560	/*
561	 * If the buf item isn't tracking any data, free it, otherwise drop the
562	 * reference we hold to it.
563	 */
564	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
565			     bip->bli_format.blf_map_size))
566		xfs_buf_item_relse(bp);
567	else
568		atomic_dec(&bip->bli_refcount);
569
570	if (!hold)
571		xfs_buf_relse(bp);
572}
573
574/*
575 * This is called to find out where the oldest active copy of the
576 * buf log item in the on disk log resides now that the last log
577 * write of it completed at the given lsn.
578 * We always re-log all the dirty data in a buffer, so usually the
579 * latest copy in the on disk log is the only one that matters.  For
580 * those cases we simply return the given lsn.
581 *
582 * The one exception to this is for buffers full of newly allocated
583 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
584 * flag set, indicating that only the di_next_unlinked fields from the
585 * inodes in the buffers will be replayed during recovery.  If the
586 * original newly allocated inode images have not yet been flushed
587 * when the buffer is so relogged, then we need to make sure that we
588 * keep the old images in the 'active' portion of the log.  We do this
589 * by returning the original lsn of that transaction here rather than
590 * the current one.
591 */
592STATIC xfs_lsn_t
593xfs_buf_item_committed(
594	struct xfs_log_item	*lip,
595	xfs_lsn_t		lsn)
596{
597	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
598
599	trace_xfs_buf_item_committed(bip);
600
601	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
602		return lip->li_lsn;
603	return lsn;
604}
605
606/*
607 * The buffer is locked, but is not a delayed write buffer. This happens
608 * if we race with IO completion and hence we don't want to try to write it
609 * again. Just release the buffer.
610 */
611STATIC void
612xfs_buf_item_push(
613	struct xfs_log_item	*lip)
614{
615	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
616	struct xfs_buf		*bp = bip->bli_buf;
617
618	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
619	ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
620
621	trace_xfs_buf_item_push(bip);
622
623	xfs_buf_relse(bp);
624}
625
626/*
627 * The buffer is locked and is a delayed write buffer. Promote the buffer
628 * in the delayed write queue as the caller knows that they must invoke
629 * the xfsbufd to get this buffer written. We have to unlock the buffer
630 * to allow the xfsbufd to write it, too.
631 */
632STATIC void
633xfs_buf_item_pushbuf(
634	struct xfs_log_item	*lip)
635{
636	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
637	struct xfs_buf		*bp = bip->bli_buf;
638
639	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
640	ASSERT(XFS_BUF_ISDELAYWRITE(bp));
641
642	trace_xfs_buf_item_pushbuf(bip);
643
644	xfs_buf_delwri_promote(bp);
645	xfs_buf_relse(bp);
646}
647
648STATIC void
649xfs_buf_item_committing(
650	struct xfs_log_item	*lip,
651	xfs_lsn_t		commit_lsn)
652{
653}
654
655/*
656 * This is the ops vector shared by all buf log items.
657 */
658static struct xfs_item_ops xfs_buf_item_ops = {
659	.iop_size	= xfs_buf_item_size,
660	.iop_format	= xfs_buf_item_format,
661	.iop_pin	= xfs_buf_item_pin,
662	.iop_unpin	= xfs_buf_item_unpin,
663	.iop_trylock	= xfs_buf_item_trylock,
664	.iop_unlock	= xfs_buf_item_unlock,
665	.iop_committed	= xfs_buf_item_committed,
666	.iop_push	= xfs_buf_item_push,
667	.iop_pushbuf	= xfs_buf_item_pushbuf,
668	.iop_committing = xfs_buf_item_committing
669};
670
671
672/*
673 * Allocate a new buf log item to go with the given buffer.
674 * Set the buffer's b_fsprivate field to point to the new
675 * buf log item.  If there are other item's attached to the
676 * buffer (see xfs_buf_attach_iodone() below), then put the
677 * buf log item at the front.
678 */
679void
680xfs_buf_item_init(
681	xfs_buf_t	*bp,
682	xfs_mount_t	*mp)
683{
684	xfs_log_item_t		*lip;
685	xfs_buf_log_item_t	*bip;
686	int			chunks;
687	int			map_size;
688
689	/*
690	 * Check to see if there is already a buf log item for
691	 * this buffer.  If there is, it is guaranteed to be
692	 * the first.  If we do already have one, there is
693	 * nothing to do here so return.
694	 */
695	if (bp->b_mount != mp)
696		bp->b_mount = mp;
697	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
698		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
699		if (lip->li_type == XFS_LI_BUF) {
700			return;
701		}
702	}
703
704	/*
705	 * chunks is the number of XFS_BLF_CHUNK size pieces
706	 * the buffer can be divided into. Make sure not to
707	 * truncate any pieces.  map_size is the size of the
708	 * bitmap needed to describe the chunks of the buffer.
709	 */
710	chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
711	map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
712
713	bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
714						    KM_SLEEP);
715	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
716	bip->bli_buf = bp;
717	xfs_buf_hold(bp);
718	bip->bli_format.blf_type = XFS_LI_BUF;
719	bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
720	bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
721	bip->bli_format.blf_map_size = map_size;
722
723#ifdef XFS_TRANS_DEBUG
724	/*
725	 * Allocate the arrays for tracking what needs to be logged
726	 * and what our callers request to be logged.  bli_orig
727	 * holds a copy of the original, clean buffer for comparison
728	 * against, and bli_logged keeps a 1 bit flag per byte in
729	 * the buffer to indicate which bytes the callers have asked
730	 * to have logged.
731	 */
732	bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
733	memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
734	bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
735#endif
736
737	/*
738	 * Put the buf item into the list of items attached to the
739	 * buffer at the front.
740	 */
741	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
742		bip->bli_item.li_bio_list =
743				XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
744	}
745	XFS_BUF_SET_FSPRIVATE(bp, bip);
746}
747
748
749/*
750 * Mark bytes first through last inclusive as dirty in the buf
751 * item's bitmap.
752 */
753void
754xfs_buf_item_log(
755	xfs_buf_log_item_t	*bip,
756	uint			first,
757	uint			last)
758{
759	uint		first_bit;
760	uint		last_bit;
761	uint		bits_to_set;
762	uint		bits_set;
763	uint		word_num;
764	uint		*wordp;
765	uint		bit;
766	uint		end_bit;
767	uint		mask;
768
769	/*
770	 * Mark the item as having some dirty data for
771	 * quick reference in xfs_buf_item_dirty.
772	 */
773	bip->bli_flags |= XFS_BLI_DIRTY;
774
775	/*
776	 * Convert byte offsets to bit numbers.
777	 */
778	first_bit = first >> XFS_BLF_SHIFT;
779	last_bit = last >> XFS_BLF_SHIFT;
780
781	/*
782	 * Calculate the total number of bits to be set.
783	 */
784	bits_to_set = last_bit - first_bit + 1;
785
786	/*
787	 * Get a pointer to the first word in the bitmap
788	 * to set a bit in.
789	 */
790	word_num = first_bit >> BIT_TO_WORD_SHIFT;
791	wordp = &(bip->bli_format.blf_data_map[word_num]);
792
793	/*
794	 * Calculate the starting bit in the first word.
795	 */
796	bit = first_bit & (uint)(NBWORD - 1);
797
798	/*
799	 * First set any bits in the first word of our range.
800	 * If it starts at bit 0 of the word, it will be
801	 * set below rather than here.  That is what the variable
802	 * bit tells us. The variable bits_set tracks the number
803	 * of bits that have been set so far.  End_bit is the number
804	 * of the last bit to be set in this word plus one.
805	 */
806	if (bit) {
807		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
808		mask = ((1 << (end_bit - bit)) - 1) << bit;
809		*wordp |= mask;
810		wordp++;
811		bits_set = end_bit - bit;
812	} else {
813		bits_set = 0;
814	}
815
816	/*
817	 * Now set bits a whole word at a time that are between
818	 * first_bit and last_bit.
819	 */
820	while ((bits_to_set - bits_set) >= NBWORD) {
821		*wordp |= 0xffffffff;
822		bits_set += NBWORD;
823		wordp++;
824	}
825
826	/*
827	 * Finally, set any bits left to be set in one last partial word.
828	 */
829	end_bit = bits_to_set - bits_set;
830	if (end_bit) {
831		mask = (1 << end_bit) - 1;
832		*wordp |= mask;
833	}
834
835	xfs_buf_item_log_debug(bip, first, last);
836}
837
838
839/*
840 * Return 1 if the buffer has some data that has been logged (at any
841 * point, not just the current transaction) and 0 if not.
842 */
843uint
844xfs_buf_item_dirty(
845	xfs_buf_log_item_t	*bip)
846{
847	return (bip->bli_flags & XFS_BLI_DIRTY);
848}
849
850STATIC void
851xfs_buf_item_free(
852	xfs_buf_log_item_t	*bip)
853{
854#ifdef XFS_TRANS_DEBUG
855	kmem_free(bip->bli_orig);
856	kmem_free(bip->bli_logged);
857#endif /* XFS_TRANS_DEBUG */
858
859	kmem_zone_free(xfs_buf_item_zone, bip);
860}
861
862/*
863 * This is called when the buf log item is no longer needed.  It should
864 * free the buf log item associated with the given buffer and clear
865 * the buffer's pointer to the buf log item.  If there are no more
866 * items in the list, clear the b_iodone field of the buffer (see
867 * xfs_buf_attach_iodone() below).
868 */
869void
870xfs_buf_item_relse(
871	xfs_buf_t	*bp)
872{
873	xfs_buf_log_item_t	*bip;
874
875	trace_xfs_buf_item_relse(bp, _RET_IP_);
876
877	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
878	XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
879	if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
880	    (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
881		XFS_BUF_CLR_IODONE_FUNC(bp);
882	}
883	xfs_buf_rele(bp);
884	xfs_buf_item_free(bip);
885}
886
887
888/*
889 * Add the given log item with its callback to the list of callbacks
890 * to be called when the buffer's I/O completes.  If it is not set
891 * already, set the buffer's b_iodone() routine to be
892 * xfs_buf_iodone_callbacks() and link the log item into the list of
893 * items rooted at b_fsprivate.  Items are always added as the second
894 * entry in the list if there is a first, because the buf item code
895 * assumes that the buf log item is first.
896 */
897void
898xfs_buf_attach_iodone(
899	xfs_buf_t	*bp,
900	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
901	xfs_log_item_t	*lip)
902{
903	xfs_log_item_t	*head_lip;
904
905	ASSERT(XFS_BUF_ISBUSY(bp));
906	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
907
908	lip->li_cb = cb;
909	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
910		head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
911		lip->li_bio_list = head_lip->li_bio_list;
912		head_lip->li_bio_list = lip;
913	} else {
914		XFS_BUF_SET_FSPRIVATE(bp, lip);
915	}
916
917	ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
918	       (XFS_BUF_IODONE_FUNC(bp) == NULL));
919	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
920}
921
922STATIC void
923xfs_buf_do_callbacks(
924	xfs_buf_t	*bp,
925	xfs_log_item_t	*lip)
926{
927	xfs_log_item_t	*nlip;
928
929	while (lip != NULL) {
930		nlip = lip->li_bio_list;
931		ASSERT(lip->li_cb != NULL);
932		/*
933		 * Clear the next pointer so we don't have any
934		 * confusion if the item is added to another buf.
935		 * Don't touch the log item after calling its
936		 * callback, because it could have freed itself.
937		 */
938		lip->li_bio_list = NULL;
939		lip->li_cb(bp, lip);
940		lip = nlip;
941	}
942}
943
944/*
945 * This is the iodone() function for buffers which have had callbacks
946 * attached to them by xfs_buf_attach_iodone().  It should remove each
947 * log item from the buffer's list and call the callback of each in turn.
948 * When done, the buffer's fsprivate field is set to NULL and the buffer
949 * is unlocked with a call to iodone().
950 */
951void
952xfs_buf_iodone_callbacks(
953	xfs_buf_t	*bp)
954{
955	xfs_log_item_t	*lip;
956	static ulong	lasttime;
957	static xfs_buftarg_t *lasttarg;
958	xfs_mount_t	*mp;
959
960	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
961	lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
962
963	if (XFS_BUF_GETERROR(bp) != 0) {
964		/*
965		 * If we've already decided to shutdown the filesystem
966		 * because of IO errors, there's no point in giving this
967		 * a retry.
968		 */
969		mp = lip->li_mountp;
970		if (XFS_FORCED_SHUTDOWN(mp)) {
971			ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
972			XFS_BUF_SUPER_STALE(bp);
973			trace_xfs_buf_item_iodone(bp, _RET_IP_);
974			xfs_buf_do_callbacks(bp, lip);
975			XFS_BUF_SET_FSPRIVATE(bp, NULL);
976			XFS_BUF_CLR_IODONE_FUNC(bp);
977			xfs_biodone(bp);
978			return;
979		}
980
981		if ((XFS_BUF_TARGET(bp) != lasttarg) ||
982		    (time_after(jiffies, (lasttime + 5*HZ)))) {
983			lasttime = jiffies;
984			cmn_err(CE_ALERT, "Device %s, XFS metadata write error"
985					" block 0x%llx in %s",
986				XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
987			      (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname);
988		}
989		lasttarg = XFS_BUF_TARGET(bp);
990
991		if (XFS_BUF_ISASYNC(bp)) {
992			/*
993			 * If the write was asynchronous then noone will be
994			 * looking for the error.  Clear the error state
995			 * and write the buffer out again delayed write.
996			 *
997			 * XXXsup This is OK, so long as we catch these
998			 * before we start the umount; we don't want these
999			 * DELWRI metadata bufs to be hanging around.
1000			 */
1001			XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */
1002
1003			if (!(XFS_BUF_ISSTALE(bp))) {
1004				XFS_BUF_DELAYWRITE(bp);
1005				XFS_BUF_DONE(bp);
1006				XFS_BUF_SET_START(bp);
1007			}
1008			ASSERT(XFS_BUF_IODONE_FUNC(bp));
1009			trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1010			xfs_buf_relse(bp);
1011		} else {
1012			/*
1013			 * If the write of the buffer was not asynchronous,
1014			 * then we want to make sure to return the error
1015			 * to the caller of bwrite().  Because of this we
1016			 * cannot clear the B_ERROR state at this point.
1017			 * Instead we install a callback function that
1018			 * will be called when the buffer is released, and
1019			 * that routine will clear the error state and
1020			 * set the buffer to be written out again after
1021			 * some delay.
1022			 */
1023			/* We actually overwrite the existing b-relse
1024			   function at times, but we're gonna be shutting down
1025			   anyway. */
1026			XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse);
1027			XFS_BUF_DONE(bp);
1028			XFS_BUF_FINISH_IOWAIT(bp);
1029		}
1030		return;
1031	}
1032
1033	xfs_buf_do_callbacks(bp, lip);
1034	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1035	XFS_BUF_CLR_IODONE_FUNC(bp);
1036	xfs_biodone(bp);
1037}
1038
1039/*
1040 * This is a callback routine attached to a buffer which gets an error
1041 * when being written out synchronously.
1042 */
1043STATIC void
1044xfs_buf_error_relse(
1045	xfs_buf_t	*bp)
1046{
1047	xfs_log_item_t	*lip;
1048	xfs_mount_t	*mp;
1049
1050	lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1051	mp = (xfs_mount_t *)lip->li_mountp;
1052	ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
1053
1054	XFS_BUF_STALE(bp);
1055	XFS_BUF_DONE(bp);
1056	XFS_BUF_UNDELAYWRITE(bp);
1057	XFS_BUF_ERROR(bp,0);
1058
1059	trace_xfs_buf_error_relse(bp, _RET_IP_);
1060
1061	if (! XFS_FORCED_SHUTDOWN(mp))
1062		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1063	/*
1064	 * We have to unpin the pinned buffers so do the
1065	 * callbacks.
1066	 */
1067	xfs_buf_do_callbacks(bp, lip);
1068	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1069	XFS_BUF_CLR_IODONE_FUNC(bp);
1070	XFS_BUF_SET_BRELSE_FUNC(bp,NULL);
1071	xfs_buf_relse(bp);
1072}
1073
1074
1075/*
1076 * This is the iodone() function for buffers which have been
1077 * logged.  It is called when they are eventually flushed out.
1078 * It should remove the buf item from the AIL, and free the buf item.
1079 * It is called by xfs_buf_iodone_callbacks() above which will take
1080 * care of cleaning up the buffer itself.
1081 */
1082void
1083xfs_buf_iodone(
1084	struct xfs_buf		*bp,
1085	struct xfs_log_item	*lip)
1086{
1087	struct xfs_ail		*ailp = lip->li_ailp;
1088
1089	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1090
1091	xfs_buf_rele(bp);
1092
1093	/*
1094	 * If we are forcibly shutting down, this may well be
1095	 * off the AIL already. That's because we simulate the
1096	 * log-committed callbacks to unpin these buffers. Or we may never
1097	 * have put this item on AIL because of the transaction was
1098	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1099	 *
1100	 * Either way, AIL is useless if we're forcing a shutdown.
1101	 */
1102	spin_lock(&ailp->xa_lock);
1103	xfs_trans_ail_delete(ailp, lip);
1104	xfs_buf_item_free(BUF_ITEM(lip));
1105}
1106