• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/fs/xfs/linux-2.6/
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_bit.h"
20#include "xfs_log.h"
21#include "xfs_inum.h"
22#include "xfs_sb.h"
23#include "xfs_ag.h"
24#include "xfs_trans.h"
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
29#include "xfs_alloc.h"
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
33#include "xfs_vnodeops.h"
34#include "xfs_trace.h"
35#include "xfs_bmap.h"
36#include <linux/gfp.h>
37#include <linux/mpage.h>
38#include <linux/pagevec.h>
39#include <linux/writeback.h>
40
41/*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44enum {
45	IO_READ,	/* mapping for a read */
46	IO_DELAY,	/* mapping covers delalloc region */
47	IO_UNWRITTEN,	/* mapping covers allocated but uninitialized data */
48	IO_NEW		/* just allocated */
49};
50
51/*
52 * Prime number of hash buckets since address is used as the key.
53 */
54#define NVSYNC		37
55#define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58void __init
59xfs_ioend_init(void)
60{
61	int i;
62
63	for (i = 0; i < NVSYNC; i++)
64		init_waitqueue_head(&xfs_ioend_wq[i]);
65}
66
67void
68xfs_ioend_wait(
69	xfs_inode_t	*ip)
70{
71	wait_queue_head_t *wq = to_ioend_wq(ip);
72
73	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74}
75
76STATIC void
77xfs_ioend_wake(
78	xfs_inode_t	*ip)
79{
80	if (atomic_dec_and_test(&ip->i_iocount))
81		wake_up(to_ioend_wq(ip));
82}
83
84void
85xfs_count_page_state(
86	struct page		*page,
87	int			*delalloc,
88	int			*unwritten)
89{
90	struct buffer_head	*bh, *head;
91
92	*delalloc = *unwritten = 0;
93
94	bh = head = page_buffers(page);
95	do {
96		if (buffer_unwritten(bh))
97			(*unwritten) = 1;
98		else if (buffer_delay(bh))
99			(*delalloc) = 1;
100	} while ((bh = bh->b_this_page) != head);
101}
102
103STATIC struct block_device *
104xfs_find_bdev_for_inode(
105	struct inode		*inode)
106{
107	struct xfs_inode	*ip = XFS_I(inode);
108	struct xfs_mount	*mp = ip->i_mount;
109
110	if (XFS_IS_REALTIME_INODE(ip))
111		return mp->m_rtdev_targp->bt_bdev;
112	else
113		return mp->m_ddev_targp->bt_bdev;
114}
115
116/*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory.  Do not use the ioend after this.
121 */
122STATIC void
123xfs_destroy_ioend(
124	xfs_ioend_t		*ioend)
125{
126	struct buffer_head	*bh, *next;
127	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
128
129	for (bh = ioend->io_buffer_head; bh; bh = next) {
130		next = bh->b_private;
131		bh->b_end_io(bh, !ioend->io_error);
132	}
133
134	/*
135	 * Volume managers supporting multiple paths can send back ENODEV
136	 * when the final path disappears.  In this case continuing to fill
137	 * the page cache with dirty data which cannot be written out is
138	 * evil, so prevent that.
139	 */
140	if (unlikely(ioend->io_error == -ENODEV)) {
141		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142				      __FILE__, __LINE__);
143	}
144
145	xfs_ioend_wake(ip);
146	mempool_free(ioend, xfs_ioend_pool);
147}
148
149/*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153STATIC xfs_fsize_t
154xfs_ioend_new_eof(
155	xfs_ioend_t		*ioend)
156{
157	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
158	xfs_fsize_t		isize;
159	xfs_fsize_t		bsize;
160
161	bsize = ioend->io_offset + ioend->io_size;
162	isize = MAX(ip->i_size, ip->i_new_size);
163	isize = MIN(isize, bsize);
164	return isize > ip->i_d.di_size ? isize : 0;
165}
166
167/*
168 * Update on-disk file size now that data has been written to disk.  The
169 * current in-memory file size is i_size.  If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated.  If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
177 */
178STATIC int
179xfs_setfilesize(
180	xfs_ioend_t		*ioend)
181{
182	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
183	xfs_fsize_t		isize;
184
185	ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
186	ASSERT(ioend->io_type != IO_READ);
187
188	if (unlikely(ioend->io_error))
189		return 0;
190
191	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192		return EAGAIN;
193
194	isize = xfs_ioend_new_eof(ioend);
195	if (isize) {
196		ip->i_d.di_size = isize;
197		xfs_mark_inode_dirty(ip);
198	}
199
200	xfs_iunlock(ip, XFS_ILOCK_EXCL);
201	return 0;
202}
203
204/*
205 * Schedule IO completion handling on the final put of an ioend.
206 */
207STATIC void
208xfs_finish_ioend(
209	struct xfs_ioend	*ioend)
210{
211	if (atomic_dec_and_test(&ioend->io_remaining)) {
212		if (ioend->io_type == IO_UNWRITTEN)
213			queue_work(xfsconvertd_workqueue, &ioend->io_work);
214		else
215			queue_work(xfsdatad_workqueue, &ioend->io_work);
216	}
217}
218
219/*
220 * IO write completion.
221 */
222STATIC void
223xfs_end_io(
224	struct work_struct *work)
225{
226	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
227	struct xfs_inode *ip = XFS_I(ioend->io_inode);
228	int		error = 0;
229
230	/*
231	 * For unwritten extents we need to issue transactions to convert a
232	 * range to normal written extens after the data I/O has finished.
233	 */
234	if (ioend->io_type == IO_UNWRITTEN &&
235	    likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
236
237		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
238						 ioend->io_size);
239		if (error)
240			ioend->io_error = error;
241	}
242
243	/*
244	 * We might have to update the on-disk file size after extending
245	 * writes.
246	 */
247	if (ioend->io_type != IO_READ) {
248		error = xfs_setfilesize(ioend);
249		ASSERT(!error || error == EAGAIN);
250	}
251
252	/*
253	 * If we didn't complete processing of the ioend, requeue it to the
254	 * tail of the workqueue for another attempt later. Otherwise destroy
255	 * it.
256	 */
257	if (error == EAGAIN) {
258		atomic_inc(&ioend->io_remaining);
259		xfs_finish_ioend(ioend);
260		/* ensure we don't spin on blocked ioends */
261		delay(1);
262	} else {
263		if (ioend->io_iocb)
264			aio_complete(ioend->io_iocb, ioend->io_result, 0);
265		xfs_destroy_ioend(ioend);
266	}
267}
268
269/*
270 * Call IO completion handling in caller context on the final put of an ioend.
271 */
272STATIC void
273xfs_finish_ioend_sync(
274	struct xfs_ioend	*ioend)
275{
276	if (atomic_dec_and_test(&ioend->io_remaining))
277		xfs_end_io(&ioend->io_work);
278}
279
280/*
281 * Allocate and initialise an IO completion structure.
282 * We need to track unwritten extent write completion here initially.
283 * We'll need to extend this for updating the ondisk inode size later
284 * (vs. incore size).
285 */
286STATIC xfs_ioend_t *
287xfs_alloc_ioend(
288	struct inode		*inode,
289	unsigned int		type)
290{
291	xfs_ioend_t		*ioend;
292
293	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
294
295	/*
296	 * Set the count to 1 initially, which will prevent an I/O
297	 * completion callback from happening before we have started
298	 * all the I/O from calling the completion routine too early.
299	 */
300	atomic_set(&ioend->io_remaining, 1);
301	ioend->io_error = 0;
302	ioend->io_list = NULL;
303	ioend->io_type = type;
304	ioend->io_inode = inode;
305	ioend->io_buffer_head = NULL;
306	ioend->io_buffer_tail = NULL;
307	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
308	ioend->io_offset = 0;
309	ioend->io_size = 0;
310	ioend->io_iocb = NULL;
311	ioend->io_result = 0;
312
313	INIT_WORK(&ioend->io_work, xfs_end_io);
314	return ioend;
315}
316
317STATIC int
318xfs_map_blocks(
319	struct inode		*inode,
320	loff_t			offset,
321	ssize_t			count,
322	struct xfs_bmbt_irec	*imap,
323	int			flags)
324{
325	int			nmaps = 1;
326	int			new = 0;
327
328	return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
329}
330
331STATIC int
332xfs_imap_valid(
333	struct inode		*inode,
334	struct xfs_bmbt_irec	*imap,
335	xfs_off_t		offset)
336{
337	offset >>= inode->i_blkbits;
338
339	return offset >= imap->br_startoff &&
340		offset < imap->br_startoff + imap->br_blockcount;
341}
342
343/*
344 * BIO completion handler for buffered IO.
345 */
346STATIC void
347xfs_end_bio(
348	struct bio		*bio,
349	int			error)
350{
351	xfs_ioend_t		*ioend = bio->bi_private;
352
353	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
354	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
355
356	/* Toss bio and pass work off to an xfsdatad thread */
357	bio->bi_private = NULL;
358	bio->bi_end_io = NULL;
359	bio_put(bio);
360
361	xfs_finish_ioend(ioend);
362}
363
364STATIC void
365xfs_submit_ioend_bio(
366	struct writeback_control *wbc,
367	xfs_ioend_t		*ioend,
368	struct bio		*bio)
369{
370	atomic_inc(&ioend->io_remaining);
371	bio->bi_private = ioend;
372	bio->bi_end_io = xfs_end_bio;
373
374	/*
375	 * If the I/O is beyond EOF we mark the inode dirty immediately
376	 * but don't update the inode size until I/O completion.
377	 */
378	if (xfs_ioend_new_eof(ioend))
379		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
380
381	submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
382		   WRITE_SYNC_PLUG : WRITE, bio);
383	ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
384	bio_put(bio);
385}
386
387STATIC struct bio *
388xfs_alloc_ioend_bio(
389	struct buffer_head	*bh)
390{
391	struct bio		*bio;
392	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
393
394	do {
395		bio = bio_alloc(GFP_NOIO, nvecs);
396		nvecs >>= 1;
397	} while (!bio);
398
399	ASSERT(bio->bi_private == NULL);
400	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
401	bio->bi_bdev = bh->b_bdev;
402	bio_get(bio);
403	return bio;
404}
405
406STATIC void
407xfs_start_buffer_writeback(
408	struct buffer_head	*bh)
409{
410	ASSERT(buffer_mapped(bh));
411	ASSERT(buffer_locked(bh));
412	ASSERT(!buffer_delay(bh));
413	ASSERT(!buffer_unwritten(bh));
414
415	mark_buffer_async_write(bh);
416	set_buffer_uptodate(bh);
417	clear_buffer_dirty(bh);
418}
419
420STATIC void
421xfs_start_page_writeback(
422	struct page		*page,
423	int			clear_dirty,
424	int			buffers)
425{
426	ASSERT(PageLocked(page));
427	ASSERT(!PageWriteback(page));
428	if (clear_dirty)
429		clear_page_dirty_for_io(page);
430	set_page_writeback(page);
431	unlock_page(page);
432	/* If no buffers on the page are to be written, finish it here */
433	if (!buffers)
434		end_page_writeback(page);
435}
436
437static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438{
439	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440}
441
442/*
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
457 * buffer_heads, and then submit them for I/O on the second pass.
458 */
459STATIC void
460xfs_submit_ioend(
461	struct writeback_control *wbc,
462	xfs_ioend_t		*ioend)
463{
464	xfs_ioend_t		*head = ioend;
465	xfs_ioend_t		*next;
466	struct buffer_head	*bh;
467	struct bio		*bio;
468	sector_t		lastblock = 0;
469
470	/* Pass 1 - start writeback */
471	do {
472		next = ioend->io_list;
473		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
474			xfs_start_buffer_writeback(bh);
475		}
476	} while ((ioend = next) != NULL);
477
478	/* Pass 2 - submit I/O */
479	ioend = head;
480	do {
481		next = ioend->io_list;
482		bio = NULL;
483
484		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
485
486			if (!bio) {
487 retry:
488				bio = xfs_alloc_ioend_bio(bh);
489			} else if (bh->b_blocknr != lastblock + 1) {
490				xfs_submit_ioend_bio(wbc, ioend, bio);
491				goto retry;
492			}
493
494			if (bio_add_buffer(bio, bh) != bh->b_size) {
495				xfs_submit_ioend_bio(wbc, ioend, bio);
496				goto retry;
497			}
498
499			lastblock = bh->b_blocknr;
500		}
501		if (bio)
502			xfs_submit_ioend_bio(wbc, ioend, bio);
503		xfs_finish_ioend(ioend);
504	} while ((ioend = next) != NULL);
505}
506
507/*
508 * Cancel submission of all buffer_heads so far in this endio.
509 * Toss the endio too.  Only ever called for the initial page
510 * in a writepage request, so only ever one page.
511 */
512STATIC void
513xfs_cancel_ioend(
514	xfs_ioend_t		*ioend)
515{
516	xfs_ioend_t		*next;
517	struct buffer_head	*bh, *next_bh;
518
519	do {
520		next = ioend->io_list;
521		bh = ioend->io_buffer_head;
522		do {
523			next_bh = bh->b_private;
524			clear_buffer_async_write(bh);
525			unlock_buffer(bh);
526		} while ((bh = next_bh) != NULL);
527
528		xfs_ioend_wake(XFS_I(ioend->io_inode));
529		mempool_free(ioend, xfs_ioend_pool);
530	} while ((ioend = next) != NULL);
531}
532
533/*
534 * Test to see if we've been building up a completion structure for
535 * earlier buffers -- if so, we try to append to this ioend if we
536 * can, otherwise we finish off any current ioend and start another.
537 * Return true if we've finished the given ioend.
538 */
539STATIC void
540xfs_add_to_ioend(
541	struct inode		*inode,
542	struct buffer_head	*bh,
543	xfs_off_t		offset,
544	unsigned int		type,
545	xfs_ioend_t		**result,
546	int			need_ioend)
547{
548	xfs_ioend_t		*ioend = *result;
549
550	if (!ioend || need_ioend || type != ioend->io_type) {
551		xfs_ioend_t	*previous = *result;
552
553		ioend = xfs_alloc_ioend(inode, type);
554		ioend->io_offset = offset;
555		ioend->io_buffer_head = bh;
556		ioend->io_buffer_tail = bh;
557		if (previous)
558			previous->io_list = ioend;
559		*result = ioend;
560	} else {
561		ioend->io_buffer_tail->b_private = bh;
562		ioend->io_buffer_tail = bh;
563	}
564
565	bh->b_private = NULL;
566	ioend->io_size += bh->b_size;
567}
568
569STATIC void
570xfs_map_buffer(
571	struct inode		*inode,
572	struct buffer_head	*bh,
573	struct xfs_bmbt_irec	*imap,
574	xfs_off_t		offset)
575{
576	sector_t		bn;
577	struct xfs_mount	*m = XFS_I(inode)->i_mount;
578	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
579	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
580
581	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
582	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
583
584	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
585	      ((offset - iomap_offset) >> inode->i_blkbits);
586
587	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
588
589	bh->b_blocknr = bn;
590	set_buffer_mapped(bh);
591}
592
593STATIC void
594xfs_map_at_offset(
595	struct inode		*inode,
596	struct buffer_head	*bh,
597	struct xfs_bmbt_irec	*imap,
598	xfs_off_t		offset)
599{
600	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
601	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
602
603	lock_buffer(bh);
604	xfs_map_buffer(inode, bh, imap, offset);
605	bh->b_bdev = xfs_find_bdev_for_inode(inode);
606	set_buffer_mapped(bh);
607	clear_buffer_delay(bh);
608	clear_buffer_unwritten(bh);
609}
610
611/*
612 * Look for a page at index that is suitable for clustering.
613 */
614STATIC unsigned int
615xfs_probe_page(
616	struct page		*page,
617	unsigned int		pg_offset)
618{
619	struct buffer_head	*bh, *head;
620	int			ret = 0;
621
622	if (PageWriteback(page))
623		return 0;
624	if (!PageDirty(page))
625		return 0;
626	if (!page->mapping)
627		return 0;
628	if (!page_has_buffers(page))
629		return 0;
630
631	bh = head = page_buffers(page);
632	do {
633		if (!buffer_uptodate(bh))
634			break;
635		if (!buffer_mapped(bh))
636			break;
637		ret += bh->b_size;
638		if (ret >= pg_offset)
639			break;
640	} while ((bh = bh->b_this_page) != head);
641
642	return ret;
643}
644
645STATIC size_t
646xfs_probe_cluster(
647	struct inode		*inode,
648	struct page		*startpage,
649	struct buffer_head	*bh,
650	struct buffer_head	*head)
651{
652	struct pagevec		pvec;
653	pgoff_t			tindex, tlast, tloff;
654	size_t			total = 0;
655	int			done = 0, i;
656
657	/* First sum forwards in this page */
658	do {
659		if (!buffer_uptodate(bh) || !buffer_mapped(bh))
660			return total;
661		total += bh->b_size;
662	} while ((bh = bh->b_this_page) != head);
663
664	/* if we reached the end of the page, sum forwards in following pages */
665	tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
666	tindex = startpage->index + 1;
667
668	/* Prune this back to avoid pathological behavior */
669	tloff = min(tlast, startpage->index + 64);
670
671	pagevec_init(&pvec, 0);
672	while (!done && tindex <= tloff) {
673		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
674
675		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
676			break;
677
678		for (i = 0; i < pagevec_count(&pvec); i++) {
679			struct page *page = pvec.pages[i];
680			size_t pg_offset, pg_len = 0;
681
682			if (tindex == tlast) {
683				pg_offset =
684				    i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
685				if (!pg_offset) {
686					done = 1;
687					break;
688				}
689			} else
690				pg_offset = PAGE_CACHE_SIZE;
691
692			if (page->index == tindex && trylock_page(page)) {
693				pg_len = xfs_probe_page(page, pg_offset);
694				unlock_page(page);
695			}
696
697			if (!pg_len) {
698				done = 1;
699				break;
700			}
701
702			total += pg_len;
703			tindex++;
704		}
705
706		pagevec_release(&pvec);
707		cond_resched();
708	}
709
710	return total;
711}
712
713/*
714 * Test if a given page is suitable for writing as part of an unwritten
715 * or delayed allocate extent.
716 */
717STATIC int
718xfs_is_delayed_page(
719	struct page		*page,
720	unsigned int		type)
721{
722	if (PageWriteback(page))
723		return 0;
724
725	if (page->mapping && page_has_buffers(page)) {
726		struct buffer_head	*bh, *head;
727		int			acceptable = 0;
728
729		bh = head = page_buffers(page);
730		do {
731			if (buffer_unwritten(bh))
732				acceptable = (type == IO_UNWRITTEN);
733			else if (buffer_delay(bh))
734				acceptable = (type == IO_DELAY);
735			else if (buffer_dirty(bh) && buffer_mapped(bh))
736				acceptable = (type == IO_NEW);
737			else
738				break;
739		} while ((bh = bh->b_this_page) != head);
740
741		if (acceptable)
742			return 1;
743	}
744
745	return 0;
746}
747
748/*
749 * Allocate & map buffers for page given the extent map. Write it out.
750 * except for the original page of a writepage, this is called on
751 * delalloc/unwritten pages only, for the original page it is possible
752 * that the page has no mapping at all.
753 */
754STATIC int
755xfs_convert_page(
756	struct inode		*inode,
757	struct page		*page,
758	loff_t			tindex,
759	struct xfs_bmbt_irec	*imap,
760	xfs_ioend_t		**ioendp,
761	struct writeback_control *wbc,
762	int			all_bh)
763{
764	struct buffer_head	*bh, *head;
765	xfs_off_t		end_offset;
766	unsigned long		p_offset;
767	unsigned int		type;
768	int			len, page_dirty;
769	int			count = 0, done = 0, uptodate = 1;
770 	xfs_off_t		offset = page_offset(page);
771
772	if (page->index != tindex)
773		goto fail;
774	if (!trylock_page(page))
775		goto fail;
776	if (PageWriteback(page))
777		goto fail_unlock_page;
778	if (page->mapping != inode->i_mapping)
779		goto fail_unlock_page;
780	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
781		goto fail_unlock_page;
782
783	/*
784	 * page_dirty is initially a count of buffers on the page before
785	 * EOF and is decremented as we move each into a cleanable state.
786	 *
787	 * Derivation:
788	 *
789	 * End offset is the highest offset that this page should represent.
790	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
791	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
792	 * hence give us the correct page_dirty count. On any other page,
793	 * it will be zero and in that case we need page_dirty to be the
794	 * count of buffers on the page.
795	 */
796	end_offset = min_t(unsigned long long,
797			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
798			i_size_read(inode));
799
800	len = 1 << inode->i_blkbits;
801	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
802					PAGE_CACHE_SIZE);
803	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
804	page_dirty = p_offset / len;
805
806	bh = head = page_buffers(page);
807	do {
808		if (offset >= end_offset)
809			break;
810		if (!buffer_uptodate(bh))
811			uptodate = 0;
812		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
813			done = 1;
814			continue;
815		}
816
817		if (buffer_unwritten(bh) || buffer_delay(bh)) {
818			if (buffer_unwritten(bh))
819				type = IO_UNWRITTEN;
820			else
821				type = IO_DELAY;
822
823			if (!xfs_imap_valid(inode, imap, offset)) {
824				done = 1;
825				continue;
826			}
827
828			ASSERT(imap->br_startblock != HOLESTARTBLOCK);
829			ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
830
831			xfs_map_at_offset(inode, bh, imap, offset);
832			xfs_add_to_ioend(inode, bh, offset, type,
833					 ioendp, done);
834
835			page_dirty--;
836			count++;
837		} else {
838			type = IO_NEW;
839			if (buffer_mapped(bh) && all_bh) {
840				lock_buffer(bh);
841				xfs_add_to_ioend(inode, bh, offset,
842						type, ioendp, done);
843				count++;
844				page_dirty--;
845			} else {
846				done = 1;
847			}
848		}
849	} while (offset += len, (bh = bh->b_this_page) != head);
850
851	if (uptodate && bh == head)
852		SetPageUptodate(page);
853
854	if (count) {
855		if (--wbc->nr_to_write <= 0 &&
856		    wbc->sync_mode == WB_SYNC_NONE)
857			done = 1;
858	}
859	xfs_start_page_writeback(page, !page_dirty, count);
860
861	return done;
862 fail_unlock_page:
863	unlock_page(page);
864 fail:
865	return 1;
866}
867
868/*
869 * Convert & write out a cluster of pages in the same extent as defined
870 * by mp and following the start page.
871 */
872STATIC void
873xfs_cluster_write(
874	struct inode		*inode,
875	pgoff_t			tindex,
876	struct xfs_bmbt_irec	*imap,
877	xfs_ioend_t		**ioendp,
878	struct writeback_control *wbc,
879	int			all_bh,
880	pgoff_t			tlast)
881{
882	struct pagevec		pvec;
883	int			done = 0, i;
884
885	pagevec_init(&pvec, 0);
886	while (!done && tindex <= tlast) {
887		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
888
889		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
890			break;
891
892		for (i = 0; i < pagevec_count(&pvec); i++) {
893			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
894					imap, ioendp, wbc, all_bh);
895			if (done)
896				break;
897		}
898
899		pagevec_release(&pvec);
900		cond_resched();
901	}
902}
903
904STATIC void
905xfs_vm_invalidatepage(
906	struct page		*page,
907	unsigned long		offset)
908{
909	trace_xfs_invalidatepage(page->mapping->host, page, offset);
910	block_invalidatepage(page, offset);
911}
912
913/*
914 * If the page has delalloc buffers on it, we need to punch them out before we
915 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
916 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
917 * is done on that same region - the delalloc extent is returned when none is
918 * supposed to be there.
919 *
920 * We prevent this by truncating away the delalloc regions on the page before
921 * invalidating it. Because they are delalloc, we can do this without needing a
922 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
923 * truncation without a transaction as there is no space left for block
924 * reservation (typically why we see a ENOSPC in writeback).
925 *
926 * This is not a performance critical path, so for now just do the punching a
927 * buffer head at a time.
928 */
929STATIC void
930xfs_aops_discard_page(
931	struct page		*page)
932{
933	struct inode		*inode = page->mapping->host;
934	struct xfs_inode	*ip = XFS_I(inode);
935	struct buffer_head	*bh, *head;
936	loff_t			offset = page_offset(page);
937	ssize_t			len = 1 << inode->i_blkbits;
938
939	if (!xfs_is_delayed_page(page, IO_DELAY))
940		goto out_invalidate;
941
942	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
943		goto out_invalidate;
944
945	xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
946		"page discard on page %p, inode 0x%llx, offset %llu.",
947			page, ip->i_ino, offset);
948
949	xfs_ilock(ip, XFS_ILOCK_EXCL);
950	bh = head = page_buffers(page);
951	do {
952		int		done;
953		xfs_fileoff_t	offset_fsb;
954		xfs_bmbt_irec_t	imap;
955		int		nimaps = 1;
956		int		error;
957		xfs_fsblock_t	firstblock;
958		xfs_bmap_free_t flist;
959
960		if (!buffer_delay(bh))
961			goto next_buffer;
962
963		offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
964
965		/*
966		 * Map the range first and check that it is a delalloc extent
967		 * before trying to unmap the range. Otherwise we will be
968		 * trying to remove a real extent (which requires a
969		 * transaction) or a hole, which is probably a bad idea...
970		 */
971		error = xfs_bmapi(NULL, ip, offset_fsb, 1,
972				XFS_BMAPI_ENTIRE,  NULL, 0, &imap,
973				&nimaps, NULL);
974
975		if (error) {
976			/* something screwed, just bail */
977			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
978				xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
979				"page discard failed delalloc mapping lookup.");
980			}
981			break;
982		}
983		if (!nimaps) {
984			/* nothing there */
985			goto next_buffer;
986		}
987		if (imap.br_startblock != DELAYSTARTBLOCK) {
988			/* been converted, ignore */
989			goto next_buffer;
990		}
991		WARN_ON(imap.br_blockcount == 0);
992
993		/*
994		 * Note: while we initialise the firstblock/flist pair, they
995		 * should never be used because blocks should never be
996		 * allocated or freed for a delalloc extent and hence we need
997		 * don't cancel or finish them after the xfs_bunmapi() call.
998		 */
999		xfs_bmap_init(&flist, &firstblock);
1000		error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
1001					&flist, &done);
1002
1003		ASSERT(!flist.xbf_count && !flist.xbf_first);
1004		if (error) {
1005			/* something screwed, just bail */
1006			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1007				xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
1008			"page discard unable to remove delalloc mapping.");
1009			}
1010			break;
1011		}
1012next_buffer:
1013		offset += len;
1014
1015	} while ((bh = bh->b_this_page) != head);
1016
1017	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1018out_invalidate:
1019	xfs_vm_invalidatepage(page, 0);
1020	return;
1021}
1022
1023/*
1024 * Write out a dirty page.
1025 *
1026 * For delalloc space on the page we need to allocate space and flush it.
1027 * For unwritten space on the page we need to start the conversion to
1028 * regular allocated space.
1029 * For any other dirty buffer heads on the page we should flush them.
1030 *
1031 * If we detect that a transaction would be required to flush the page, we
1032 * have to check the process flags first, if we are already in a transaction
1033 * or disk I/O during allocations is off, we need to fail the writepage and
1034 * redirty the page.
1035 */
1036STATIC int
1037xfs_vm_writepage(
1038	struct page		*page,
1039	struct writeback_control *wbc)
1040{
1041	struct inode		*inode = page->mapping->host;
1042	int			delalloc, unwritten;
1043	struct buffer_head	*bh, *head;
1044	struct xfs_bmbt_irec	imap;
1045	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
1046	loff_t			offset;
1047	unsigned int		type;
1048	__uint64_t              end_offset;
1049	pgoff_t                 end_index, last_index;
1050	ssize_t			size, len;
1051	int			flags, err, imap_valid = 0, uptodate = 1;
1052	int			count = 0;
1053	int			all_bh = 0;
1054
1055	trace_xfs_writepage(inode, page, 0);
1056
1057	ASSERT(page_has_buffers(page));
1058
1059	/*
1060	 * Refuse to write the page out if we are called from reclaim context.
1061	 *
1062	 * This avoids stack overflows when called from deeply used stacks in
1063	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1064	 * allow reclaim from kswapd as the stack usage there is relatively low.
1065	 *
1066	 * This should really be done by the core VM, but until that happens
1067	 * filesystems like XFS, btrfs and ext4 have to take care of this
1068	 * by themselves.
1069	 */
1070	if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
1071		goto redirty;
1072
1073	/*
1074	 * We need a transaction if there are delalloc or unwritten buffers
1075	 * on the page.
1076	 *
1077	 * If we need a transaction and the process flags say we are already
1078	 * in a transaction, or no IO is allowed then mark the page dirty
1079	 * again and leave the page as is.
1080	 */
1081	xfs_count_page_state(page, &delalloc, &unwritten);
1082	if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
1083		goto redirty;
1084
1085	/* Is this page beyond the end of the file? */
1086	offset = i_size_read(inode);
1087	end_index = offset >> PAGE_CACHE_SHIFT;
1088	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1089	if (page->index >= end_index) {
1090		if ((page->index >= end_index + 1) ||
1091		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1092			unlock_page(page);
1093			return 0;
1094		}
1095	}
1096
1097	end_offset = min_t(unsigned long long,
1098			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1099			offset);
1100	len = 1 << inode->i_blkbits;
1101
1102	bh = head = page_buffers(page);
1103	offset = page_offset(page);
1104	flags = BMAPI_READ;
1105	type = IO_NEW;
1106
1107	do {
1108		if (offset >= end_offset)
1109			break;
1110		if (!buffer_uptodate(bh))
1111			uptodate = 0;
1112
1113		/*
1114		 * A hole may still be marked uptodate because discard_buffer
1115		 * leaves the flag set.
1116		 */
1117		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1118			ASSERT(!buffer_dirty(bh));
1119			imap_valid = 0;
1120			continue;
1121		}
1122
1123		if (imap_valid)
1124			imap_valid = xfs_imap_valid(inode, &imap, offset);
1125
1126		if (buffer_unwritten(bh) || buffer_delay(bh)) {
1127			int new_ioend = 0;
1128
1129			/*
1130			 * Make sure we don't use a read-only iomap
1131			 */
1132			if (flags == BMAPI_READ)
1133				imap_valid = 0;
1134
1135			if (buffer_unwritten(bh)) {
1136				type = IO_UNWRITTEN;
1137				flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1138			} else if (buffer_delay(bh)) {
1139				type = IO_DELAY;
1140				flags = BMAPI_ALLOCATE;
1141
1142				if (wbc->sync_mode == WB_SYNC_NONE &&
1143				    wbc->nonblocking)
1144					flags |= BMAPI_TRYLOCK;
1145			}
1146
1147			if (!imap_valid) {
1148				/*
1149				 * If we didn't have a valid mapping then we
1150				 * need to ensure that we put the new mapping
1151				 * in a new ioend structure. This needs to be
1152				 * done to ensure that the ioends correctly
1153				 * reflect the block mappings at io completion
1154				 * for unwritten extent conversion.
1155				 */
1156				new_ioend = 1;
1157				err = xfs_map_blocks(inode, offset, len,
1158						&imap, flags);
1159				if (err)
1160					goto error;
1161				imap_valid = xfs_imap_valid(inode, &imap,
1162							    offset);
1163			}
1164			if (imap_valid) {
1165				xfs_map_at_offset(inode, bh, &imap, offset);
1166				xfs_add_to_ioend(inode, bh, offset, type,
1167						 &ioend, new_ioend);
1168				count++;
1169			}
1170		} else if (buffer_uptodate(bh)) {
1171			/*
1172			 * we got here because the buffer is already mapped.
1173			 * That means it must already have extents allocated
1174			 * underneath it. Map the extent by reading it.
1175			 */
1176			if (!imap_valid || flags != BMAPI_READ) {
1177				flags = BMAPI_READ;
1178				size = xfs_probe_cluster(inode, page, bh, head);
1179				err = xfs_map_blocks(inode, offset, size,
1180						&imap, flags);
1181				if (err)
1182					goto error;
1183				imap_valid = xfs_imap_valid(inode, &imap,
1184							    offset);
1185			}
1186
1187			/*
1188			 * We set the type to IO_NEW in case we are doing a
1189			 * small write at EOF that is extending the file but
1190			 * without needing an allocation. We need to update the
1191			 * file size on I/O completion in this case so it is
1192			 * the same case as having just allocated a new extent
1193			 * that we are writing into for the first time.
1194			 */
1195			type = IO_NEW;
1196			if (trylock_buffer(bh)) {
1197				if (imap_valid)
1198					all_bh = 1;
1199				xfs_add_to_ioend(inode, bh, offset, type,
1200						&ioend, !imap_valid);
1201				count++;
1202			} else {
1203				imap_valid = 0;
1204			}
1205		} else if (PageUptodate(page)) {
1206			ASSERT(buffer_mapped(bh));
1207			imap_valid = 0;
1208		}
1209
1210		if (!iohead)
1211			iohead = ioend;
1212
1213	} while (offset += len, ((bh = bh->b_this_page) != head));
1214
1215	if (uptodate && bh == head)
1216		SetPageUptodate(page);
1217
1218	xfs_start_page_writeback(page, 1, count);
1219
1220	if (ioend && imap_valid) {
1221		xfs_off_t		end_index;
1222
1223		end_index = imap.br_startoff + imap.br_blockcount;
1224
1225		/* to bytes */
1226		end_index <<= inode->i_blkbits;
1227
1228		/* to pages */
1229		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1230
1231		/* check against file size */
1232		if (end_index > last_index)
1233			end_index = last_index;
1234
1235		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1236					wbc, all_bh, end_index);
1237	}
1238
1239	if (iohead)
1240		xfs_submit_ioend(wbc, iohead);
1241
1242	return 0;
1243
1244error:
1245	if (iohead)
1246		xfs_cancel_ioend(iohead);
1247
1248	if (err == -EAGAIN)
1249		goto redirty;
1250
1251	xfs_aops_discard_page(page);
1252	ClearPageUptodate(page);
1253	unlock_page(page);
1254	return err;
1255
1256redirty:
1257	redirty_page_for_writepage(wbc, page);
1258	unlock_page(page);
1259	return 0;
1260}
1261
1262STATIC int
1263xfs_vm_writepages(
1264	struct address_space	*mapping,
1265	struct writeback_control *wbc)
1266{
1267	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1268	return generic_writepages(mapping, wbc);
1269}
1270
1271/*
1272 * Called to move a page into cleanable state - and from there
1273 * to be released. The page should already be clean. We always
1274 * have buffer heads in this call.
1275 *
1276 * Returns 1 if the page is ok to release, 0 otherwise.
1277 */
1278STATIC int
1279xfs_vm_releasepage(
1280	struct page		*page,
1281	gfp_t			gfp_mask)
1282{
1283	int			delalloc, unwritten;
1284
1285	trace_xfs_releasepage(page->mapping->host, page, 0);
1286
1287	xfs_count_page_state(page, &delalloc, &unwritten);
1288
1289	if (WARN_ON(delalloc))
1290		return 0;
1291	if (WARN_ON(unwritten))
1292		return 0;
1293
1294	return try_to_free_buffers(page);
1295}
1296
1297STATIC int
1298__xfs_get_blocks(
1299	struct inode		*inode,
1300	sector_t		iblock,
1301	struct buffer_head	*bh_result,
1302	int			create,
1303	int			direct)
1304{
1305	int			flags = create ? BMAPI_WRITE : BMAPI_READ;
1306	struct xfs_bmbt_irec	imap;
1307	xfs_off_t		offset;
1308	ssize_t			size;
1309	int			nimap = 1;
1310	int			new = 0;
1311	int			error;
1312
1313	offset = (xfs_off_t)iblock << inode->i_blkbits;
1314	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1315	size = bh_result->b_size;
1316
1317	if (!create && direct && offset >= i_size_read(inode))
1318		return 0;
1319
1320	if (direct && create)
1321		flags |= BMAPI_DIRECT;
1322
1323	error = xfs_iomap(XFS_I(inode), offset, size, flags, &imap, &nimap,
1324			  &new);
1325	if (error)
1326		return -error;
1327	if (nimap == 0)
1328		return 0;
1329
1330	if (imap.br_startblock != HOLESTARTBLOCK &&
1331	    imap.br_startblock != DELAYSTARTBLOCK) {
1332		/*
1333		 * For unwritten extents do not report a disk address on
1334		 * the read case (treat as if we're reading into a hole).
1335		 */
1336		if (create || !ISUNWRITTEN(&imap))
1337			xfs_map_buffer(inode, bh_result, &imap, offset);
1338		if (create && ISUNWRITTEN(&imap)) {
1339			if (direct)
1340				bh_result->b_private = inode;
1341			set_buffer_unwritten(bh_result);
1342		}
1343	}
1344
1345	/*
1346	 * If this is a realtime file, data may be on a different device.
1347	 * to that pointed to from the buffer_head b_bdev currently.
1348	 */
1349	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1350
1351	/*
1352	 * If we previously allocated a block out beyond eof and we are now
1353	 * coming back to use it then we will need to flag it as new even if it
1354	 * has a disk address.
1355	 *
1356	 * With sub-block writes into unwritten extents we also need to mark
1357	 * the buffer as new so that the unwritten parts of the buffer gets
1358	 * correctly zeroed.
1359	 */
1360	if (create &&
1361	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1362	     (offset >= i_size_read(inode)) ||
1363	     (new || ISUNWRITTEN(&imap))))
1364		set_buffer_new(bh_result);
1365
1366	if (imap.br_startblock == DELAYSTARTBLOCK) {
1367		BUG_ON(direct);
1368		if (create) {
1369			set_buffer_uptodate(bh_result);
1370			set_buffer_mapped(bh_result);
1371			set_buffer_delay(bh_result);
1372		}
1373	}
1374
1375	/*
1376	 * If this is O_DIRECT or the mpage code calling tell them how large
1377	 * the mapping is, so that we can avoid repeated get_blocks calls.
1378	 */
1379	if (direct || size > (1 << inode->i_blkbits)) {
1380		xfs_off_t		mapping_size;
1381
1382		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1383		mapping_size <<= inode->i_blkbits;
1384
1385		ASSERT(mapping_size > 0);
1386		if (mapping_size > size)
1387			mapping_size = size;
1388		if (mapping_size > LONG_MAX)
1389			mapping_size = LONG_MAX;
1390
1391		bh_result->b_size = mapping_size;
1392	}
1393
1394	return 0;
1395}
1396
1397int
1398xfs_get_blocks(
1399	struct inode		*inode,
1400	sector_t		iblock,
1401	struct buffer_head	*bh_result,
1402	int			create)
1403{
1404	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1405}
1406
1407STATIC int
1408xfs_get_blocks_direct(
1409	struct inode		*inode,
1410	sector_t		iblock,
1411	struct buffer_head	*bh_result,
1412	int			create)
1413{
1414	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1415}
1416
1417/*
1418 * Complete a direct I/O write request.
1419 *
1420 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1421 * need to issue a transaction to convert the range from unwritten to written
1422 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1423 * to do this and we are done.  But in case this was a successfull AIO
1424 * request this handler is called from interrupt context, from which we
1425 * can't start transactions.  In that case offload the I/O completion to
1426 * the workqueues we also use for buffered I/O completion.
1427 */
1428STATIC void
1429xfs_end_io_direct_write(
1430	struct kiocb		*iocb,
1431	loff_t			offset,
1432	ssize_t			size,
1433	void			*private,
1434	int			ret,
1435	bool			is_async)
1436{
1437	struct xfs_ioend	*ioend = iocb->private;
1438
1439	/*
1440	 * blockdev_direct_IO can return an error even after the I/O
1441	 * completion handler was called.  Thus we need to protect
1442	 * against double-freeing.
1443	 */
1444	iocb->private = NULL;
1445
1446	ioend->io_offset = offset;
1447	ioend->io_size = size;
1448	if (private && size > 0)
1449		ioend->io_type = IO_UNWRITTEN;
1450
1451	if (is_async) {
1452		/*
1453		 * If we are converting an unwritten extent we need to delay
1454		 * the AIO completion until after the unwrittent extent
1455		 * conversion has completed, otherwise do it ASAP.
1456		 */
1457		if (ioend->io_type == IO_UNWRITTEN) {
1458			ioend->io_iocb = iocb;
1459			ioend->io_result = ret;
1460		} else {
1461			aio_complete(iocb, ret, 0);
1462		}
1463		xfs_finish_ioend(ioend);
1464	} else {
1465		xfs_finish_ioend_sync(ioend);
1466	}
1467}
1468
1469STATIC ssize_t
1470xfs_vm_direct_IO(
1471	int			rw,
1472	struct kiocb		*iocb,
1473	const struct iovec	*iov,
1474	loff_t			offset,
1475	unsigned long		nr_segs)
1476{
1477	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1478	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1479	ssize_t			ret;
1480
1481	if (rw & WRITE) {
1482		iocb->private = xfs_alloc_ioend(inode, IO_NEW);
1483
1484		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1485					    offset, nr_segs,
1486					    xfs_get_blocks_direct,
1487					    xfs_end_io_direct_write, NULL, 0);
1488		if (ret != -EIOCBQUEUED && iocb->private)
1489			xfs_destroy_ioend(iocb->private);
1490	} else {
1491		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1492					    offset, nr_segs,
1493					    xfs_get_blocks_direct,
1494					    NULL, NULL, 0);
1495	}
1496
1497	return ret;
1498}
1499
1500STATIC void
1501xfs_vm_write_failed(
1502	struct address_space	*mapping,
1503	loff_t			to)
1504{
1505	struct inode		*inode = mapping->host;
1506
1507	if (to > inode->i_size) {
1508		struct iattr	ia = {
1509			.ia_valid	= ATTR_SIZE | ATTR_FORCE,
1510			.ia_size	= inode->i_size,
1511		};
1512		xfs_setattr(XFS_I(inode), &ia, XFS_ATTR_NOLOCK);
1513	}
1514}
1515
1516STATIC int
1517xfs_vm_write_begin(
1518	struct file		*file,
1519	struct address_space	*mapping,
1520	loff_t			pos,
1521	unsigned		len,
1522	unsigned		flags,
1523	struct page		**pagep,
1524	void			**fsdata)
1525{
1526	int			ret;
1527
1528	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1529				pagep, xfs_get_blocks);
1530	if (unlikely(ret))
1531		xfs_vm_write_failed(mapping, pos + len);
1532	return ret;
1533}
1534
1535STATIC int
1536xfs_vm_write_end(
1537	struct file		*file,
1538	struct address_space	*mapping,
1539	loff_t			pos,
1540	unsigned		len,
1541	unsigned		copied,
1542	struct page		*page,
1543	void			*fsdata)
1544{
1545	int			ret;
1546
1547	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1548	if (unlikely(ret < len))
1549		xfs_vm_write_failed(mapping, pos + len);
1550	return ret;
1551}
1552
1553STATIC sector_t
1554xfs_vm_bmap(
1555	struct address_space	*mapping,
1556	sector_t		block)
1557{
1558	struct inode		*inode = (struct inode *)mapping->host;
1559	struct xfs_inode	*ip = XFS_I(inode);
1560
1561	trace_xfs_vm_bmap(XFS_I(inode));
1562	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1563	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1564	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1565	return generic_block_bmap(mapping, block, xfs_get_blocks);
1566}
1567
1568STATIC int
1569xfs_vm_readpage(
1570	struct file		*unused,
1571	struct page		*page)
1572{
1573	return mpage_readpage(page, xfs_get_blocks);
1574}
1575
1576STATIC int
1577xfs_vm_readpages(
1578	struct file		*unused,
1579	struct address_space	*mapping,
1580	struct list_head	*pages,
1581	unsigned		nr_pages)
1582{
1583	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1584}
1585
1586const struct address_space_operations xfs_address_space_operations = {
1587	.readpage		= xfs_vm_readpage,
1588	.readpages		= xfs_vm_readpages,
1589	.writepage		= xfs_vm_writepage,
1590	.writepages		= xfs_vm_writepages,
1591	.sync_page		= block_sync_page,
1592	.releasepage		= xfs_vm_releasepage,
1593	.invalidatepage		= xfs_vm_invalidatepage,
1594	.write_begin		= xfs_vm_write_begin,
1595	.write_end		= xfs_vm_write_end,
1596	.bmap			= xfs_vm_bmap,
1597	.direct_IO		= xfs_vm_direct_IO,
1598	.migratepage		= buffer_migrate_page,
1599	.is_partially_uptodate  = block_is_partially_uptodate,
1600	.error_remove_page	= generic_error_remove_page,
1601};
1602