1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * blockcheck.c
5 *
6 * Checksum and ECC codes for the OCFS2 userspace library.
7 *
8 * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License, version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 */
19
20#include <linux/kernel.h>
21#include <linux/types.h>
22#include <linux/crc32.h>
23#include <linux/buffer_head.h>
24#include <linux/bitops.h>
25#include <linux/debugfs.h>
26#include <linux/module.h>
27#include <linux/fs.h>
28#include <asm/byteorder.h>
29
30#include <cluster/masklog.h>
31
32#include "ocfs2.h"
33
34#include "blockcheck.h"
35
36
37/*
38 * We use the following conventions:
39 *
40 * d = # data bits
41 * p = # parity bits
42 * c = # total code bits (d + p)
43 */
44
45
46/*
47 * Calculate the bit offset in the hamming code buffer based on the bit's
48 * offset in the data buffer.  Since the hamming code reserves all
49 * power-of-two bits for parity, the data bit number and the code bit
50 * number are offset by all the parity bits beforehand.
51 *
52 * Recall that bit numbers in hamming code are 1-based.  This function
53 * takes the 0-based data bit from the caller.
54 *
55 * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
56 * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
57 * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
58 * in the code buffer.
59 *
60 * The caller can pass in *p if it wants to keep track of the most recent
61 * number of parity bits added.  This allows the function to start the
62 * calculation at the last place.
63 */
64static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
65{
66	unsigned int b, p = 0;
67
68	/*
69	 * Data bits are 0-based, but we're talking code bits, which
70	 * are 1-based.
71	 */
72	b = i + 1;
73
74	/* Use the cache if it is there */
75	if (p_cache)
76		p = *p_cache;
77        b += p;
78
79	/*
80	 * For every power of two below our bit number, bump our bit.
81	 *
82	 * We compare with (b + 1) because we have to compare with what b
83	 * would be _if_ it were bumped up by the parity bit.  Capice?
84	 *
85	 * p is set above.
86	 */
87	for (; (1 << p) < (b + 1); p++)
88		b++;
89
90	if (p_cache)
91		*p_cache = p;
92
93	return b;
94}
95
96/*
97 * This is the low level encoder function.  It can be called across
98 * multiple hunks just like the crc32 code.  'd' is the number of bits
99 * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
100 * two 512B buffers, you would do it like so:
101 *
102 * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
103 * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
104 *
105 * If you just have one buffer, use ocfs2_hamming_encode_block().
106 */
107u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
108{
109	unsigned int i, b, p = 0;
110
111	BUG_ON(!d);
112
113	/*
114	 * b is the hamming code bit number.  Hamming code specifies a
115	 * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
116	 * for the algorithm.
117	 *
118	 * The i++ in the for loop is so that the start offset passed
119	 * to ocfs2_find_next_bit_set() is one greater than the previously
120	 * found bit.
121	 */
122	for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
123	{
124		/*
125		 * i is the offset in this hunk, nr + i is the total bit
126		 * offset.
127		 */
128		b = calc_code_bit(nr + i, &p);
129
130		/*
131		 * Data bits in the resultant code are checked by
132		 * parity bits that are part of the bit number
133		 * representation.  Huh?
134		 *
135		 * <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
136		 * In other words, the parity bit at position 2^k
137		 * checks bits in positions having bit k set in
138		 * their binary representation.  Conversely, for
139		 * instance, bit 13, i.e. 1101(2), is checked by
140		 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
141		 * </wikipedia>
142		 *
143		 * Note that 'k' is the _code_ bit number.  'b' in
144		 * our loop.
145		 */
146		parity ^= b;
147	}
148
149	/* While the data buffer was treated as little endian, the
150	 * return value is in host endian. */
151	return parity;
152}
153
154u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
155{
156	return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
157}
158
159/*
160 * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
161 * offset of the current hunk.  If bit to be fixed is not part of the
162 * current hunk, this does nothing.
163 *
164 * If you only have one hunk, use ocfs2_hamming_fix_block().
165 */
166void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
167		       unsigned int fix)
168{
169	unsigned int i, b;
170
171	BUG_ON(!d);
172
173	/*
174	 * If the bit to fix has an hweight of 1, it's a parity bit.  One
175	 * busted parity bit is its own error.  Nothing to do here.
176	 */
177	if (hweight32(fix) == 1)
178		return;
179
180	/*
181	 * nr + d is the bit right past the data hunk we're looking at.
182	 * If fix after that, nothing to do
183	 */
184	if (fix >= calc_code_bit(nr + d, NULL))
185		return;
186
187	/*
188	 * nr is the offset in the data hunk we're starting at.  Let's
189	 * start b at the offset in the code buffer.  See hamming_encode()
190	 * for a more detailed description of 'b'.
191	 */
192	b = calc_code_bit(nr, NULL);
193	/* If the fix is before this hunk, nothing to do */
194	if (fix < b)
195		return;
196
197	for (i = 0; i < d; i++, b++)
198	{
199		/* Skip past parity bits */
200		while (hweight32(b) == 1)
201			b++;
202
203		/*
204		 * i is the offset in this data hunk.
205		 * nr + i is the offset in the total data buffer.
206		 * b is the offset in the total code buffer.
207		 *
208		 * Thus, when b == fix, bit i in the current hunk needs
209		 * fixing.
210		 */
211		if (b == fix)
212		{
213			if (ocfs2_test_bit(i, data))
214				ocfs2_clear_bit(i, data);
215			else
216				ocfs2_set_bit(i, data);
217			break;
218		}
219	}
220}
221
222void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
223			     unsigned int fix)
224{
225	ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
226}
227
228
229/*
230 * Debugfs handling.
231 */
232
233#ifdef CONFIG_DEBUG_FS
234
235static int blockcheck_u64_get(void *data, u64 *val)
236{
237	*val = *(u64 *)data;
238	return 0;
239}
240DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
241
242static struct dentry *blockcheck_debugfs_create(const char *name,
243						struct dentry *parent,
244						u64 *value)
245{
246	return debugfs_create_file(name, S_IFREG | S_IRUSR, parent, value,
247				   &blockcheck_fops);
248}
249
250static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
251{
252	if (stats) {
253		debugfs_remove(stats->b_debug_check);
254		stats->b_debug_check = NULL;
255		debugfs_remove(stats->b_debug_failure);
256		stats->b_debug_failure = NULL;
257		debugfs_remove(stats->b_debug_recover);
258		stats->b_debug_recover = NULL;
259		debugfs_remove(stats->b_debug_dir);
260		stats->b_debug_dir = NULL;
261	}
262}
263
264static int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
265					  struct dentry *parent)
266{
267	int rc = -EINVAL;
268
269	if (!stats)
270		goto out;
271
272	stats->b_debug_dir = debugfs_create_dir("blockcheck", parent);
273	if (!stats->b_debug_dir)
274		goto out;
275
276	stats->b_debug_check =
277		blockcheck_debugfs_create("blocks_checked",
278					  stats->b_debug_dir,
279					  &stats->b_check_count);
280
281	stats->b_debug_failure =
282		blockcheck_debugfs_create("checksums_failed",
283					  stats->b_debug_dir,
284					  &stats->b_failure_count);
285
286	stats->b_debug_recover =
287		blockcheck_debugfs_create("ecc_recoveries",
288					  stats->b_debug_dir,
289					  &stats->b_recover_count);
290	if (stats->b_debug_check && stats->b_debug_failure &&
291	    stats->b_debug_recover)
292		rc = 0;
293
294out:
295	if (rc)
296		ocfs2_blockcheck_debug_remove(stats);
297	return rc;
298}
299#else
300static inline int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
301						 struct dentry *parent)
302{
303	return 0;
304}
305
306static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
307{
308}
309#endif  /* CONFIG_DEBUG_FS */
310
311/* Always-called wrappers for starting and stopping the debugfs files */
312int ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
313					   struct dentry *parent)
314{
315	return ocfs2_blockcheck_debug_install(stats, parent);
316}
317
318void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
319{
320	ocfs2_blockcheck_debug_remove(stats);
321}
322
323static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
324{
325	u64 new_count;
326
327	if (!stats)
328		return;
329
330	spin_lock(&stats->b_lock);
331	stats->b_check_count++;
332	new_count = stats->b_check_count;
333	spin_unlock(&stats->b_lock);
334
335	if (!new_count)
336		mlog(ML_NOTICE, "Block check count has wrapped\n");
337}
338
339static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
340{
341	u64 new_count;
342
343	if (!stats)
344		return;
345
346	spin_lock(&stats->b_lock);
347	stats->b_failure_count++;
348	new_count = stats->b_failure_count;
349	spin_unlock(&stats->b_lock);
350
351	if (!new_count)
352		mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
353}
354
355static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
356{
357	u64 new_count;
358
359	if (!stats)
360		return;
361
362	spin_lock(&stats->b_lock);
363	stats->b_recover_count++;
364	new_count = stats->b_recover_count;
365	spin_unlock(&stats->b_lock);
366
367	if (!new_count)
368		mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
369}
370
371
372
373/*
374 * These are the low-level APIs for using the ocfs2_block_check structure.
375 */
376
377/*
378 * This function generates check information for a block.
379 * data is the block to be checked.  bc is a pointer to the
380 * ocfs2_block_check structure describing the crc32 and the ecc.
381 *
382 * bc should be a pointer inside data, as the function will
383 * take care of zeroing it before calculating the check information.  If
384 * bc does not point inside data, the caller must make sure any inline
385 * ocfs2_block_check structures are zeroed.
386 *
387 * The data buffer must be in on-disk endian (little endian for ocfs2).
388 * bc will be filled with little-endian values and will be ready to go to
389 * disk.
390 */
391void ocfs2_block_check_compute(void *data, size_t blocksize,
392			       struct ocfs2_block_check *bc)
393{
394	u32 crc;
395	u32 ecc;
396
397	memset(bc, 0, sizeof(struct ocfs2_block_check));
398
399	crc = crc32_le(~0, data, blocksize);
400	ecc = ocfs2_hamming_encode_block(data, blocksize);
401
402	/*
403	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
404	 * larger than 16 bits.
405	 */
406	BUG_ON(ecc > USHRT_MAX);
407
408	bc->bc_crc32e = cpu_to_le32(crc);
409	bc->bc_ecc = cpu_to_le16((u16)ecc);
410}
411
412/*
413 * This function validates existing check information.  Like _compute,
414 * the function will take care of zeroing bc before calculating check codes.
415 * If bc is not a pointer inside data, the caller must have zeroed any
416 * inline ocfs2_block_check structures.
417 *
418 * Again, the data passed in should be the on-disk endian.
419 */
420int ocfs2_block_check_validate(void *data, size_t blocksize,
421			       struct ocfs2_block_check *bc,
422			       struct ocfs2_blockcheck_stats *stats)
423{
424	int rc = 0;
425	struct ocfs2_block_check check;
426	u32 crc, ecc;
427
428	ocfs2_blockcheck_inc_check(stats);
429
430	check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
431	check.bc_ecc = le16_to_cpu(bc->bc_ecc);
432
433	memset(bc, 0, sizeof(struct ocfs2_block_check));
434
435	/* Fast path - if the crc32 validates, we're good to go */
436	crc = crc32_le(~0, data, blocksize);
437	if (crc == check.bc_crc32e)
438		goto out;
439
440	ocfs2_blockcheck_inc_failure(stats);
441	mlog(ML_ERROR,
442	     "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
443	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
444
445	/* Ok, try ECC fixups */
446	ecc = ocfs2_hamming_encode_block(data, blocksize);
447	ocfs2_hamming_fix_block(data, blocksize, ecc ^ check.bc_ecc);
448
449	/* And check the crc32 again */
450	crc = crc32_le(~0, data, blocksize);
451	if (crc == check.bc_crc32e) {
452		ocfs2_blockcheck_inc_recover(stats);
453		goto out;
454	}
455
456	mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
457	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
458
459	rc = -EIO;
460
461out:
462	bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
463	bc->bc_ecc = cpu_to_le16(check.bc_ecc);
464
465	return rc;
466}
467
468/*
469 * This function generates check information for a list of buffer_heads.
470 * bhs is the blocks to be checked.  bc is a pointer to the
471 * ocfs2_block_check structure describing the crc32 and the ecc.
472 *
473 * bc should be a pointer inside data, as the function will
474 * take care of zeroing it before calculating the check information.  If
475 * bc does not point inside data, the caller must make sure any inline
476 * ocfs2_block_check structures are zeroed.
477 *
478 * The data buffer must be in on-disk endian (little endian for ocfs2).
479 * bc will be filled with little-endian values and will be ready to go to
480 * disk.
481 */
482void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
483				   struct ocfs2_block_check *bc)
484{
485	int i;
486	u32 crc, ecc;
487
488	BUG_ON(nr < 0);
489
490	if (!nr)
491		return;
492
493	memset(bc, 0, sizeof(struct ocfs2_block_check));
494
495	for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
496		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
497		/*
498		 * The number of bits in a buffer is obviously b_size*8.
499		 * The offset of this buffer is b_size*i, so the bit offset
500		 * of this buffer is b_size*8*i.
501		 */
502		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
503						bhs[i]->b_size * 8,
504						bhs[i]->b_size * 8 * i);
505	}
506
507	/*
508	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
509	 * larger than 16 bits.
510	 */
511	BUG_ON(ecc > USHRT_MAX);
512
513	bc->bc_crc32e = cpu_to_le32(crc);
514	bc->bc_ecc = cpu_to_le16((u16)ecc);
515}
516
517/*
518 * This function validates existing check information on a list of
519 * buffer_heads.  Like _compute_bhs, the function will take care of
520 * zeroing bc before calculating check codes.  If bc is not a pointer
521 * inside data, the caller must have zeroed any inline
522 * ocfs2_block_check structures.
523 *
524 * Again, the data passed in should be the on-disk endian.
525 */
526int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
527				   struct ocfs2_block_check *bc,
528				   struct ocfs2_blockcheck_stats *stats)
529{
530	int i, rc = 0;
531	struct ocfs2_block_check check;
532	u32 crc, ecc, fix;
533
534	BUG_ON(nr < 0);
535
536	if (!nr)
537		return 0;
538
539	ocfs2_blockcheck_inc_check(stats);
540
541	check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
542	check.bc_ecc = le16_to_cpu(bc->bc_ecc);
543
544	memset(bc, 0, sizeof(struct ocfs2_block_check));
545
546	/* Fast path - if the crc32 validates, we're good to go */
547	for (i = 0, crc = ~0; i < nr; i++)
548		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
549	if (crc == check.bc_crc32e)
550		goto out;
551
552	ocfs2_blockcheck_inc_failure(stats);
553	mlog(ML_ERROR,
554	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
555	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
556
557	/* Ok, try ECC fixups */
558	for (i = 0, ecc = 0; i < nr; i++) {
559		/*
560		 * The number of bits in a buffer is obviously b_size*8.
561		 * The offset of this buffer is b_size*i, so the bit offset
562		 * of this buffer is b_size*8*i.
563		 */
564		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
565						bhs[i]->b_size * 8,
566						bhs[i]->b_size * 8 * i);
567	}
568	fix = ecc ^ check.bc_ecc;
569	for (i = 0; i < nr; i++) {
570		/*
571		 * Try the fix against each buffer.  It will only affect
572		 * one of them.
573		 */
574		ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
575				  bhs[i]->b_size * 8 * i, fix);
576	}
577
578	/* And check the crc32 again */
579	for (i = 0, crc = ~0; i < nr; i++)
580		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
581	if (crc == check.bc_crc32e) {
582		ocfs2_blockcheck_inc_recover(stats);
583		goto out;
584	}
585
586	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
587	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
588
589	rc = -EIO;
590
591out:
592	bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
593	bc->bc_ecc = cpu_to_le16(check.bc_ecc);
594
595	return rc;
596}
597
598/*
599 * These are the main API.  They check the superblock flag before
600 * calling the underlying operations.
601 *
602 * They expect the buffer(s) to be in disk format.
603 */
604void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
605			    struct ocfs2_block_check *bc)
606{
607	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
608		ocfs2_block_check_compute(data, sb->s_blocksize, bc);
609}
610
611int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
612			    struct ocfs2_block_check *bc)
613{
614	int rc = 0;
615	struct ocfs2_super *osb = OCFS2_SB(sb);
616
617	if (ocfs2_meta_ecc(osb))
618		rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
619						&osb->osb_ecc_stats);
620
621	return rc;
622}
623
624void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
625				struct buffer_head **bhs, int nr,
626				struct ocfs2_block_check *bc)
627{
628	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
629		ocfs2_block_check_compute_bhs(bhs, nr, bc);
630}
631
632int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
633				struct buffer_head **bhs, int nr,
634				struct ocfs2_block_check *bc)
635{
636	int rc = 0;
637	struct ocfs2_super *osb = OCFS2_SB(sb);
638
639	if (ocfs2_meta_ecc(osb))
640		rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
641						    &osb->osb_ecc_stats);
642
643	return rc;
644}
645