1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes.  ie: data writeback.  Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002	Andrew Morton
12 *		Split out of fs/inode.c
13 *		Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/spinlock.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
23#include <linux/kthread.h>
24#include <linux/freezer.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/buffer_head.h>
29#include <linux/tracepoint.h>
30#include "internal.h"
31
32/*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35struct wb_writeback_work {
36	long nr_pages;
37	struct super_block *sb;
38	enum writeback_sync_modes sync_mode;
39	unsigned int for_kupdate:1;
40	unsigned int range_cyclic:1;
41	unsigned int for_background:1;
42
43	struct list_head list;		/* pending work list */
44	struct completion *done;	/* set if the caller waits */
45};
46
47/*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52#define CREATE_TRACE_POINTS
53#include <trace/events/writeback.h>
54
55/*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58int nr_pdflush_threads;
59
60/**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67int writeback_in_progress(struct backing_dev_info *bdi)
68{
69	return test_bit(BDI_writeback_running, &bdi->state);
70}
71
72static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73{
74	struct super_block *sb = inode->i_sb;
75
76	if (strcmp(sb->s_type->name, "bdev") == 0)
77		return inode->i_mapping->backing_dev_info;
78
79	return sb->s_bdi;
80}
81
82static void bdi_queue_work(struct backing_dev_info *bdi,
83		struct wb_writeback_work *work)
84{
85	trace_writeback_queue(bdi, work);
86
87	spin_lock_bh(&bdi->wb_lock);
88	list_add_tail(&work->list, &bdi->work_list);
89	if (bdi->wb.task) {
90		wake_up_process(bdi->wb.task);
91	} else {
92		/*
93		 * The bdi thread isn't there, wake up the forker thread which
94		 * will create and run it.
95		 */
96		trace_writeback_nothread(bdi, work);
97		wake_up_process(default_backing_dev_info.wb.task);
98	}
99	spin_unlock_bh(&bdi->wb_lock);
100}
101
102static void
103__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
104		bool range_cyclic, bool for_background)
105{
106	struct wb_writeback_work *work;
107
108	/*
109	 * This is WB_SYNC_NONE writeback, so if allocation fails just
110	 * wakeup the thread for old dirty data writeback
111	 */
112	work = kzalloc(sizeof(*work), GFP_ATOMIC);
113	if (!work) {
114		if (bdi->wb.task) {
115			trace_writeback_nowork(bdi);
116			wake_up_process(bdi->wb.task);
117		}
118		return;
119	}
120
121	work->sync_mode	= WB_SYNC_NONE;
122	work->nr_pages	= nr_pages;
123	work->range_cyclic = range_cyclic;
124	work->for_background = for_background;
125
126	bdi_queue_work(bdi, work);
127}
128
129/**
130 * bdi_start_writeback - start writeback
131 * @bdi: the backing device to write from
132 * @nr_pages: the number of pages to write
133 *
134 * Description:
135 *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136 *   started when this function returns, we make no guarentees on
137 *   completion. Caller need not hold sb s_umount semaphore.
138 *
139 */
140void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
141{
142	__bdi_start_writeback(bdi, nr_pages, true, false);
143}
144
145/**
146 * bdi_start_background_writeback - start background writeback
147 * @bdi: the backing device to write from
148 *
149 * Description:
150 *   This does WB_SYNC_NONE background writeback. The IO is only
151 *   started when this function returns, we make no guarentees on
152 *   completion. Caller need not hold sb s_umount semaphore.
153 */
154void bdi_start_background_writeback(struct backing_dev_info *bdi)
155{
156	__bdi_start_writeback(bdi, LONG_MAX, true, true);
157}
158
159/*
160 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
161 * furthest end of its superblock's dirty-inode list.
162 *
163 * Before stamping the inode's ->dirtied_when, we check to see whether it is
164 * already the most-recently-dirtied inode on the b_dirty list.  If that is
165 * the case then the inode must have been redirtied while it was being written
166 * out and we don't reset its dirtied_when.
167 */
168static void redirty_tail(struct inode *inode)
169{
170	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
171
172	if (!list_empty(&wb->b_dirty)) {
173		struct inode *tail;
174
175		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
176		if (time_before(inode->dirtied_when, tail->dirtied_when))
177			inode->dirtied_when = jiffies;
178	}
179	list_move(&inode->i_list, &wb->b_dirty);
180}
181
182/*
183 * requeue inode for re-scanning after bdi->b_io list is exhausted.
184 */
185static void requeue_io(struct inode *inode)
186{
187	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
188
189	list_move(&inode->i_list, &wb->b_more_io);
190}
191
192static void inode_sync_complete(struct inode *inode)
193{
194	/*
195	 * Prevent speculative execution through spin_unlock(&inode_lock);
196	 */
197	smp_mb();
198	wake_up_bit(&inode->i_state, __I_SYNC);
199}
200
201static bool inode_dirtied_after(struct inode *inode, unsigned long t)
202{
203	bool ret = time_after(inode->dirtied_when, t);
204#ifndef CONFIG_64BIT
205	/*
206	 * For inodes being constantly redirtied, dirtied_when can get stuck.
207	 * It _appears_ to be in the future, but is actually in distant past.
208	 * This test is necessary to prevent such wrapped-around relative times
209	 * from permanently stopping the whole bdi writeback.
210	 */
211	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
212#endif
213	return ret;
214}
215
216/*
217 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
218 */
219static void move_expired_inodes(struct list_head *delaying_queue,
220			       struct list_head *dispatch_queue,
221				unsigned long *older_than_this)
222{
223	LIST_HEAD(tmp);
224	struct list_head *pos, *node;
225	struct super_block *sb = NULL;
226	struct inode *inode;
227	int do_sb_sort = 0;
228
229	while (!list_empty(delaying_queue)) {
230		inode = list_entry(delaying_queue->prev, struct inode, i_list);
231		if (older_than_this &&
232		    inode_dirtied_after(inode, *older_than_this))
233			break;
234		if (sb && sb != inode->i_sb)
235			do_sb_sort = 1;
236		sb = inode->i_sb;
237		list_move(&inode->i_list, &tmp);
238	}
239
240	/* just one sb in list, splice to dispatch_queue and we're done */
241	if (!do_sb_sort) {
242		list_splice(&tmp, dispatch_queue);
243		return;
244	}
245
246	/* Move inodes from one superblock together */
247	while (!list_empty(&tmp)) {
248		inode = list_entry(tmp.prev, struct inode, i_list);
249		sb = inode->i_sb;
250		list_for_each_prev_safe(pos, node, &tmp) {
251			inode = list_entry(pos, struct inode, i_list);
252			if (inode->i_sb == sb)
253				list_move(&inode->i_list, dispatch_queue);
254		}
255	}
256}
257
258/*
259 * Queue all expired dirty inodes for io, eldest first.
260 * Before
261 *         newly dirtied     b_dirty    b_io    b_more_io
262 *         =============>    gf         edc     BA
263 * After
264 *         newly dirtied     b_dirty    b_io    b_more_io
265 *         =============>    g          fBAedc
266 *                                           |
267 *                                           +--> dequeue for IO
268 */
269static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
270{
271	list_splice_init(&wb->b_more_io, &wb->b_io);
272	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
273}
274
275static int write_inode(struct inode *inode, struct writeback_control *wbc)
276{
277	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
278		return inode->i_sb->s_op->write_inode(inode, wbc);
279	return 0;
280}
281
282/*
283 * Wait for writeback on an inode to complete.
284 */
285static void inode_wait_for_writeback(struct inode *inode)
286{
287	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
288	wait_queue_head_t *wqh;
289
290	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
291	 while (inode->i_state & I_SYNC) {
292		spin_unlock(&inode_lock);
293		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
294		spin_lock(&inode_lock);
295	}
296}
297
298/*
299 * Write out an inode's dirty pages.  Called under inode_lock.  Either the
300 * caller has ref on the inode (either via __iget or via syscall against an fd)
301 * or the inode has I_WILL_FREE set (via generic_forget_inode)
302 *
303 * If `wait' is set, wait on the writeout.
304 *
305 * The whole writeout design is quite complex and fragile.  We want to avoid
306 * starvation of particular inodes when others are being redirtied, prevent
307 * livelocks, etc.
308 *
309 * Called under inode_lock.
310 */
311static int
312writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
313{
314	struct address_space *mapping = inode->i_mapping;
315	unsigned dirty;
316	int ret;
317
318	if (!atomic_read(&inode->i_count))
319		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
320	else
321		WARN_ON(inode->i_state & I_WILL_FREE);
322
323	if (inode->i_state & I_SYNC) {
324		/*
325		 * If this inode is locked for writeback and we are not doing
326		 * writeback-for-data-integrity, move it to b_more_io so that
327		 * writeback can proceed with the other inodes on s_io.
328		 *
329		 * We'll have another go at writing back this inode when we
330		 * completed a full scan of b_io.
331		 */
332		if (wbc->sync_mode != WB_SYNC_ALL) {
333			requeue_io(inode);
334			return 0;
335		}
336
337		/*
338		 * It's a data-integrity sync.  We must wait.
339		 */
340		inode_wait_for_writeback(inode);
341	}
342
343	BUG_ON(inode->i_state & I_SYNC);
344
345	/* Set I_SYNC, reset I_DIRTY_PAGES */
346	inode->i_state |= I_SYNC;
347	inode->i_state &= ~I_DIRTY_PAGES;
348	spin_unlock(&inode_lock);
349
350	ret = do_writepages(mapping, wbc);
351
352	/*
353	 * Make sure to wait on the data before writing out the metadata.
354	 * This is important for filesystems that modify metadata on data
355	 * I/O completion.
356	 */
357	if (wbc->sync_mode == WB_SYNC_ALL) {
358		int err = filemap_fdatawait(mapping);
359		if (ret == 0)
360			ret = err;
361	}
362
363	/*
364	 * Some filesystems may redirty the inode during the writeback
365	 * due to delalloc, clear dirty metadata flags right before
366	 * write_inode()
367	 */
368	spin_lock(&inode_lock);
369	dirty = inode->i_state & I_DIRTY;
370	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
371	spin_unlock(&inode_lock);
372	/* Don't write the inode if only I_DIRTY_PAGES was set */
373	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
374		int err = write_inode(inode, wbc);
375		if (ret == 0)
376			ret = err;
377	}
378
379	spin_lock(&inode_lock);
380	inode->i_state &= ~I_SYNC;
381	if (!(inode->i_state & I_FREEING)) {
382		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
383			/*
384			 * We didn't write back all the pages.  nfs_writepages()
385			 * sometimes bales out without doing anything.
386			 */
387			inode->i_state |= I_DIRTY_PAGES;
388			if (wbc->nr_to_write <= 0) {
389				/*
390				 * slice used up: queue for next turn
391				 */
392				requeue_io(inode);
393			} else {
394				/*
395				 * Writeback blocked by something other than
396				 * congestion. Delay the inode for some time to
397				 * avoid spinning on the CPU (100% iowait)
398				 * retrying writeback of the dirty page/inode
399				 * that cannot be performed immediately.
400				 */
401				redirty_tail(inode);
402			}
403		} else if (inode->i_state & I_DIRTY) {
404			/*
405			 * Filesystems can dirty the inode during writeback
406			 * operations, such as delayed allocation during
407			 * submission or metadata updates after data IO
408			 * completion.
409			 */
410			redirty_tail(inode);
411		} else if (atomic_read(&inode->i_count)) {
412			/*
413			 * The inode is clean, inuse
414			 */
415			list_move(&inode->i_list, &inode_in_use);
416		} else {
417			/*
418			 * The inode is clean, unused
419			 */
420			list_move(&inode->i_list, &inode_unused);
421		}
422	}
423	inode_sync_complete(inode);
424	return ret;
425}
426
427/*
428 * For background writeback the caller does not have the sb pinned
429 * before calling writeback. So make sure that we do pin it, so it doesn't
430 * go away while we are writing inodes from it.
431 */
432static bool pin_sb_for_writeback(struct super_block *sb)
433{
434	spin_lock(&sb_lock);
435	if (list_empty(&sb->s_instances)) {
436		spin_unlock(&sb_lock);
437		return false;
438	}
439
440	sb->s_count++;
441	spin_unlock(&sb_lock);
442
443	if (down_read_trylock(&sb->s_umount)) {
444		if (sb->s_root)
445			return true;
446		up_read(&sb->s_umount);
447	}
448
449	put_super(sb);
450	return false;
451}
452
453/*
454 * Write a portion of b_io inodes which belong to @sb.
455 *
456 * If @only_this_sb is true, then find and write all such
457 * inodes. Otherwise write only ones which go sequentially
458 * in reverse order.
459 *
460 * Return 1, if the caller writeback routine should be
461 * interrupted. Otherwise return 0.
462 */
463static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
464		struct writeback_control *wbc, bool only_this_sb)
465{
466	while (!list_empty(&wb->b_io)) {
467		long pages_skipped;
468		struct inode *inode = list_entry(wb->b_io.prev,
469						 struct inode, i_list);
470
471		if (inode->i_sb != sb) {
472			if (only_this_sb) {
473				/*
474				 * We only want to write back data for this
475				 * superblock, move all inodes not belonging
476				 * to it back onto the dirty list.
477				 */
478				redirty_tail(inode);
479				continue;
480			}
481
482			/*
483			 * The inode belongs to a different superblock.
484			 * Bounce back to the caller to unpin this and
485			 * pin the next superblock.
486			 */
487			return 0;
488		}
489
490		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
491			requeue_io(inode);
492			continue;
493		}
494		/*
495		 * Was this inode dirtied after sync_sb_inodes was called?
496		 * This keeps sync from extra jobs and livelock.
497		 */
498		if (inode_dirtied_after(inode, wbc->wb_start))
499			return 1;
500
501		BUG_ON(inode->i_state & I_FREEING);
502		__iget(inode);
503		pages_skipped = wbc->pages_skipped;
504		writeback_single_inode(inode, wbc);
505		if (wbc->pages_skipped != pages_skipped) {
506			/*
507			 * writeback is not making progress due to locked
508			 * buffers.  Skip this inode for now.
509			 */
510			redirty_tail(inode);
511		}
512		spin_unlock(&inode_lock);
513		iput(inode);
514		cond_resched();
515		spin_lock(&inode_lock);
516		if (wbc->nr_to_write <= 0) {
517			wbc->more_io = 1;
518			return 1;
519		}
520		if (!list_empty(&wb->b_more_io))
521			wbc->more_io = 1;
522	}
523	/* b_io is empty */
524	return 1;
525}
526
527void writeback_inodes_wb(struct bdi_writeback *wb,
528		struct writeback_control *wbc)
529{
530	int ret = 0;
531
532	if (!wbc->wb_start)
533		wbc->wb_start = jiffies; /* livelock avoidance */
534	spin_lock(&inode_lock);
535	if (!wbc->for_kupdate || list_empty(&wb->b_io))
536		queue_io(wb, wbc->older_than_this);
537
538	while (!list_empty(&wb->b_io)) {
539		struct inode *inode = list_entry(wb->b_io.prev,
540						 struct inode, i_list);
541		struct super_block *sb = inode->i_sb;
542
543		if (!pin_sb_for_writeback(sb)) {
544			requeue_io(inode);
545			continue;
546		}
547		ret = writeback_sb_inodes(sb, wb, wbc, false);
548		drop_super(sb);
549
550		if (ret)
551			break;
552	}
553	spin_unlock(&inode_lock);
554	/* Leave any unwritten inodes on b_io */
555}
556
557static void __writeback_inodes_sb(struct super_block *sb,
558		struct bdi_writeback *wb, struct writeback_control *wbc)
559{
560	WARN_ON(!rwsem_is_locked(&sb->s_umount));
561
562	spin_lock(&inode_lock);
563	if (!wbc->for_kupdate || list_empty(&wb->b_io))
564		queue_io(wb, wbc->older_than_this);
565	writeback_sb_inodes(sb, wb, wbc, true);
566	spin_unlock(&inode_lock);
567}
568
569/*
570 * The maximum number of pages to writeout in a single bdi flush/kupdate
571 * operation.  We do this so we don't hold I_SYNC against an inode for
572 * enormous amounts of time, which would block a userspace task which has
573 * been forced to throttle against that inode.  Also, the code reevaluates
574 * the dirty each time it has written this many pages.
575 */
576#define MAX_WRITEBACK_PAGES     1024
577
578static inline bool over_bground_thresh(void)
579{
580	unsigned long background_thresh, dirty_thresh;
581
582	global_dirty_limits(&background_thresh, &dirty_thresh);
583
584	return (global_page_state(NR_FILE_DIRTY) +
585		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
586}
587
588/*
589 * Explicit flushing or periodic writeback of "old" data.
590 *
591 * Define "old": the first time one of an inode's pages is dirtied, we mark the
592 * dirtying-time in the inode's address_space.  So this periodic writeback code
593 * just walks the superblock inode list, writing back any inodes which are
594 * older than a specific point in time.
595 *
596 * Try to run once per dirty_writeback_interval.  But if a writeback event
597 * takes longer than a dirty_writeback_interval interval, then leave a
598 * one-second gap.
599 *
600 * older_than_this takes precedence over nr_to_write.  So we'll only write back
601 * all dirty pages if they are all attached to "old" mappings.
602 */
603static long wb_writeback(struct bdi_writeback *wb,
604			 struct wb_writeback_work *work)
605{
606	struct writeback_control wbc = {
607		.sync_mode		= work->sync_mode,
608		.older_than_this	= NULL,
609		.for_kupdate		= work->for_kupdate,
610		.for_background		= work->for_background,
611		.range_cyclic		= work->range_cyclic,
612	};
613	unsigned long oldest_jif;
614	long wrote = 0;
615	struct inode *inode;
616
617	if (wbc.for_kupdate) {
618		wbc.older_than_this = &oldest_jif;
619		oldest_jif = jiffies -
620				msecs_to_jiffies(dirty_expire_interval * 10);
621	}
622	if (!wbc.range_cyclic) {
623		wbc.range_start = 0;
624		wbc.range_end = LLONG_MAX;
625	}
626
627	wbc.wb_start = jiffies; /* livelock avoidance */
628	for (;;) {
629		/*
630		 * Stop writeback when nr_pages has been consumed
631		 */
632		if (work->nr_pages <= 0)
633			break;
634
635		/*
636		 * For background writeout, stop when we are below the
637		 * background dirty threshold
638		 */
639		if (work->for_background && !over_bground_thresh())
640			break;
641
642		wbc.more_io = 0;
643		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
644		wbc.pages_skipped = 0;
645
646		trace_wbc_writeback_start(&wbc, wb->bdi);
647		if (work->sb)
648			__writeback_inodes_sb(work->sb, wb, &wbc);
649		else
650			writeback_inodes_wb(wb, &wbc);
651		trace_wbc_writeback_written(&wbc, wb->bdi);
652
653		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
654		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
655
656		/*
657		 * If we consumed everything, see if we have more
658		 */
659		if (wbc.nr_to_write <= 0)
660			continue;
661		/*
662		 * Didn't write everything and we don't have more IO, bail
663		 */
664		if (!wbc.more_io)
665			break;
666		/*
667		 * Did we write something? Try for more
668		 */
669		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
670			continue;
671		/*
672		 * Nothing written. Wait for some inode to
673		 * become available for writeback. Otherwise
674		 * we'll just busyloop.
675		 */
676		spin_lock(&inode_lock);
677		if (!list_empty(&wb->b_more_io))  {
678			inode = list_entry(wb->b_more_io.prev,
679						struct inode, i_list);
680			trace_wbc_writeback_wait(&wbc, wb->bdi);
681			inode_wait_for_writeback(inode);
682		}
683		spin_unlock(&inode_lock);
684	}
685
686	return wrote;
687}
688
689/*
690 * Return the next wb_writeback_work struct that hasn't been processed yet.
691 */
692static struct wb_writeback_work *
693get_next_work_item(struct backing_dev_info *bdi)
694{
695	struct wb_writeback_work *work = NULL;
696
697	spin_lock_bh(&bdi->wb_lock);
698	if (!list_empty(&bdi->work_list)) {
699		work = list_entry(bdi->work_list.next,
700				  struct wb_writeback_work, list);
701		list_del_init(&work->list);
702	}
703	spin_unlock_bh(&bdi->wb_lock);
704	return work;
705}
706
707static long wb_check_old_data_flush(struct bdi_writeback *wb)
708{
709	unsigned long expired;
710	long nr_pages;
711
712	/*
713	 * When set to zero, disable periodic writeback
714	 */
715	if (!dirty_writeback_interval)
716		return 0;
717
718	expired = wb->last_old_flush +
719			msecs_to_jiffies(dirty_writeback_interval * 10);
720	if (time_before(jiffies, expired))
721		return 0;
722
723	wb->last_old_flush = jiffies;
724	nr_pages = global_page_state(NR_FILE_DIRTY) +
725			global_page_state(NR_UNSTABLE_NFS) +
726			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
727
728	if (nr_pages) {
729		struct wb_writeback_work work = {
730			.nr_pages	= nr_pages,
731			.sync_mode	= WB_SYNC_NONE,
732			.for_kupdate	= 1,
733			.range_cyclic	= 1,
734		};
735
736		return wb_writeback(wb, &work);
737	}
738
739	return 0;
740}
741
742/*
743 * Retrieve work items and do the writeback they describe
744 */
745long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
746{
747	struct backing_dev_info *bdi = wb->bdi;
748	struct wb_writeback_work *work;
749	long wrote = 0;
750
751	set_bit(BDI_writeback_running, &wb->bdi->state);
752	while ((work = get_next_work_item(bdi)) != NULL) {
753		/*
754		 * Override sync mode, in case we must wait for completion
755		 * because this thread is exiting now.
756		 */
757		if (force_wait)
758			work->sync_mode = WB_SYNC_ALL;
759
760		trace_writeback_exec(bdi, work);
761
762		wrote += wb_writeback(wb, work);
763
764		/*
765		 * Notify the caller of completion if this is a synchronous
766		 * work item, otherwise just free it.
767		 */
768		if (work->done)
769			complete(work->done);
770		else
771			kfree(work);
772	}
773
774	/*
775	 * Check for periodic writeback, kupdated() style
776	 */
777	wrote += wb_check_old_data_flush(wb);
778	clear_bit(BDI_writeback_running, &wb->bdi->state);
779
780	return wrote;
781}
782
783/*
784 * Handle writeback of dirty data for the device backed by this bdi. Also
785 * wakes up periodically and does kupdated style flushing.
786 */
787int bdi_writeback_thread(void *data)
788{
789	struct bdi_writeback *wb = data;
790	struct backing_dev_info *bdi = wb->bdi;
791	long pages_written;
792
793	current->flags |= PF_FLUSHER | PF_SWAPWRITE;
794	set_freezable();
795	wb->last_active = jiffies;
796
797	/*
798	 * Our parent may run at a different priority, just set us to normal
799	 */
800	set_user_nice(current, 0);
801
802	trace_writeback_thread_start(bdi);
803
804	while (!kthread_should_stop()) {
805		/*
806		 * Remove own delayed wake-up timer, since we are already awake
807		 * and we'll take care of the preriodic write-back.
808		 */
809		del_timer(&wb->wakeup_timer);
810
811		pages_written = wb_do_writeback(wb, 0);
812
813		trace_writeback_pages_written(pages_written);
814
815		if (pages_written)
816			wb->last_active = jiffies;
817
818		set_current_state(TASK_INTERRUPTIBLE);
819		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
820			__set_current_state(TASK_RUNNING);
821			continue;
822		}
823
824		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
825			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
826		else {
827			/*
828			 * We have nothing to do, so can go sleep without any
829			 * timeout and save power. When a work is queued or
830			 * something is made dirty - we will be woken up.
831			 */
832			schedule();
833		}
834
835		try_to_freeze();
836	}
837
838	/* Flush any work that raced with us exiting */
839	if (!list_empty(&bdi->work_list))
840		wb_do_writeback(wb, 1);
841
842	trace_writeback_thread_stop(bdi);
843	return 0;
844}
845
846
847/*
848 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
849 * the whole world.
850 */
851void wakeup_flusher_threads(long nr_pages)
852{
853	struct backing_dev_info *bdi;
854
855	if (!nr_pages) {
856		nr_pages = global_page_state(NR_FILE_DIRTY) +
857				global_page_state(NR_UNSTABLE_NFS);
858	}
859
860	rcu_read_lock();
861	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
862		if (!bdi_has_dirty_io(bdi))
863			continue;
864		__bdi_start_writeback(bdi, nr_pages, false, false);
865	}
866	rcu_read_unlock();
867}
868
869static noinline void block_dump___mark_inode_dirty(struct inode *inode)
870{
871	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
872		struct dentry *dentry;
873		const char *name = "?";
874
875		dentry = d_find_alias(inode);
876		if (dentry) {
877			spin_lock(&dentry->d_lock);
878			name = (const char *) dentry->d_name.name;
879		}
880		printk(KERN_DEBUG
881		       "%s(%d): dirtied inode %lu (%s) on %s\n",
882		       current->comm, task_pid_nr(current), inode->i_ino,
883		       name, inode->i_sb->s_id);
884		if (dentry) {
885			spin_unlock(&dentry->d_lock);
886			dput(dentry);
887		}
888	}
889}
890
891/**
892 *	__mark_inode_dirty -	internal function
893 *	@inode: inode to mark
894 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
895 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
896 *  	mark_inode_dirty_sync.
897 *
898 * Put the inode on the super block's dirty list.
899 *
900 * CAREFUL! We mark it dirty unconditionally, but move it onto the
901 * dirty list only if it is hashed or if it refers to a blockdev.
902 * If it was not hashed, it will never be added to the dirty list
903 * even if it is later hashed, as it will have been marked dirty already.
904 *
905 * In short, make sure you hash any inodes _before_ you start marking
906 * them dirty.
907 *
908 * This function *must* be atomic for the I_DIRTY_PAGES case -
909 * set_page_dirty() is called under spinlock in several places.
910 *
911 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
912 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
913 * the kernel-internal blockdev inode represents the dirtying time of the
914 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
915 * page->mapping->host, so the page-dirtying time is recorded in the internal
916 * blockdev inode.
917 */
918void __mark_inode_dirty(struct inode *inode, int flags)
919{
920	struct super_block *sb = inode->i_sb;
921	struct backing_dev_info *bdi = NULL;
922	bool wakeup_bdi = false;
923
924	/*
925	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
926	 * dirty the inode itself
927	 */
928	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
929		if (sb->s_op->dirty_inode)
930			sb->s_op->dirty_inode(inode);
931	}
932
933	/*
934	 * make sure that changes are seen by all cpus before we test i_state
935	 * -- mikulas
936	 */
937	smp_mb();
938
939	/* avoid the locking if we can */
940	if ((inode->i_state & flags) == flags)
941		return;
942
943	if (unlikely(block_dump))
944		block_dump___mark_inode_dirty(inode);
945
946	spin_lock(&inode_lock);
947	if ((inode->i_state & flags) != flags) {
948		const int was_dirty = inode->i_state & I_DIRTY;
949
950		inode->i_state |= flags;
951
952		/*
953		 * If the inode is being synced, just update its dirty state.
954		 * The unlocker will place the inode on the appropriate
955		 * superblock list, based upon its state.
956		 */
957		if (inode->i_state & I_SYNC)
958			goto out;
959
960		/*
961		 * Only add valid (hashed) inodes to the superblock's
962		 * dirty list.  Add blockdev inodes as well.
963		 */
964		if (!S_ISBLK(inode->i_mode)) {
965			if (hlist_unhashed(&inode->i_hash))
966				goto out;
967		}
968		if (inode->i_state & I_FREEING)
969			goto out;
970
971		/*
972		 * If the inode was already on b_dirty/b_io/b_more_io, don't
973		 * reposition it (that would break b_dirty time-ordering).
974		 */
975		if (!was_dirty) {
976			bdi = inode_to_bdi(inode);
977
978			if (bdi_cap_writeback_dirty(bdi)) {
979				WARN(!test_bit(BDI_registered, &bdi->state),
980				     "bdi-%s not registered\n", bdi->name);
981
982				/*
983				 * If this is the first dirty inode for this
984				 * bdi, we have to wake-up the corresponding
985				 * bdi thread to make sure background
986				 * write-back happens later.
987				 */
988				if (!wb_has_dirty_io(&bdi->wb))
989					wakeup_bdi = true;
990			}
991
992			inode->dirtied_when = jiffies;
993			list_move(&inode->i_list, &bdi->wb.b_dirty);
994		}
995	}
996out:
997	spin_unlock(&inode_lock);
998
999	if (wakeup_bdi)
1000		bdi_wakeup_thread_delayed(bdi);
1001}
1002EXPORT_SYMBOL(__mark_inode_dirty);
1003
1004/*
1005 * Write out a superblock's list of dirty inodes.  A wait will be performed
1006 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1007 *
1008 * If older_than_this is non-NULL, then only write out inodes which
1009 * had their first dirtying at a time earlier than *older_than_this.
1010 *
1011 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1012 * This function assumes that the blockdev superblock's inodes are backed by
1013 * a variety of queues, so all inodes are searched.  For other superblocks,
1014 * assume that all inodes are backed by the same queue.
1015 *
1016 * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1017 * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1018 * on the writer throttling path, and we get decent balancing between many
1019 * throttled threads: we don't want them all piling up on inode_sync_wait.
1020 */
1021static void wait_sb_inodes(struct super_block *sb)
1022{
1023	struct inode *inode, *old_inode = NULL;
1024
1025	/*
1026	 * We need to be protected against the filesystem going from
1027	 * r/o to r/w or vice versa.
1028	 */
1029	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1030
1031	spin_lock(&inode_lock);
1032
1033	/*
1034	 * Data integrity sync. Must wait for all pages under writeback,
1035	 * because there may have been pages dirtied before our sync
1036	 * call, but which had writeout started before we write it out.
1037	 * In which case, the inode may not be on the dirty list, but
1038	 * we still have to wait for that writeout.
1039	 */
1040	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1041		struct address_space *mapping;
1042
1043		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1044			continue;
1045		mapping = inode->i_mapping;
1046		if (mapping->nrpages == 0)
1047			continue;
1048		__iget(inode);
1049		spin_unlock(&inode_lock);
1050		/*
1051		 * We hold a reference to 'inode' so it couldn't have
1052		 * been removed from s_inodes list while we dropped the
1053		 * inode_lock.  We cannot iput the inode now as we can
1054		 * be holding the last reference and we cannot iput it
1055		 * under inode_lock. So we keep the reference and iput
1056		 * it later.
1057		 */
1058		iput(old_inode);
1059		old_inode = inode;
1060
1061		filemap_fdatawait(mapping);
1062
1063		cond_resched();
1064
1065		spin_lock(&inode_lock);
1066	}
1067	spin_unlock(&inode_lock);
1068	iput(old_inode);
1069}
1070
1071/**
1072 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1073 * @sb: the superblock
1074 *
1075 * Start writeback on some inodes on this super_block. No guarantees are made
1076 * on how many (if any) will be written, and this function does not wait
1077 * for IO completion of submitted IO. The number of pages submitted is
1078 * returned.
1079 */
1080void writeback_inodes_sb(struct super_block *sb)
1081{
1082	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1083	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1084	DECLARE_COMPLETION_ONSTACK(done);
1085	struct wb_writeback_work work = {
1086		.sb		= sb,
1087		.sync_mode	= WB_SYNC_NONE,
1088		.done		= &done,
1089	};
1090
1091	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1092
1093	work.nr_pages = nr_dirty + nr_unstable +
1094			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1095
1096	bdi_queue_work(sb->s_bdi, &work);
1097	wait_for_completion(&done);
1098}
1099EXPORT_SYMBOL(writeback_inodes_sb);
1100
1101/**
1102 * writeback_inodes_sb_if_idle	-	start writeback if none underway
1103 * @sb: the superblock
1104 *
1105 * Invoke writeback_inodes_sb if no writeback is currently underway.
1106 * Returns 1 if writeback was started, 0 if not.
1107 */
1108int writeback_inodes_sb_if_idle(struct super_block *sb)
1109{
1110	if (!writeback_in_progress(sb->s_bdi)) {
1111		down_read(&sb->s_umount);
1112		writeback_inodes_sb(sb);
1113		up_read(&sb->s_umount);
1114		return 1;
1115	} else
1116		return 0;
1117}
1118EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1119
1120/**
1121 * sync_inodes_sb	-	sync sb inode pages
1122 * @sb: the superblock
1123 *
1124 * This function writes and waits on any dirty inode belonging to this
1125 * super_block. The number of pages synced is returned.
1126 */
1127void sync_inodes_sb(struct super_block *sb)
1128{
1129	DECLARE_COMPLETION_ONSTACK(done);
1130	struct wb_writeback_work work = {
1131		.sb		= sb,
1132		.sync_mode	= WB_SYNC_ALL,
1133		.nr_pages	= LONG_MAX,
1134		.range_cyclic	= 0,
1135		.done		= &done,
1136	};
1137
1138	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1139
1140	bdi_queue_work(sb->s_bdi, &work);
1141	wait_for_completion(&done);
1142
1143	wait_sb_inodes(sb);
1144}
1145EXPORT_SYMBOL(sync_inodes_sb);
1146
1147/**
1148 * write_inode_now	-	write an inode to disk
1149 * @inode: inode to write to disk
1150 * @sync: whether the write should be synchronous or not
1151 *
1152 * This function commits an inode to disk immediately if it is dirty. This is
1153 * primarily needed by knfsd.
1154 *
1155 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1156 */
1157int write_inode_now(struct inode *inode, int sync)
1158{
1159	int ret;
1160	struct writeback_control wbc = {
1161		.nr_to_write = LONG_MAX,
1162		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1163		.range_start = 0,
1164		.range_end = LLONG_MAX,
1165	};
1166
1167	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1168		wbc.nr_to_write = 0;
1169
1170	might_sleep();
1171	spin_lock(&inode_lock);
1172	ret = writeback_single_inode(inode, &wbc);
1173	spin_unlock(&inode_lock);
1174	if (sync)
1175		inode_sync_wait(inode);
1176	return ret;
1177}
1178EXPORT_SYMBOL(write_inode_now);
1179
1180/**
1181 * sync_inode - write an inode and its pages to disk.
1182 * @inode: the inode to sync
1183 * @wbc: controls the writeback mode
1184 *
1185 * sync_inode() will write an inode and its pages to disk.  It will also
1186 * correctly update the inode on its superblock's dirty inode lists and will
1187 * update inode->i_state.
1188 *
1189 * The caller must have a ref on the inode.
1190 */
1191int sync_inode(struct inode *inode, struct writeback_control *wbc)
1192{
1193	int ret;
1194
1195	spin_lock(&inode_lock);
1196	ret = writeback_single_inode(inode, wbc);
1197	spin_unlock(&inode_lock);
1198	return ret;
1199}
1200EXPORT_SYMBOL(sync_inode);
1201