1/*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates.  This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25#include <linux/module.h>
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/jbd2.h>
29#include <linux/errno.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/mm.h>
33#include <linux/freezer.h>
34#include <linux/pagemap.h>
35#include <linux/kthread.h>
36#include <linux/poison.h>
37#include <linux/proc_fs.h>
38#include <linux/debugfs.h>
39#include <linux/seq_file.h>
40#include <linux/math64.h>
41#include <linux/hash.h>
42#include <linux/log2.h>
43#include <linux/vmalloc.h>
44#include <linux/backing-dev.h>
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/jbd2.h>
48
49#include <asm/uaccess.h>
50#include <asm/page.h>
51
52EXPORT_SYMBOL(jbd2_journal_extend);
53EXPORT_SYMBOL(jbd2_journal_stop);
54EXPORT_SYMBOL(jbd2_journal_lock_updates);
55EXPORT_SYMBOL(jbd2_journal_unlock_updates);
56EXPORT_SYMBOL(jbd2_journal_get_write_access);
57EXPORT_SYMBOL(jbd2_journal_get_create_access);
58EXPORT_SYMBOL(jbd2_journal_get_undo_access);
59EXPORT_SYMBOL(jbd2_journal_set_triggers);
60EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
61EXPORT_SYMBOL(jbd2_journal_release_buffer);
62EXPORT_SYMBOL(jbd2_journal_forget);
63EXPORT_SYMBOL(jbd2_journal_flush);
64EXPORT_SYMBOL(jbd2_journal_revoke);
65
66EXPORT_SYMBOL(jbd2_journal_init_dev);
67EXPORT_SYMBOL(jbd2_journal_init_inode);
68EXPORT_SYMBOL(jbd2_journal_update_format);
69EXPORT_SYMBOL(jbd2_journal_check_used_features);
70EXPORT_SYMBOL(jbd2_journal_check_available_features);
71EXPORT_SYMBOL(jbd2_journal_set_features);
72EXPORT_SYMBOL(jbd2_journal_load);
73EXPORT_SYMBOL(jbd2_journal_destroy);
74EXPORT_SYMBOL(jbd2_journal_abort);
75EXPORT_SYMBOL(jbd2_journal_errno);
76EXPORT_SYMBOL(jbd2_journal_ack_err);
77EXPORT_SYMBOL(jbd2_journal_clear_err);
78EXPORT_SYMBOL(jbd2_log_wait_commit);
79EXPORT_SYMBOL(jbd2_log_start_commit);
80EXPORT_SYMBOL(jbd2_journal_start_commit);
81EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
82EXPORT_SYMBOL(jbd2_journal_wipe);
83EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
84EXPORT_SYMBOL(jbd2_journal_invalidatepage);
85EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
86EXPORT_SYMBOL(jbd2_journal_force_commit);
87EXPORT_SYMBOL(jbd2_journal_file_inode);
88EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
89EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
90EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
91
92static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
93static void __journal_abort_soft (journal_t *journal, int errno);
94static int jbd2_journal_create_slab(size_t slab_size);
95
96/*
97 * Helper function used to manage commit timeouts
98 */
99
100static void commit_timeout(unsigned long __data)
101{
102	struct task_struct * p = (struct task_struct *) __data;
103
104	wake_up_process(p);
105}
106
107/*
108 * kjournald2: The main thread function used to manage a logging device
109 * journal.
110 *
111 * This kernel thread is responsible for two things:
112 *
113 * 1) COMMIT:  Every so often we need to commit the current state of the
114 *    filesystem to disk.  The journal thread is responsible for writing
115 *    all of the metadata buffers to disk.
116 *
117 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
118 *    of the data in that part of the log has been rewritten elsewhere on
119 *    the disk.  Flushing these old buffers to reclaim space in the log is
120 *    known as checkpointing, and this thread is responsible for that job.
121 */
122
123static int kjournald2(void *arg)
124{
125	journal_t *journal = arg;
126	transaction_t *transaction;
127
128	/*
129	 * Set up an interval timer which can be used to trigger a commit wakeup
130	 * after the commit interval expires
131	 */
132	setup_timer(&journal->j_commit_timer, commit_timeout,
133			(unsigned long)current);
134
135	/* Record that the journal thread is running */
136	journal->j_task = current;
137	wake_up(&journal->j_wait_done_commit);
138
139	/*
140	 * And now, wait forever for commit wakeup events.
141	 */
142	write_lock(&journal->j_state_lock);
143
144loop:
145	if (journal->j_flags & JBD2_UNMOUNT)
146		goto end_loop;
147
148	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149		journal->j_commit_sequence, journal->j_commit_request);
150
151	if (journal->j_commit_sequence != journal->j_commit_request) {
152		jbd_debug(1, "OK, requests differ\n");
153		write_unlock(&journal->j_state_lock);
154		del_timer_sync(&journal->j_commit_timer);
155		jbd2_journal_commit_transaction(journal);
156		write_lock(&journal->j_state_lock);
157		goto loop;
158	}
159
160	wake_up(&journal->j_wait_done_commit);
161	if (freezing(current)) {
162		/*
163		 * The simpler the better. Flushing journal isn't a
164		 * good idea, because that depends on threads that may
165		 * be already stopped.
166		 */
167		jbd_debug(1, "Now suspending kjournald2\n");
168		write_unlock(&journal->j_state_lock);
169		refrigerator();
170		write_lock(&journal->j_state_lock);
171	} else {
172		/*
173		 * We assume on resume that commits are already there,
174		 * so we don't sleep
175		 */
176		DEFINE_WAIT(wait);
177		int should_sleep = 1;
178
179		prepare_to_wait(&journal->j_wait_commit, &wait,
180				TASK_INTERRUPTIBLE);
181		if (journal->j_commit_sequence != journal->j_commit_request)
182			should_sleep = 0;
183		transaction = journal->j_running_transaction;
184		if (transaction && time_after_eq(jiffies,
185						transaction->t_expires))
186			should_sleep = 0;
187		if (journal->j_flags & JBD2_UNMOUNT)
188			should_sleep = 0;
189		if (should_sleep) {
190			write_unlock(&journal->j_state_lock);
191			schedule();
192			write_lock(&journal->j_state_lock);
193		}
194		finish_wait(&journal->j_wait_commit, &wait);
195	}
196
197	jbd_debug(1, "kjournald2 wakes\n");
198
199	/*
200	 * Were we woken up by a commit wakeup event?
201	 */
202	transaction = journal->j_running_transaction;
203	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204		journal->j_commit_request = transaction->t_tid;
205		jbd_debug(1, "woke because of timeout\n");
206	}
207	goto loop;
208
209end_loop:
210	write_unlock(&journal->j_state_lock);
211	del_timer_sync(&journal->j_commit_timer);
212	journal->j_task = NULL;
213	wake_up(&journal->j_wait_done_commit);
214	jbd_debug(1, "Journal thread exiting.\n");
215	return 0;
216}
217
218static int jbd2_journal_start_thread(journal_t *journal)
219{
220	struct task_struct *t;
221
222	t = kthread_run(kjournald2, journal, "jbd2/%s",
223			journal->j_devname);
224	if (IS_ERR(t))
225		return PTR_ERR(t);
226
227	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
228	return 0;
229}
230
231static void journal_kill_thread(journal_t *journal)
232{
233	write_lock(&journal->j_state_lock);
234	journal->j_flags |= JBD2_UNMOUNT;
235
236	while (journal->j_task) {
237		wake_up(&journal->j_wait_commit);
238		write_unlock(&journal->j_state_lock);
239		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
240		write_lock(&journal->j_state_lock);
241	}
242	write_unlock(&journal->j_state_lock);
243}
244
245/*
246 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
247 *
248 * Writes a metadata buffer to a given disk block.  The actual IO is not
249 * performed but a new buffer_head is constructed which labels the data
250 * to be written with the correct destination disk block.
251 *
252 * Any magic-number escaping which needs to be done will cause a
253 * copy-out here.  If the buffer happens to start with the
254 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
255 * magic number is only written to the log for descripter blocks.  In
256 * this case, we copy the data and replace the first word with 0, and we
257 * return a result code which indicates that this buffer needs to be
258 * marked as an escaped buffer in the corresponding log descriptor
259 * block.  The missing word can then be restored when the block is read
260 * during recovery.
261 *
262 * If the source buffer has already been modified by a new transaction
263 * since we took the last commit snapshot, we use the frozen copy of
264 * that data for IO.  If we end up using the existing buffer_head's data
265 * for the write, then we *have* to lock the buffer to prevent anyone
266 * else from using and possibly modifying it while the IO is in
267 * progress.
268 *
269 * The function returns a pointer to the buffer_heads to be used for IO.
270 *
271 * We assume that the journal has already been locked in this function.
272 *
273 * Return value:
274 *  <0: Error
275 * >=0: Finished OK
276 *
277 * On success:
278 * Bit 0 set == escape performed on the data
279 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
280 */
281
282int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
283				  struct journal_head  *jh_in,
284				  struct journal_head **jh_out,
285				  unsigned long long blocknr)
286{
287	int need_copy_out = 0;
288	int done_copy_out = 0;
289	int do_escape = 0;
290	char *mapped_data;
291	struct buffer_head *new_bh;
292	struct journal_head *new_jh;
293	struct page *new_page;
294	unsigned int new_offset;
295	struct buffer_head *bh_in = jh2bh(jh_in);
296	journal_t *journal = transaction->t_journal;
297
298	/*
299	 * The buffer really shouldn't be locked: only the current committing
300	 * transaction is allowed to write it, so nobody else is allowed
301	 * to do any IO.
302	 *
303	 * akpm: except if we're journalling data, and write() output is
304	 * also part of a shared mapping, and another thread has
305	 * decided to launch a writepage() against this buffer.
306	 */
307	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
308
309retry_alloc:
310	new_bh = alloc_buffer_head(GFP_NOFS);
311	if (!new_bh) {
312		/*
313		 * Failure is not an option, but __GFP_NOFAIL is going
314		 * away; so we retry ourselves here.
315		 */
316		congestion_wait(BLK_RW_ASYNC, HZ/50);
317		goto retry_alloc;
318	}
319
320	/* keep subsequent assertions sane */
321	new_bh->b_state = 0;
322	init_buffer(new_bh, NULL, NULL);
323	atomic_set(&new_bh->b_count, 1);
324	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
325
326	/*
327	 * If a new transaction has already done a buffer copy-out, then
328	 * we use that version of the data for the commit.
329	 */
330	jbd_lock_bh_state(bh_in);
331repeat:
332	if (jh_in->b_frozen_data) {
333		done_copy_out = 1;
334		new_page = virt_to_page(jh_in->b_frozen_data);
335		new_offset = offset_in_page(jh_in->b_frozen_data);
336	} else {
337		new_page = jh2bh(jh_in)->b_page;
338		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
339	}
340
341	mapped_data = kmap_atomic(new_page, KM_USER0);
342	/*
343	 * Fire data frozen trigger if data already wasn't frozen.  Do this
344	 * before checking for escaping, as the trigger may modify the magic
345	 * offset.  If a copy-out happens afterwards, it will have the correct
346	 * data in the buffer.
347	 */
348	if (!done_copy_out)
349		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
350					   jh_in->b_triggers);
351
352	/*
353	 * Check for escaping
354	 */
355	if (*((__be32 *)(mapped_data + new_offset)) ==
356				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
357		need_copy_out = 1;
358		do_escape = 1;
359	}
360	kunmap_atomic(mapped_data, KM_USER0);
361
362	/*
363	 * Do we need to do a data copy?
364	 */
365	if (need_copy_out && !done_copy_out) {
366		char *tmp;
367
368		jbd_unlock_bh_state(bh_in);
369		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
370		if (!tmp) {
371			jbd2_journal_put_journal_head(new_jh);
372			return -ENOMEM;
373		}
374		jbd_lock_bh_state(bh_in);
375		if (jh_in->b_frozen_data) {
376			jbd2_free(tmp, bh_in->b_size);
377			goto repeat;
378		}
379
380		jh_in->b_frozen_data = tmp;
381		mapped_data = kmap_atomic(new_page, KM_USER0);
382		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
383		kunmap_atomic(mapped_data, KM_USER0);
384
385		new_page = virt_to_page(tmp);
386		new_offset = offset_in_page(tmp);
387		done_copy_out = 1;
388
389		/*
390		 * This isn't strictly necessary, as we're using frozen
391		 * data for the escaping, but it keeps consistency with
392		 * b_frozen_data usage.
393		 */
394		jh_in->b_frozen_triggers = jh_in->b_triggers;
395	}
396
397	/*
398	 * Did we need to do an escaping?  Now we've done all the
399	 * copying, we can finally do so.
400	 */
401	if (do_escape) {
402		mapped_data = kmap_atomic(new_page, KM_USER0);
403		*((unsigned int *)(mapped_data + new_offset)) = 0;
404		kunmap_atomic(mapped_data, KM_USER0);
405	}
406
407	set_bh_page(new_bh, new_page, new_offset);
408	new_jh->b_transaction = NULL;
409	new_bh->b_size = jh2bh(jh_in)->b_size;
410	new_bh->b_bdev = transaction->t_journal->j_dev;
411	new_bh->b_blocknr = blocknr;
412	set_buffer_mapped(new_bh);
413	set_buffer_dirty(new_bh);
414
415	*jh_out = new_jh;
416
417	/*
418	 * The to-be-written buffer needs to get moved to the io queue,
419	 * and the original buffer whose contents we are shadowing or
420	 * copying is moved to the transaction's shadow queue.
421	 */
422	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
423	spin_lock(&journal->j_list_lock);
424	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
425	spin_unlock(&journal->j_list_lock);
426	jbd_unlock_bh_state(bh_in);
427
428	JBUFFER_TRACE(new_jh, "file as BJ_IO");
429	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
430
431	return do_escape | (done_copy_out << 1);
432}
433
434/*
435 * Allocation code for the journal file.  Manage the space left in the
436 * journal, so that we can begin checkpointing when appropriate.
437 */
438
439/*
440 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
441 *
442 * Called with the journal already locked.
443 *
444 * Called under j_state_lock
445 */
446
447int __jbd2_log_space_left(journal_t *journal)
448{
449	int left = journal->j_free;
450
451	/* assert_spin_locked(&journal->j_state_lock); */
452
453	/*
454	 * Be pessimistic here about the number of those free blocks which
455	 * might be required for log descriptor control blocks.
456	 */
457
458#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
459
460	left -= MIN_LOG_RESERVED_BLOCKS;
461
462	if (left <= 0)
463		return 0;
464	left -= (left >> 3);
465	return left;
466}
467
468/*
469 * Called under j_state_lock.  Returns true if a transaction commit was started.
470 */
471int __jbd2_log_start_commit(journal_t *journal, tid_t target)
472{
473	/*
474	 * Are we already doing a recent enough commit?
475	 */
476	if (!tid_geq(journal->j_commit_request, target)) {
477		/*
478		 * We want a new commit: OK, mark the request and wakup the
479		 * commit thread.  We do _not_ do the commit ourselves.
480		 */
481
482		journal->j_commit_request = target;
483		jbd_debug(1, "JBD: requesting commit %d/%d\n",
484			  journal->j_commit_request,
485			  journal->j_commit_sequence);
486		wake_up(&journal->j_wait_commit);
487		return 1;
488	}
489	return 0;
490}
491
492int jbd2_log_start_commit(journal_t *journal, tid_t tid)
493{
494	int ret;
495
496	write_lock(&journal->j_state_lock);
497	ret = __jbd2_log_start_commit(journal, tid);
498	write_unlock(&journal->j_state_lock);
499	return ret;
500}
501
502/*
503 * Force and wait upon a commit if the calling process is not within
504 * transaction.  This is used for forcing out undo-protected data which contains
505 * bitmaps, when the fs is running out of space.
506 *
507 * We can only force the running transaction if we don't have an active handle;
508 * otherwise, we will deadlock.
509 *
510 * Returns true if a transaction was started.
511 */
512int jbd2_journal_force_commit_nested(journal_t *journal)
513{
514	transaction_t *transaction = NULL;
515	tid_t tid;
516
517	read_lock(&journal->j_state_lock);
518	if (journal->j_running_transaction && !current->journal_info) {
519		transaction = journal->j_running_transaction;
520		__jbd2_log_start_commit(journal, transaction->t_tid);
521	} else if (journal->j_committing_transaction)
522		transaction = journal->j_committing_transaction;
523
524	if (!transaction) {
525		read_unlock(&journal->j_state_lock);
526		return 0;	/* Nothing to retry */
527	}
528
529	tid = transaction->t_tid;
530	read_unlock(&journal->j_state_lock);
531	jbd2_log_wait_commit(journal, tid);
532	return 1;
533}
534
535/*
536 * Start a commit of the current running transaction (if any).  Returns true
537 * if a transaction is going to be committed (or is currently already
538 * committing), and fills its tid in at *ptid
539 */
540int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
541{
542	int ret = 0;
543
544	write_lock(&journal->j_state_lock);
545	if (journal->j_running_transaction) {
546		tid_t tid = journal->j_running_transaction->t_tid;
547
548		__jbd2_log_start_commit(journal, tid);
549		/* There's a running transaction and we've just made sure
550		 * it's commit has been scheduled. */
551		if (ptid)
552			*ptid = tid;
553		ret = 1;
554	} else if (journal->j_committing_transaction) {
555		/*
556		 * If ext3_write_super() recently started a commit, then we
557		 * have to wait for completion of that transaction
558		 */
559		if (ptid)
560			*ptid = journal->j_committing_transaction->t_tid;
561		ret = 1;
562	}
563	write_unlock(&journal->j_state_lock);
564	return ret;
565}
566
567/*
568 * Wait for a specified commit to complete.
569 * The caller may not hold the journal lock.
570 */
571int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
572{
573	int err = 0;
574
575	read_lock(&journal->j_state_lock);
576#ifdef CONFIG_JBD2_DEBUG
577	if (!tid_geq(journal->j_commit_request, tid)) {
578		printk(KERN_EMERG
579		       "%s: error: j_commit_request=%d, tid=%d\n",
580		       __func__, journal->j_commit_request, tid);
581	}
582#endif
583	while (tid_gt(tid, journal->j_commit_sequence)) {
584		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
585				  tid, journal->j_commit_sequence);
586		wake_up(&journal->j_wait_commit);
587		read_unlock(&journal->j_state_lock);
588		wait_event(journal->j_wait_done_commit,
589				!tid_gt(tid, journal->j_commit_sequence));
590		read_lock(&journal->j_state_lock);
591	}
592	read_unlock(&journal->j_state_lock);
593
594	if (unlikely(is_journal_aborted(journal))) {
595		printk(KERN_EMERG "journal commit I/O error\n");
596		err = -EIO;
597	}
598	return err;
599}
600
601/*
602 * Log buffer allocation routines:
603 */
604
605int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
606{
607	unsigned long blocknr;
608
609	write_lock(&journal->j_state_lock);
610	J_ASSERT(journal->j_free > 1);
611
612	blocknr = journal->j_head;
613	journal->j_head++;
614	journal->j_free--;
615	if (journal->j_head == journal->j_last)
616		journal->j_head = journal->j_first;
617	write_unlock(&journal->j_state_lock);
618	return jbd2_journal_bmap(journal, blocknr, retp);
619}
620
621/*
622 * Conversion of logical to physical block numbers for the journal
623 *
624 * On external journals the journal blocks are identity-mapped, so
625 * this is a no-op.  If needed, we can use j_blk_offset - everything is
626 * ready.
627 */
628int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
629		 unsigned long long *retp)
630{
631	int err = 0;
632	unsigned long long ret;
633
634	if (journal->j_inode) {
635		ret = bmap(journal->j_inode, blocknr);
636		if (ret)
637			*retp = ret;
638		else {
639			printk(KERN_ALERT "%s: journal block not found "
640					"at offset %lu on %s\n",
641			       __func__, blocknr, journal->j_devname);
642			err = -EIO;
643			__journal_abort_soft(journal, err);
644		}
645	} else {
646		*retp = blocknr; /* +journal->j_blk_offset */
647	}
648	return err;
649}
650
651/*
652 * We play buffer_head aliasing tricks to write data/metadata blocks to
653 * the journal without copying their contents, but for journal
654 * descriptor blocks we do need to generate bona fide buffers.
655 *
656 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
657 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
658 * But we don't bother doing that, so there will be coherency problems with
659 * mmaps of blockdevs which hold live JBD-controlled filesystems.
660 */
661struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
662{
663	struct buffer_head *bh;
664	unsigned long long blocknr;
665	int err;
666
667	err = jbd2_journal_next_log_block(journal, &blocknr);
668
669	if (err)
670		return NULL;
671
672	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
673	if (!bh)
674		return NULL;
675	lock_buffer(bh);
676	memset(bh->b_data, 0, journal->j_blocksize);
677	set_buffer_uptodate(bh);
678	unlock_buffer(bh);
679	BUFFER_TRACE(bh, "return this buffer");
680	return jbd2_journal_add_journal_head(bh);
681}
682
683struct jbd2_stats_proc_session {
684	journal_t *journal;
685	struct transaction_stats_s *stats;
686	int start;
687	int max;
688};
689
690static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
691{
692	return *pos ? NULL : SEQ_START_TOKEN;
693}
694
695static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
696{
697	return NULL;
698}
699
700static int jbd2_seq_info_show(struct seq_file *seq, void *v)
701{
702	struct jbd2_stats_proc_session *s = seq->private;
703
704	if (v != SEQ_START_TOKEN)
705		return 0;
706	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
707			s->stats->ts_tid,
708			s->journal->j_max_transaction_buffers);
709	if (s->stats->ts_tid == 0)
710		return 0;
711	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
712	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
713	seq_printf(seq, "  %ums running transaction\n",
714	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
715	seq_printf(seq, "  %ums transaction was being locked\n",
716	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
717	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
718	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
719	seq_printf(seq, "  %ums logging transaction\n",
720	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
721	seq_printf(seq, "  %lluus average transaction commit time\n",
722		   div_u64(s->journal->j_average_commit_time, 1000));
723	seq_printf(seq, "  %lu handles per transaction\n",
724	    s->stats->run.rs_handle_count / s->stats->ts_tid);
725	seq_printf(seq, "  %lu blocks per transaction\n",
726	    s->stats->run.rs_blocks / s->stats->ts_tid);
727	seq_printf(seq, "  %lu logged blocks per transaction\n",
728	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
729	return 0;
730}
731
732static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
733{
734}
735
736static const struct seq_operations jbd2_seq_info_ops = {
737	.start  = jbd2_seq_info_start,
738	.next   = jbd2_seq_info_next,
739	.stop   = jbd2_seq_info_stop,
740	.show   = jbd2_seq_info_show,
741};
742
743static int jbd2_seq_info_open(struct inode *inode, struct file *file)
744{
745	journal_t *journal = PDE(inode)->data;
746	struct jbd2_stats_proc_session *s;
747	int rc, size;
748
749	s = kmalloc(sizeof(*s), GFP_KERNEL);
750	if (s == NULL)
751		return -ENOMEM;
752	size = sizeof(struct transaction_stats_s);
753	s->stats = kmalloc(size, GFP_KERNEL);
754	if (s->stats == NULL) {
755		kfree(s);
756		return -ENOMEM;
757	}
758	spin_lock(&journal->j_history_lock);
759	memcpy(s->stats, &journal->j_stats, size);
760	s->journal = journal;
761	spin_unlock(&journal->j_history_lock);
762
763	rc = seq_open(file, &jbd2_seq_info_ops);
764	if (rc == 0) {
765		struct seq_file *m = file->private_data;
766		m->private = s;
767	} else {
768		kfree(s->stats);
769		kfree(s);
770	}
771	return rc;
772
773}
774
775static int jbd2_seq_info_release(struct inode *inode, struct file *file)
776{
777	struct seq_file *seq = file->private_data;
778	struct jbd2_stats_proc_session *s = seq->private;
779	kfree(s->stats);
780	kfree(s);
781	return seq_release(inode, file);
782}
783
784static const struct file_operations jbd2_seq_info_fops = {
785	.owner		= THIS_MODULE,
786	.open           = jbd2_seq_info_open,
787	.read           = seq_read,
788	.llseek         = seq_lseek,
789	.release        = jbd2_seq_info_release,
790};
791
792static struct proc_dir_entry *proc_jbd2_stats;
793
794static void jbd2_stats_proc_init(journal_t *journal)
795{
796	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
797	if (journal->j_proc_entry) {
798		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
799				 &jbd2_seq_info_fops, journal);
800	}
801}
802
803static void jbd2_stats_proc_exit(journal_t *journal)
804{
805	remove_proc_entry("info", journal->j_proc_entry);
806	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
807}
808
809/*
810 * Management for journal control blocks: functions to create and
811 * destroy journal_t structures, and to initialise and read existing
812 * journal blocks from disk.  */
813
814/* First: create and setup a journal_t object in memory.  We initialise
815 * very few fields yet: that has to wait until we have created the
816 * journal structures from from scratch, or loaded them from disk. */
817
818static journal_t * journal_init_common (void)
819{
820	journal_t *journal;
821	int err;
822
823	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
824	if (!journal)
825		goto fail;
826
827	init_waitqueue_head(&journal->j_wait_transaction_locked);
828	init_waitqueue_head(&journal->j_wait_logspace);
829	init_waitqueue_head(&journal->j_wait_done_commit);
830	init_waitqueue_head(&journal->j_wait_checkpoint);
831	init_waitqueue_head(&journal->j_wait_commit);
832	init_waitqueue_head(&journal->j_wait_updates);
833	mutex_init(&journal->j_barrier);
834	mutex_init(&journal->j_checkpoint_mutex);
835	spin_lock_init(&journal->j_revoke_lock);
836	spin_lock_init(&journal->j_list_lock);
837	rwlock_init(&journal->j_state_lock);
838
839	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
840	journal->j_min_batch_time = 0;
841	journal->j_max_batch_time = 15000; /* 15ms */
842
843	/* The journal is marked for error until we succeed with recovery! */
844	journal->j_flags = JBD2_ABORT;
845
846	/* Set up a default-sized revoke table for the new mount. */
847	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
848	if (err) {
849		kfree(journal);
850		goto fail;
851	}
852
853	spin_lock_init(&journal->j_history_lock);
854
855	return journal;
856fail:
857	return NULL;
858}
859
860/* jbd2_journal_init_dev and jbd2_journal_init_inode:
861 *
862 * Create a journal structure assigned some fixed set of disk blocks to
863 * the journal.  We don't actually touch those disk blocks yet, but we
864 * need to set up all of the mapping information to tell the journaling
865 * system where the journal blocks are.
866 *
867 */
868
869/**
870 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
871 *  @bdev: Block device on which to create the journal
872 *  @fs_dev: Device which hold journalled filesystem for this journal.
873 *  @start: Block nr Start of journal.
874 *  @len:  Length of the journal in blocks.
875 *  @blocksize: blocksize of journalling device
876 *
877 *  Returns: a newly created journal_t *
878 *
879 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
880 *  range of blocks on an arbitrary block device.
881 *
882 */
883journal_t * jbd2_journal_init_dev(struct block_device *bdev,
884			struct block_device *fs_dev,
885			unsigned long long start, int len, int blocksize)
886{
887	journal_t *journal = journal_init_common();
888	struct buffer_head *bh;
889	char *p;
890	int n;
891
892	if (!journal)
893		return NULL;
894
895	/* journal descriptor can store up to n blocks -bzzz */
896	journal->j_blocksize = blocksize;
897	jbd2_stats_proc_init(journal);
898	n = journal->j_blocksize / sizeof(journal_block_tag_t);
899	journal->j_wbufsize = n;
900	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
901	if (!journal->j_wbuf) {
902		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
903			__func__);
904		goto out_err;
905	}
906	journal->j_dev = bdev;
907	journal->j_fs_dev = fs_dev;
908	journal->j_blk_offset = start;
909	journal->j_maxlen = len;
910	bdevname(journal->j_dev, journal->j_devname);
911	p = journal->j_devname;
912	while ((p = strchr(p, '/')))
913		*p = '!';
914
915	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
916	if (!bh) {
917		printk(KERN_ERR
918		       "%s: Cannot get buffer for journal superblock\n",
919		       __func__);
920		goto out_err;
921	}
922	journal->j_sb_buffer = bh;
923	journal->j_superblock = (journal_superblock_t *)bh->b_data;
924
925	return journal;
926out_err:
927	kfree(journal->j_wbuf);
928	jbd2_stats_proc_exit(journal);
929	kfree(journal);
930	return NULL;
931}
932
933/**
934 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
935 *  @inode: An inode to create the journal in
936 *
937 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
938 * the journal.  The inode must exist already, must support bmap() and
939 * must have all data blocks preallocated.
940 */
941journal_t * jbd2_journal_init_inode (struct inode *inode)
942{
943	struct buffer_head *bh;
944	journal_t *journal = journal_init_common();
945	char *p;
946	int err;
947	int n;
948	unsigned long long blocknr;
949
950	if (!journal)
951		return NULL;
952
953	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
954	journal->j_inode = inode;
955	bdevname(journal->j_dev, journal->j_devname);
956	p = journal->j_devname;
957	while ((p = strchr(p, '/')))
958		*p = '!';
959	p = journal->j_devname + strlen(journal->j_devname);
960	sprintf(p, "-%lu", journal->j_inode->i_ino);
961	jbd_debug(1,
962		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
963		  journal, inode->i_sb->s_id, inode->i_ino,
964		  (long long) inode->i_size,
965		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
966
967	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
968	journal->j_blocksize = inode->i_sb->s_blocksize;
969	jbd2_stats_proc_init(journal);
970
971	/* journal descriptor can store up to n blocks -bzzz */
972	n = journal->j_blocksize / sizeof(journal_block_tag_t);
973	journal->j_wbufsize = n;
974	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
975	if (!journal->j_wbuf) {
976		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
977			__func__);
978		goto out_err;
979	}
980
981	err = jbd2_journal_bmap(journal, 0, &blocknr);
982	/* If that failed, give up */
983	if (err) {
984		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
985		       __func__);
986		goto out_err;
987	}
988
989	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
990	if (!bh) {
991		printk(KERN_ERR
992		       "%s: Cannot get buffer for journal superblock\n",
993		       __func__);
994		goto out_err;
995	}
996	journal->j_sb_buffer = bh;
997	journal->j_superblock = (journal_superblock_t *)bh->b_data;
998
999	return journal;
1000out_err:
1001	kfree(journal->j_wbuf);
1002	jbd2_stats_proc_exit(journal);
1003	kfree(journal);
1004	return NULL;
1005}
1006
1007/*
1008 * If the journal init or create aborts, we need to mark the journal
1009 * superblock as being NULL to prevent the journal destroy from writing
1010 * back a bogus superblock.
1011 */
1012static void journal_fail_superblock (journal_t *journal)
1013{
1014	struct buffer_head *bh = journal->j_sb_buffer;
1015	brelse(bh);
1016	journal->j_sb_buffer = NULL;
1017}
1018
1019/*
1020 * Given a journal_t structure, initialise the various fields for
1021 * startup of a new journaling session.  We use this both when creating
1022 * a journal, and after recovering an old journal to reset it for
1023 * subsequent use.
1024 */
1025
1026static int journal_reset(journal_t *journal)
1027{
1028	journal_superblock_t *sb = journal->j_superblock;
1029	unsigned long long first, last;
1030
1031	first = be32_to_cpu(sb->s_first);
1032	last = be32_to_cpu(sb->s_maxlen);
1033	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1034		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1035		       first, last);
1036		journal_fail_superblock(journal);
1037		return -EINVAL;
1038	}
1039
1040	journal->j_first = first;
1041	journal->j_last = last;
1042
1043	journal->j_head = first;
1044	journal->j_tail = first;
1045	journal->j_free = last - first;
1046
1047	journal->j_tail_sequence = journal->j_transaction_sequence;
1048	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1049	journal->j_commit_request = journal->j_commit_sequence;
1050
1051	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1052
1053	/* Add the dynamic fields and write it to disk. */
1054	jbd2_journal_update_superblock(journal, 1);
1055	return jbd2_journal_start_thread(journal);
1056}
1057
1058/**
1059 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1060 * @journal: The journal to update.
1061 * @wait: Set to '0' if you don't want to wait for IO completion.
1062 *
1063 * Update a journal's dynamic superblock fields and write it to disk,
1064 * optionally waiting for the IO to complete.
1065 */
1066void jbd2_journal_update_superblock(journal_t *journal, int wait)
1067{
1068	journal_superblock_t *sb = journal->j_superblock;
1069	struct buffer_head *bh = journal->j_sb_buffer;
1070
1071	/*
1072	 * As a special case, if the on-disk copy is already marked as needing
1073	 * no recovery (s_start == 0) and there are no outstanding transactions
1074	 * in the filesystem, then we can safely defer the superblock update
1075	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1076	 * attempting a write to a potential-readonly device.
1077	 */
1078	if (sb->s_start == 0 && journal->j_tail_sequence ==
1079				journal->j_transaction_sequence) {
1080		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1081			"(start %ld, seq %d, errno %d)\n",
1082			journal->j_tail, journal->j_tail_sequence,
1083			journal->j_errno);
1084		goto out;
1085	}
1086
1087	if (buffer_write_io_error(bh)) {
1088		/*
1089		 * Oh, dear.  A previous attempt to write the journal
1090		 * superblock failed.  This could happen because the
1091		 * USB device was yanked out.  Or it could happen to
1092		 * be a transient write error and maybe the block will
1093		 * be remapped.  Nothing we can do but to retry the
1094		 * write and hope for the best.
1095		 */
1096		printk(KERN_ERR "JBD2: previous I/O error detected "
1097		       "for journal superblock update for %s.\n",
1098		       journal->j_devname);
1099		clear_buffer_write_io_error(bh);
1100		set_buffer_uptodate(bh);
1101	}
1102
1103	read_lock(&journal->j_state_lock);
1104	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1105		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1106
1107	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1108	sb->s_start    = cpu_to_be32(journal->j_tail);
1109	sb->s_errno    = cpu_to_be32(journal->j_errno);
1110	read_unlock(&journal->j_state_lock);
1111
1112	BUFFER_TRACE(bh, "marking dirty");
1113	mark_buffer_dirty(bh);
1114	if (wait) {
1115		sync_dirty_buffer(bh);
1116		if (buffer_write_io_error(bh)) {
1117			printk(KERN_ERR "JBD2: I/O error detected "
1118			       "when updating journal superblock for %s.\n",
1119			       journal->j_devname);
1120			clear_buffer_write_io_error(bh);
1121			set_buffer_uptodate(bh);
1122		}
1123	} else
1124		write_dirty_buffer(bh, WRITE);
1125
1126out:
1127	/* If we have just flushed the log (by marking s_start==0), then
1128	 * any future commit will have to be careful to update the
1129	 * superblock again to re-record the true start of the log. */
1130
1131	write_lock(&journal->j_state_lock);
1132	if (sb->s_start)
1133		journal->j_flags &= ~JBD2_FLUSHED;
1134	else
1135		journal->j_flags |= JBD2_FLUSHED;
1136	write_unlock(&journal->j_state_lock);
1137}
1138
1139/*
1140 * Read the superblock for a given journal, performing initial
1141 * validation of the format.
1142 */
1143
1144static int journal_get_superblock(journal_t *journal)
1145{
1146	struct buffer_head *bh;
1147	journal_superblock_t *sb;
1148	int err = -EIO;
1149
1150	bh = journal->j_sb_buffer;
1151
1152	J_ASSERT(bh != NULL);
1153	if (!buffer_uptodate(bh)) {
1154		ll_rw_block(READ, 1, &bh);
1155		wait_on_buffer(bh);
1156		if (!buffer_uptodate(bh)) {
1157			printk (KERN_ERR
1158				"JBD: IO error reading journal superblock\n");
1159			goto out;
1160		}
1161	}
1162
1163	sb = journal->j_superblock;
1164
1165	err = -EINVAL;
1166
1167	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1168	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1169		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1170		goto out;
1171	}
1172
1173	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1174	case JBD2_SUPERBLOCK_V1:
1175		journal->j_format_version = 1;
1176		break;
1177	case JBD2_SUPERBLOCK_V2:
1178		journal->j_format_version = 2;
1179		break;
1180	default:
1181		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1182		goto out;
1183	}
1184
1185	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1186		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1187	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1188		printk (KERN_WARNING "JBD: journal file too short\n");
1189		goto out;
1190	}
1191
1192	return 0;
1193
1194out:
1195	journal_fail_superblock(journal);
1196	return err;
1197}
1198
1199/*
1200 * Load the on-disk journal superblock and read the key fields into the
1201 * journal_t.
1202 */
1203
1204static int load_superblock(journal_t *journal)
1205{
1206	int err;
1207	journal_superblock_t *sb;
1208
1209	err = journal_get_superblock(journal);
1210	if (err)
1211		return err;
1212
1213	sb = journal->j_superblock;
1214
1215	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1216	journal->j_tail = be32_to_cpu(sb->s_start);
1217	journal->j_first = be32_to_cpu(sb->s_first);
1218	journal->j_last = be32_to_cpu(sb->s_maxlen);
1219	journal->j_errno = be32_to_cpu(sb->s_errno);
1220
1221	return 0;
1222}
1223
1224
1225/**
1226 * int jbd2_journal_load() - Read journal from disk.
1227 * @journal: Journal to act on.
1228 *
1229 * Given a journal_t structure which tells us which disk blocks contain
1230 * a journal, read the journal from disk to initialise the in-memory
1231 * structures.
1232 */
1233int jbd2_journal_load(journal_t *journal)
1234{
1235	int err;
1236	journal_superblock_t *sb;
1237
1238	err = load_superblock(journal);
1239	if (err)
1240		return err;
1241
1242	sb = journal->j_superblock;
1243	/* If this is a V2 superblock, then we have to check the
1244	 * features flags on it. */
1245
1246	if (journal->j_format_version >= 2) {
1247		if ((sb->s_feature_ro_compat &
1248		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1249		    (sb->s_feature_incompat &
1250		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1251			printk (KERN_WARNING
1252				"JBD: Unrecognised features on journal\n");
1253			return -EINVAL;
1254		}
1255	}
1256
1257	/*
1258	 * Create a slab for this blocksize
1259	 */
1260	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1261	if (err)
1262		return err;
1263
1264	/* Let the recovery code check whether it needs to recover any
1265	 * data from the journal. */
1266	if (jbd2_journal_recover(journal))
1267		goto recovery_error;
1268
1269	if (journal->j_failed_commit) {
1270		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1271		       "is corrupt.\n", journal->j_failed_commit,
1272		       journal->j_devname);
1273		return -EIO;
1274	}
1275
1276	/* OK, we've finished with the dynamic journal bits:
1277	 * reinitialise the dynamic contents of the superblock in memory
1278	 * and reset them on disk. */
1279	if (journal_reset(journal))
1280		goto recovery_error;
1281
1282	journal->j_flags &= ~JBD2_ABORT;
1283	journal->j_flags |= JBD2_LOADED;
1284	return 0;
1285
1286recovery_error:
1287	printk (KERN_WARNING "JBD: recovery failed\n");
1288	return -EIO;
1289}
1290
1291/**
1292 * void jbd2_journal_destroy() - Release a journal_t structure.
1293 * @journal: Journal to act on.
1294 *
1295 * Release a journal_t structure once it is no longer in use by the
1296 * journaled object.
1297 * Return <0 if we couldn't clean up the journal.
1298 */
1299int jbd2_journal_destroy(journal_t *journal)
1300{
1301	int err = 0;
1302
1303	/* Wait for the commit thread to wake up and die. */
1304	journal_kill_thread(journal);
1305
1306	/* Force a final log commit */
1307	if (journal->j_running_transaction)
1308		jbd2_journal_commit_transaction(journal);
1309
1310	/* Force any old transactions to disk */
1311
1312	/* Totally anal locking here... */
1313	spin_lock(&journal->j_list_lock);
1314	while (journal->j_checkpoint_transactions != NULL) {
1315		spin_unlock(&journal->j_list_lock);
1316		mutex_lock(&journal->j_checkpoint_mutex);
1317		jbd2_log_do_checkpoint(journal);
1318		mutex_unlock(&journal->j_checkpoint_mutex);
1319		spin_lock(&journal->j_list_lock);
1320	}
1321
1322	J_ASSERT(journal->j_running_transaction == NULL);
1323	J_ASSERT(journal->j_committing_transaction == NULL);
1324	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1325	spin_unlock(&journal->j_list_lock);
1326
1327	if (journal->j_sb_buffer) {
1328		if (!is_journal_aborted(journal)) {
1329			/* We can now mark the journal as empty. */
1330			journal->j_tail = 0;
1331			journal->j_tail_sequence =
1332				++journal->j_transaction_sequence;
1333			jbd2_journal_update_superblock(journal, 1);
1334		} else {
1335			err = -EIO;
1336		}
1337		brelse(journal->j_sb_buffer);
1338	}
1339
1340	if (journal->j_proc_entry)
1341		jbd2_stats_proc_exit(journal);
1342	if (journal->j_inode)
1343		iput(journal->j_inode);
1344	if (journal->j_revoke)
1345		jbd2_journal_destroy_revoke(journal);
1346	kfree(journal->j_wbuf);
1347	kfree(journal);
1348
1349	return err;
1350}
1351
1352
1353/**
1354 *int jbd2_journal_check_used_features () - Check if features specified are used.
1355 * @journal: Journal to check.
1356 * @compat: bitmask of compatible features
1357 * @ro: bitmask of features that force read-only mount
1358 * @incompat: bitmask of incompatible features
1359 *
1360 * Check whether the journal uses all of a given set of
1361 * features.  Return true (non-zero) if it does.
1362 **/
1363
1364int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1365				 unsigned long ro, unsigned long incompat)
1366{
1367	journal_superblock_t *sb;
1368
1369	if (!compat && !ro && !incompat)
1370		return 1;
1371	if (journal->j_format_version == 1)
1372		return 0;
1373
1374	sb = journal->j_superblock;
1375
1376	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1377	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1378	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1379		return 1;
1380
1381	return 0;
1382}
1383
1384/**
1385 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1386 * @journal: Journal to check.
1387 * @compat: bitmask of compatible features
1388 * @ro: bitmask of features that force read-only mount
1389 * @incompat: bitmask of incompatible features
1390 *
1391 * Check whether the journaling code supports the use of
1392 * all of a given set of features on this journal.  Return true
1393 * (non-zero) if it can. */
1394
1395int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1396				      unsigned long ro, unsigned long incompat)
1397{
1398	if (!compat && !ro && !incompat)
1399		return 1;
1400
1401	/* We can support any known requested features iff the
1402	 * superblock is in version 2.  Otherwise we fail to support any
1403	 * extended sb features. */
1404
1405	if (journal->j_format_version != 2)
1406		return 0;
1407
1408	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1409	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1410	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1411		return 1;
1412
1413	return 0;
1414}
1415
1416/**
1417 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1418 * @journal: Journal to act on.
1419 * @compat: bitmask of compatible features
1420 * @ro: bitmask of features that force read-only mount
1421 * @incompat: bitmask of incompatible features
1422 *
1423 * Mark a given journal feature as present on the
1424 * superblock.  Returns true if the requested features could be set.
1425 *
1426 */
1427
1428int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1429			  unsigned long ro, unsigned long incompat)
1430{
1431	journal_superblock_t *sb;
1432
1433	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1434		return 1;
1435
1436	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1437		return 0;
1438
1439	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1440		  compat, ro, incompat);
1441
1442	sb = journal->j_superblock;
1443
1444	sb->s_feature_compat    |= cpu_to_be32(compat);
1445	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1446	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1447
1448	return 1;
1449}
1450
1451/*
1452 * jbd2_journal_clear_features () - Clear a given journal feature in the
1453 * 				    superblock
1454 * @journal: Journal to act on.
1455 * @compat: bitmask of compatible features
1456 * @ro: bitmask of features that force read-only mount
1457 * @incompat: bitmask of incompatible features
1458 *
1459 * Clear a given journal feature as present on the
1460 * superblock.
1461 */
1462void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1463				unsigned long ro, unsigned long incompat)
1464{
1465	journal_superblock_t *sb;
1466
1467	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1468		  compat, ro, incompat);
1469
1470	sb = journal->j_superblock;
1471
1472	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1473	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1474	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1475}
1476EXPORT_SYMBOL(jbd2_journal_clear_features);
1477
1478/**
1479 * int jbd2_journal_update_format () - Update on-disk journal structure.
1480 * @journal: Journal to act on.
1481 *
1482 * Given an initialised but unloaded journal struct, poke about in the
1483 * on-disk structure to update it to the most recent supported version.
1484 */
1485int jbd2_journal_update_format (journal_t *journal)
1486{
1487	journal_superblock_t *sb;
1488	int err;
1489
1490	err = journal_get_superblock(journal);
1491	if (err)
1492		return err;
1493
1494	sb = journal->j_superblock;
1495
1496	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1497	case JBD2_SUPERBLOCK_V2:
1498		return 0;
1499	case JBD2_SUPERBLOCK_V1:
1500		return journal_convert_superblock_v1(journal, sb);
1501	default:
1502		break;
1503	}
1504	return -EINVAL;
1505}
1506
1507static int journal_convert_superblock_v1(journal_t *journal,
1508					 journal_superblock_t *sb)
1509{
1510	int offset, blocksize;
1511	struct buffer_head *bh;
1512
1513	printk(KERN_WARNING
1514		"JBD: Converting superblock from version 1 to 2.\n");
1515
1516	/* Pre-initialise new fields to zero */
1517	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1518	blocksize = be32_to_cpu(sb->s_blocksize);
1519	memset(&sb->s_feature_compat, 0, blocksize-offset);
1520
1521	sb->s_nr_users = cpu_to_be32(1);
1522	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1523	journal->j_format_version = 2;
1524
1525	bh = journal->j_sb_buffer;
1526	BUFFER_TRACE(bh, "marking dirty");
1527	mark_buffer_dirty(bh);
1528	sync_dirty_buffer(bh);
1529	return 0;
1530}
1531
1532
1533/**
1534 * int jbd2_journal_flush () - Flush journal
1535 * @journal: Journal to act on.
1536 *
1537 * Flush all data for a given journal to disk and empty the journal.
1538 * Filesystems can use this when remounting readonly to ensure that
1539 * recovery does not need to happen on remount.
1540 */
1541
1542int jbd2_journal_flush(journal_t *journal)
1543{
1544	int err = 0;
1545	transaction_t *transaction = NULL;
1546	unsigned long old_tail;
1547
1548	write_lock(&journal->j_state_lock);
1549
1550	/* Force everything buffered to the log... */
1551	if (journal->j_running_transaction) {
1552		transaction = journal->j_running_transaction;
1553		__jbd2_log_start_commit(journal, transaction->t_tid);
1554	} else if (journal->j_committing_transaction)
1555		transaction = journal->j_committing_transaction;
1556
1557	/* Wait for the log commit to complete... */
1558	if (transaction) {
1559		tid_t tid = transaction->t_tid;
1560
1561		write_unlock(&journal->j_state_lock);
1562		jbd2_log_wait_commit(journal, tid);
1563	} else {
1564		write_unlock(&journal->j_state_lock);
1565	}
1566
1567	/* ...and flush everything in the log out to disk. */
1568	spin_lock(&journal->j_list_lock);
1569	while (!err && journal->j_checkpoint_transactions != NULL) {
1570		spin_unlock(&journal->j_list_lock);
1571		mutex_lock(&journal->j_checkpoint_mutex);
1572		err = jbd2_log_do_checkpoint(journal);
1573		mutex_unlock(&journal->j_checkpoint_mutex);
1574		spin_lock(&journal->j_list_lock);
1575	}
1576	spin_unlock(&journal->j_list_lock);
1577
1578	if (is_journal_aborted(journal))
1579		return -EIO;
1580
1581	jbd2_cleanup_journal_tail(journal);
1582
1583	/* Finally, mark the journal as really needing no recovery.
1584	 * This sets s_start==0 in the underlying superblock, which is
1585	 * the magic code for a fully-recovered superblock.  Any future
1586	 * commits of data to the journal will restore the current
1587	 * s_start value. */
1588	write_lock(&journal->j_state_lock);
1589	old_tail = journal->j_tail;
1590	journal->j_tail = 0;
1591	write_unlock(&journal->j_state_lock);
1592	jbd2_journal_update_superblock(journal, 1);
1593	write_lock(&journal->j_state_lock);
1594	journal->j_tail = old_tail;
1595
1596	J_ASSERT(!journal->j_running_transaction);
1597	J_ASSERT(!journal->j_committing_transaction);
1598	J_ASSERT(!journal->j_checkpoint_transactions);
1599	J_ASSERT(journal->j_head == journal->j_tail);
1600	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1601	write_unlock(&journal->j_state_lock);
1602	return 0;
1603}
1604
1605/**
1606 * int jbd2_journal_wipe() - Wipe journal contents
1607 * @journal: Journal to act on.
1608 * @write: flag (see below)
1609 *
1610 * Wipe out all of the contents of a journal, safely.  This will produce
1611 * a warning if the journal contains any valid recovery information.
1612 * Must be called between journal_init_*() and jbd2_journal_load().
1613 *
1614 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1615 * we merely suppress recovery.
1616 */
1617
1618int jbd2_journal_wipe(journal_t *journal, int write)
1619{
1620	int err = 0;
1621
1622	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1623
1624	err = load_superblock(journal);
1625	if (err)
1626		return err;
1627
1628	if (!journal->j_tail)
1629		goto no_recovery;
1630
1631	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1632		write ? "Clearing" : "Ignoring");
1633
1634	err = jbd2_journal_skip_recovery(journal);
1635	if (write)
1636		jbd2_journal_update_superblock(journal, 1);
1637
1638 no_recovery:
1639	return err;
1640}
1641
1642/*
1643 * Journal abort has very specific semantics, which we describe
1644 * for journal abort.
1645 *
1646 * Two internal functions, which provide abort to the jbd layer
1647 * itself are here.
1648 */
1649
1650/*
1651 * Quick version for internal journal use (doesn't lock the journal).
1652 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1653 * and don't attempt to make any other journal updates.
1654 */
1655void __jbd2_journal_abort_hard(journal_t *journal)
1656{
1657	transaction_t *transaction;
1658
1659	if (journal->j_flags & JBD2_ABORT)
1660		return;
1661
1662	printk(KERN_ERR "Aborting journal on device %s.\n",
1663	       journal->j_devname);
1664
1665	write_lock(&journal->j_state_lock);
1666	journal->j_flags |= JBD2_ABORT;
1667	transaction = journal->j_running_transaction;
1668	if (transaction)
1669		__jbd2_log_start_commit(journal, transaction->t_tid);
1670	write_unlock(&journal->j_state_lock);
1671}
1672
1673/* Soft abort: record the abort error status in the journal superblock,
1674 * but don't do any other IO. */
1675static void __journal_abort_soft (journal_t *journal, int errno)
1676{
1677	if (journal->j_flags & JBD2_ABORT)
1678		return;
1679
1680	if (!journal->j_errno)
1681		journal->j_errno = errno;
1682
1683	__jbd2_journal_abort_hard(journal);
1684
1685	if (errno)
1686		jbd2_journal_update_superblock(journal, 1);
1687}
1688
1689/**
1690 * void jbd2_journal_abort () - Shutdown the journal immediately.
1691 * @journal: the journal to shutdown.
1692 * @errno:   an error number to record in the journal indicating
1693 *           the reason for the shutdown.
1694 *
1695 * Perform a complete, immediate shutdown of the ENTIRE
1696 * journal (not of a single transaction).  This operation cannot be
1697 * undone without closing and reopening the journal.
1698 *
1699 * The jbd2_journal_abort function is intended to support higher level error
1700 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1701 * mode.
1702 *
1703 * Journal abort has very specific semantics.  Any existing dirty,
1704 * unjournaled buffers in the main filesystem will still be written to
1705 * disk by bdflush, but the journaling mechanism will be suspended
1706 * immediately and no further transaction commits will be honoured.
1707 *
1708 * Any dirty, journaled buffers will be written back to disk without
1709 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1710 * filesystem, but we _do_ attempt to leave as much data as possible
1711 * behind for fsck to use for cleanup.
1712 *
1713 * Any attempt to get a new transaction handle on a journal which is in
1714 * ABORT state will just result in an -EROFS error return.  A
1715 * jbd2_journal_stop on an existing handle will return -EIO if we have
1716 * entered abort state during the update.
1717 *
1718 * Recursive transactions are not disturbed by journal abort until the
1719 * final jbd2_journal_stop, which will receive the -EIO error.
1720 *
1721 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1722 * which will be recorded (if possible) in the journal superblock.  This
1723 * allows a client to record failure conditions in the middle of a
1724 * transaction without having to complete the transaction to record the
1725 * failure to disk.  ext3_error, for example, now uses this
1726 * functionality.
1727 *
1728 * Errors which originate from within the journaling layer will NOT
1729 * supply an errno; a null errno implies that absolutely no further
1730 * writes are done to the journal (unless there are any already in
1731 * progress).
1732 *
1733 */
1734
1735void jbd2_journal_abort(journal_t *journal, int errno)
1736{
1737	__journal_abort_soft(journal, errno);
1738}
1739
1740/**
1741 * int jbd2_journal_errno () - returns the journal's error state.
1742 * @journal: journal to examine.
1743 *
1744 * This is the errno number set with jbd2_journal_abort(), the last
1745 * time the journal was mounted - if the journal was stopped
1746 * without calling abort this will be 0.
1747 *
1748 * If the journal has been aborted on this mount time -EROFS will
1749 * be returned.
1750 */
1751int jbd2_journal_errno(journal_t *journal)
1752{
1753	int err;
1754
1755	read_lock(&journal->j_state_lock);
1756	if (journal->j_flags & JBD2_ABORT)
1757		err = -EROFS;
1758	else
1759		err = journal->j_errno;
1760	read_unlock(&journal->j_state_lock);
1761	return err;
1762}
1763
1764/**
1765 * int jbd2_journal_clear_err () - clears the journal's error state
1766 * @journal: journal to act on.
1767 *
1768 * An error must be cleared or acked to take a FS out of readonly
1769 * mode.
1770 */
1771int jbd2_journal_clear_err(journal_t *journal)
1772{
1773	int err = 0;
1774
1775	write_lock(&journal->j_state_lock);
1776	if (journal->j_flags & JBD2_ABORT)
1777		err = -EROFS;
1778	else
1779		journal->j_errno = 0;
1780	write_unlock(&journal->j_state_lock);
1781	return err;
1782}
1783
1784/**
1785 * void jbd2_journal_ack_err() - Ack journal err.
1786 * @journal: journal to act on.
1787 *
1788 * An error must be cleared or acked to take a FS out of readonly
1789 * mode.
1790 */
1791void jbd2_journal_ack_err(journal_t *journal)
1792{
1793	write_lock(&journal->j_state_lock);
1794	if (journal->j_errno)
1795		journal->j_flags |= JBD2_ACK_ERR;
1796	write_unlock(&journal->j_state_lock);
1797}
1798
1799int jbd2_journal_blocks_per_page(struct inode *inode)
1800{
1801	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1802}
1803
1804/*
1805 * helper functions to deal with 32 or 64bit block numbers.
1806 */
1807size_t journal_tag_bytes(journal_t *journal)
1808{
1809	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1810		return JBD2_TAG_SIZE64;
1811	else
1812		return JBD2_TAG_SIZE32;
1813}
1814
1815/*
1816 * JBD memory management
1817 *
1818 * These functions are used to allocate block-sized chunks of memory
1819 * used for making copies of buffer_head data.  Very often it will be
1820 * page-sized chunks of data, but sometimes it will be in
1821 * sub-page-size chunks.  (For example, 16k pages on Power systems
1822 * with a 4k block file system.)  For blocks smaller than a page, we
1823 * use a SLAB allocator.  There are slab caches for each block size,
1824 * which are allocated at mount time, if necessary, and we only free
1825 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1826 * this reason we don't need to a mutex to protect access to
1827 * jbd2_slab[] allocating or releasing memory; only in
1828 * jbd2_journal_create_slab().
1829 */
1830#define JBD2_MAX_SLABS 8
1831static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1832static DECLARE_MUTEX(jbd2_slab_create_sem);
1833
1834static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1835	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1836	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1837};
1838
1839
1840static void jbd2_journal_destroy_slabs(void)
1841{
1842	int i;
1843
1844	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1845		if (jbd2_slab[i])
1846			kmem_cache_destroy(jbd2_slab[i]);
1847		jbd2_slab[i] = NULL;
1848	}
1849}
1850
1851static int jbd2_journal_create_slab(size_t size)
1852{
1853	int i = order_base_2(size) - 10;
1854	size_t slab_size;
1855
1856	if (size == PAGE_SIZE)
1857		return 0;
1858
1859	if (i >= JBD2_MAX_SLABS)
1860		return -EINVAL;
1861
1862	if (unlikely(i < 0))
1863		i = 0;
1864	down(&jbd2_slab_create_sem);
1865	if (jbd2_slab[i]) {
1866		up(&jbd2_slab_create_sem);
1867		return 0;	/* Already created */
1868	}
1869
1870	slab_size = 1 << (i+10);
1871	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1872					 slab_size, 0, NULL);
1873	up(&jbd2_slab_create_sem);
1874	if (!jbd2_slab[i]) {
1875		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1876		return -ENOMEM;
1877	}
1878	return 0;
1879}
1880
1881static struct kmem_cache *get_slab(size_t size)
1882{
1883	int i = order_base_2(size) - 10;
1884
1885	BUG_ON(i >= JBD2_MAX_SLABS);
1886	if (unlikely(i < 0))
1887		i = 0;
1888	BUG_ON(jbd2_slab[i] == NULL);
1889	return jbd2_slab[i];
1890}
1891
1892void *jbd2_alloc(size_t size, gfp_t flags)
1893{
1894	void *ptr;
1895
1896	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1897
1898	flags |= __GFP_REPEAT;
1899	if (size == PAGE_SIZE)
1900		ptr = (void *)__get_free_pages(flags, 0);
1901	else if (size > PAGE_SIZE) {
1902		int order = get_order(size);
1903
1904		if (order < 3)
1905			ptr = (void *)__get_free_pages(flags, order);
1906		else
1907			ptr = vmalloc(size);
1908	} else
1909		ptr = kmem_cache_alloc(get_slab(size), flags);
1910
1911	/* Check alignment; SLUB has gotten this wrong in the past,
1912	 * and this can lead to user data corruption! */
1913	BUG_ON(((unsigned long) ptr) & (size-1));
1914
1915	return ptr;
1916}
1917
1918void jbd2_free(void *ptr, size_t size)
1919{
1920	if (size == PAGE_SIZE) {
1921		free_pages((unsigned long)ptr, 0);
1922		return;
1923	}
1924	if (size > PAGE_SIZE) {
1925		int order = get_order(size);
1926
1927		if (order < 3)
1928			free_pages((unsigned long)ptr, order);
1929		else
1930			vfree(ptr);
1931		return;
1932	}
1933	kmem_cache_free(get_slab(size), ptr);
1934};
1935
1936/*
1937 * Journal_head storage management
1938 */
1939static struct kmem_cache *jbd2_journal_head_cache;
1940#ifdef CONFIG_JBD2_DEBUG
1941static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1942#endif
1943
1944static int journal_init_jbd2_journal_head_cache(void)
1945{
1946	int retval;
1947
1948	J_ASSERT(jbd2_journal_head_cache == NULL);
1949	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1950				sizeof(struct journal_head),
1951				0,		/* offset */
1952				SLAB_TEMPORARY,	/* flags */
1953				NULL);		/* ctor */
1954	retval = 0;
1955	if (!jbd2_journal_head_cache) {
1956		retval = -ENOMEM;
1957		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1958	}
1959	return retval;
1960}
1961
1962static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1963{
1964	if (jbd2_journal_head_cache) {
1965		kmem_cache_destroy(jbd2_journal_head_cache);
1966		jbd2_journal_head_cache = NULL;
1967	}
1968}
1969
1970/*
1971 * journal_head splicing and dicing
1972 */
1973static struct journal_head *journal_alloc_journal_head(void)
1974{
1975	struct journal_head *ret;
1976	static unsigned long last_warning;
1977
1978#ifdef CONFIG_JBD2_DEBUG
1979	atomic_inc(&nr_journal_heads);
1980#endif
1981	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1982	if (!ret) {
1983		jbd_debug(1, "out of memory for journal_head\n");
1984		if (time_after(jiffies, last_warning + 5*HZ)) {
1985			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1986			       __func__);
1987			last_warning = jiffies;
1988		}
1989		while (!ret) {
1990			yield();
1991			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1992		}
1993	}
1994	return ret;
1995}
1996
1997static void journal_free_journal_head(struct journal_head *jh)
1998{
1999#ifdef CONFIG_JBD2_DEBUG
2000	atomic_dec(&nr_journal_heads);
2001	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2002#endif
2003	kmem_cache_free(jbd2_journal_head_cache, jh);
2004}
2005
2006
2007/*
2008 * Give a buffer_head a journal_head.
2009 *
2010 * Doesn't need the journal lock.
2011 * May sleep.
2012 */
2013struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2014{
2015	struct journal_head *jh;
2016	struct journal_head *new_jh = NULL;
2017
2018repeat:
2019	if (!buffer_jbd(bh)) {
2020		new_jh = journal_alloc_journal_head();
2021		memset(new_jh, 0, sizeof(*new_jh));
2022	}
2023
2024	jbd_lock_bh_journal_head(bh);
2025	if (buffer_jbd(bh)) {
2026		jh = bh2jh(bh);
2027	} else {
2028		J_ASSERT_BH(bh,
2029			(atomic_read(&bh->b_count) > 0) ||
2030			(bh->b_page && bh->b_page->mapping));
2031
2032		if (!new_jh) {
2033			jbd_unlock_bh_journal_head(bh);
2034			goto repeat;
2035		}
2036
2037		jh = new_jh;
2038		new_jh = NULL;		/* We consumed it */
2039		set_buffer_jbd(bh);
2040		bh->b_private = jh;
2041		jh->b_bh = bh;
2042		get_bh(bh);
2043		BUFFER_TRACE(bh, "added journal_head");
2044	}
2045	jh->b_jcount++;
2046	jbd_unlock_bh_journal_head(bh);
2047	if (new_jh)
2048		journal_free_journal_head(new_jh);
2049	return bh->b_private;
2050}
2051
2052/*
2053 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2054 * having a journal_head, return NULL
2055 */
2056struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2057{
2058	struct journal_head *jh = NULL;
2059
2060	jbd_lock_bh_journal_head(bh);
2061	if (buffer_jbd(bh)) {
2062		jh = bh2jh(bh);
2063		jh->b_jcount++;
2064	}
2065	jbd_unlock_bh_journal_head(bh);
2066	return jh;
2067}
2068
2069static void __journal_remove_journal_head(struct buffer_head *bh)
2070{
2071	struct journal_head *jh = bh2jh(bh);
2072
2073	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2074
2075	get_bh(bh);
2076	if (jh->b_jcount == 0) {
2077		if (jh->b_transaction == NULL &&
2078				jh->b_next_transaction == NULL &&
2079				jh->b_cp_transaction == NULL) {
2080			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2081			J_ASSERT_BH(bh, buffer_jbd(bh));
2082			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2083			BUFFER_TRACE(bh, "remove journal_head");
2084			if (jh->b_frozen_data) {
2085				printk(KERN_WARNING "%s: freeing "
2086						"b_frozen_data\n",
2087						__func__);
2088				jbd2_free(jh->b_frozen_data, bh->b_size);
2089			}
2090			if (jh->b_committed_data) {
2091				printk(KERN_WARNING "%s: freeing "
2092						"b_committed_data\n",
2093						__func__);
2094				jbd2_free(jh->b_committed_data, bh->b_size);
2095			}
2096			bh->b_private = NULL;
2097			jh->b_bh = NULL;	/* debug, really */
2098			clear_buffer_jbd(bh);
2099			__brelse(bh);
2100			journal_free_journal_head(jh);
2101		} else {
2102			BUFFER_TRACE(bh, "journal_head was locked");
2103		}
2104	}
2105}
2106
2107/*
2108 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2109 * and has a zero b_jcount then remove and release its journal_head.   If we did
2110 * see that the buffer is not used by any transaction we also "logically"
2111 * decrement ->b_count.
2112 *
2113 * We in fact take an additional increment on ->b_count as a convenience,
2114 * because the caller usually wants to do additional things with the bh
2115 * after calling here.
2116 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2117 * time.  Once the caller has run __brelse(), the buffer is eligible for
2118 * reaping by try_to_free_buffers().
2119 */
2120void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2121{
2122	jbd_lock_bh_journal_head(bh);
2123	__journal_remove_journal_head(bh);
2124	jbd_unlock_bh_journal_head(bh);
2125}
2126
2127/*
2128 * Drop a reference on the passed journal_head.  If it fell to zero then try to
2129 * release the journal_head from the buffer_head.
2130 */
2131void jbd2_journal_put_journal_head(struct journal_head *jh)
2132{
2133	struct buffer_head *bh = jh2bh(jh);
2134
2135	jbd_lock_bh_journal_head(bh);
2136	J_ASSERT_JH(jh, jh->b_jcount > 0);
2137	--jh->b_jcount;
2138	if (!jh->b_jcount && !jh->b_transaction) {
2139		__journal_remove_journal_head(bh);
2140		__brelse(bh);
2141	}
2142	jbd_unlock_bh_journal_head(bh);
2143}
2144
2145/*
2146 * Initialize jbd inode head
2147 */
2148void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2149{
2150	jinode->i_transaction = NULL;
2151	jinode->i_next_transaction = NULL;
2152	jinode->i_vfs_inode = inode;
2153	jinode->i_flags = 0;
2154	INIT_LIST_HEAD(&jinode->i_list);
2155}
2156
2157/*
2158 * Function to be called before we start removing inode from memory (i.e.,
2159 * clear_inode() is a fine place to be called from). It removes inode from
2160 * transaction's lists.
2161 */
2162void jbd2_journal_release_jbd_inode(journal_t *journal,
2163				    struct jbd2_inode *jinode)
2164{
2165	if (!journal)
2166		return;
2167restart:
2168	spin_lock(&journal->j_list_lock);
2169	/* Is commit writing out inode - we have to wait */
2170	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2171		wait_queue_head_t *wq;
2172		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2173		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2174		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2175		spin_unlock(&journal->j_list_lock);
2176		schedule();
2177		finish_wait(wq, &wait.wait);
2178		goto restart;
2179	}
2180
2181	if (jinode->i_transaction) {
2182		list_del(&jinode->i_list);
2183		jinode->i_transaction = NULL;
2184	}
2185	spin_unlock(&journal->j_list_lock);
2186}
2187
2188/*
2189 * debugfs tunables
2190 */
2191#ifdef CONFIG_JBD2_DEBUG
2192u8 jbd2_journal_enable_debug __read_mostly;
2193EXPORT_SYMBOL(jbd2_journal_enable_debug);
2194
2195#define JBD2_DEBUG_NAME "jbd2-debug"
2196
2197static struct dentry *jbd2_debugfs_dir;
2198static struct dentry *jbd2_debug;
2199
2200static void __init jbd2_create_debugfs_entry(void)
2201{
2202	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2203	if (jbd2_debugfs_dir)
2204		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2205					       S_IRUGO | S_IWUSR,
2206					       jbd2_debugfs_dir,
2207					       &jbd2_journal_enable_debug);
2208}
2209
2210static void __exit jbd2_remove_debugfs_entry(void)
2211{
2212	debugfs_remove(jbd2_debug);
2213	debugfs_remove(jbd2_debugfs_dir);
2214}
2215
2216#else
2217
2218static void __init jbd2_create_debugfs_entry(void)
2219{
2220}
2221
2222static void __exit jbd2_remove_debugfs_entry(void)
2223{
2224}
2225
2226#endif
2227
2228#ifdef CONFIG_PROC_FS
2229
2230#define JBD2_STATS_PROC_NAME "fs/jbd2"
2231
2232static void __init jbd2_create_jbd_stats_proc_entry(void)
2233{
2234	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2235}
2236
2237static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2238{
2239	if (proc_jbd2_stats)
2240		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2241}
2242
2243#else
2244
2245#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2246#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2247
2248#endif
2249
2250struct kmem_cache *jbd2_handle_cache;
2251
2252static int __init journal_init_handle_cache(void)
2253{
2254	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2255				sizeof(handle_t),
2256				0,		/* offset */
2257				SLAB_TEMPORARY,	/* flags */
2258				NULL);		/* ctor */
2259	if (jbd2_handle_cache == NULL) {
2260		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2261		return -ENOMEM;
2262	}
2263	return 0;
2264}
2265
2266static void jbd2_journal_destroy_handle_cache(void)
2267{
2268	if (jbd2_handle_cache)
2269		kmem_cache_destroy(jbd2_handle_cache);
2270}
2271
2272/*
2273 * Module startup and shutdown
2274 */
2275
2276static int __init journal_init_caches(void)
2277{
2278	int ret;
2279
2280	ret = jbd2_journal_init_revoke_caches();
2281	if (ret == 0)
2282		ret = journal_init_jbd2_journal_head_cache();
2283	if (ret == 0)
2284		ret = journal_init_handle_cache();
2285	return ret;
2286}
2287
2288static void jbd2_journal_destroy_caches(void)
2289{
2290	jbd2_journal_destroy_revoke_caches();
2291	jbd2_journal_destroy_jbd2_journal_head_cache();
2292	jbd2_journal_destroy_handle_cache();
2293	jbd2_journal_destroy_slabs();
2294}
2295
2296static int __init journal_init(void)
2297{
2298	int ret;
2299
2300	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2301
2302	ret = journal_init_caches();
2303	if (ret == 0) {
2304		jbd2_create_debugfs_entry();
2305		jbd2_create_jbd_stats_proc_entry();
2306	} else {
2307		jbd2_journal_destroy_caches();
2308	}
2309	return ret;
2310}
2311
2312static void __exit journal_exit(void)
2313{
2314#ifdef CONFIG_JBD2_DEBUG
2315	int n = atomic_read(&nr_journal_heads);
2316	if (n)
2317		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2318#endif
2319	jbd2_remove_debugfs_entry();
2320	jbd2_remove_jbd_stats_proc_entry();
2321	jbd2_journal_destroy_caches();
2322}
2323
2324/*
2325 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2326 * tracing infrastructure to map a dev_t to a device name.
2327 *
2328 * The caller should use rcu_read_lock() in order to make sure the
2329 * device name stays valid until its done with it.  We use
2330 * rcu_read_lock() as well to make sure we're safe in case the caller
2331 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2332 * nested.
2333 */
2334struct devname_cache {
2335	struct rcu_head	rcu;
2336	dev_t		device;
2337	char		devname[BDEVNAME_SIZE];
2338};
2339#define CACHE_SIZE_BITS 6
2340static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2341static DEFINE_SPINLOCK(devname_cache_lock);
2342
2343static void free_devcache(struct rcu_head *rcu)
2344{
2345	kfree(rcu);
2346}
2347
2348const char *jbd2_dev_to_name(dev_t device)
2349{
2350	int	i = hash_32(device, CACHE_SIZE_BITS);
2351	char	*ret;
2352	struct block_device *bd;
2353	static struct devname_cache *new_dev;
2354
2355	rcu_read_lock();
2356	if (devcache[i] && devcache[i]->device == device) {
2357		ret = devcache[i]->devname;
2358		rcu_read_unlock();
2359		return ret;
2360	}
2361	rcu_read_unlock();
2362
2363	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2364	if (!new_dev)
2365		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2366	spin_lock(&devname_cache_lock);
2367	if (devcache[i]) {
2368		if (devcache[i]->device == device) {
2369			kfree(new_dev);
2370			ret = devcache[i]->devname;
2371			spin_unlock(&devname_cache_lock);
2372			return ret;
2373		}
2374		call_rcu(&devcache[i]->rcu, free_devcache);
2375	}
2376	devcache[i] = new_dev;
2377	devcache[i]->device = device;
2378	bd = bdget(device);
2379	if (bd) {
2380		bdevname(bd, devcache[i]->devname);
2381		bdput(bd);
2382	} else
2383		__bdevname(device, devcache[i]->devname);
2384	ret = devcache[i]->devname;
2385	spin_unlock(&devname_cache_lock);
2386	return ret;
2387}
2388EXPORT_SYMBOL(jbd2_dev_to_name);
2389
2390MODULE_LICENSE("GPL");
2391module_init(journal_init);
2392module_exit(journal_exit);
2393