1/*
2 *  linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  BSD ufs-inspired inode and directory allocation by
10 *  Stephen Tweedie (sct@redhat.com), 1993
11 *  Big-endian to little-endian byte-swapping/bitmaps by
12 *        David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15#include <linux/time.h>
16#include <linux/fs.h>
17#include <linux/jbd2.h>
18#include <linux/stat.h>
19#include <linux/string.h>
20#include <linux/quotaops.h>
21#include <linux/buffer_head.h>
22#include <linux/random.h>
23#include <linux/bitops.h>
24#include <linux/blkdev.h>
25#include <asm/byteorder.h>
26
27#include "ext4.h"
28#include "ext4_jbd2.h"
29#include "xattr.h"
30#include "acl.h"
31
32#include <trace/events/ext4.h>
33
34/*
35 * ialloc.c contains the inodes allocation and deallocation routines
36 */
37
38/*
39 * The free inodes are managed by bitmaps.  A file system contains several
40 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
42 *
43 * The file system contains group descriptors which are located after the
44 * super block.  Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
46 */
47
48/*
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
52 */
53void mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54{
55	int i;
56
57	if (start_bit >= end_bit)
58		return;
59
60	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62		ext4_set_bit(i, bitmap);
63	if (i < end_bit)
64		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65}
66
67/* Initializes an uninitialized inode bitmap */
68unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh,
69				ext4_group_t block_group,
70				struct ext4_group_desc *gdp)
71{
72	struct ext4_sb_info *sbi = EXT4_SB(sb);
73
74	J_ASSERT_BH(bh, buffer_locked(bh));
75
76	/* If checksum is bad mark all blocks and inodes use to prevent
77	 * allocation, essentially implementing a per-group read-only flag. */
78	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
79		ext4_error(sb, "Checksum bad for group %u", block_group);
80		ext4_free_blks_set(sb, gdp, 0);
81		ext4_free_inodes_set(sb, gdp, 0);
82		ext4_itable_unused_set(sb, gdp, 0);
83		memset(bh->b_data, 0xff, sb->s_blocksize);
84		return 0;
85	}
86
87	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
88	mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
89			bh->b_data);
90
91	return EXT4_INODES_PER_GROUP(sb);
92}
93
94/*
95 * Read the inode allocation bitmap for a given block_group, reading
96 * into the specified slot in the superblock's bitmap cache.
97 *
98 * Return buffer_head of bitmap on success or NULL.
99 */
100static struct buffer_head *
101ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
102{
103	struct ext4_group_desc *desc;
104	struct buffer_head *bh = NULL;
105	ext4_fsblk_t bitmap_blk;
106
107	desc = ext4_get_group_desc(sb, block_group, NULL);
108	if (!desc)
109		return NULL;
110	bitmap_blk = ext4_inode_bitmap(sb, desc);
111	bh = sb_getblk(sb, bitmap_blk);
112	if (unlikely(!bh)) {
113		ext4_error(sb, "Cannot read inode bitmap - "
114			    "block_group = %u, inode_bitmap = %llu",
115			    block_group, bitmap_blk);
116		return NULL;
117	}
118	if (bitmap_uptodate(bh))
119		return bh;
120
121	lock_buffer(bh);
122	if (bitmap_uptodate(bh)) {
123		unlock_buffer(bh);
124		return bh;
125	}
126	ext4_lock_group(sb, block_group);
127	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
128		ext4_init_inode_bitmap(sb, bh, block_group, desc);
129		set_bitmap_uptodate(bh);
130		set_buffer_uptodate(bh);
131		ext4_unlock_group(sb, block_group);
132		unlock_buffer(bh);
133		return bh;
134	}
135	ext4_unlock_group(sb, block_group);
136	if (buffer_uptodate(bh)) {
137		/*
138		 * if not uninit if bh is uptodate,
139		 * bitmap is also uptodate
140		 */
141		set_bitmap_uptodate(bh);
142		unlock_buffer(bh);
143		return bh;
144	}
145	/*
146	 * submit the buffer_head for read. We can
147	 * safely mark the bitmap as uptodate now.
148	 * We do it here so the bitmap uptodate bit
149	 * get set with buffer lock held.
150	 */
151	set_bitmap_uptodate(bh);
152	if (bh_submit_read(bh) < 0) {
153		put_bh(bh);
154		ext4_error(sb, "Cannot read inode bitmap - "
155			    "block_group = %u, inode_bitmap = %llu",
156			    block_group, bitmap_blk);
157		return NULL;
158	}
159	return bh;
160}
161
162/*
163 * NOTE! When we get the inode, we're the only people
164 * that have access to it, and as such there are no
165 * race conditions we have to worry about. The inode
166 * is not on the hash-lists, and it cannot be reached
167 * through the filesystem because the directory entry
168 * has been deleted earlier.
169 *
170 * HOWEVER: we must make sure that we get no aliases,
171 * which means that we have to call "clear_inode()"
172 * _before_ we mark the inode not in use in the inode
173 * bitmaps. Otherwise a newly created file might use
174 * the same inode number (not actually the same pointer
175 * though), and then we'd have two inodes sharing the
176 * same inode number and space on the harddisk.
177 */
178void ext4_free_inode(handle_t *handle, struct inode *inode)
179{
180	struct super_block *sb = inode->i_sb;
181	int is_directory;
182	unsigned long ino;
183	struct buffer_head *bitmap_bh = NULL;
184	struct buffer_head *bh2;
185	ext4_group_t block_group;
186	unsigned long bit;
187	struct ext4_group_desc *gdp;
188	struct ext4_super_block *es;
189	struct ext4_sb_info *sbi;
190	int fatal = 0, err, count, cleared;
191
192	if (atomic_read(&inode->i_count) > 1) {
193		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
194		       atomic_read(&inode->i_count));
195		return;
196	}
197	if (inode->i_nlink) {
198		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
199		       inode->i_nlink);
200		return;
201	}
202	if (!sb) {
203		printk(KERN_ERR "ext4_free_inode: inode on "
204		       "nonexistent device\n");
205		return;
206	}
207	sbi = EXT4_SB(sb);
208
209	ino = inode->i_ino;
210	ext4_debug("freeing inode %lu\n", ino);
211	trace_ext4_free_inode(inode);
212
213	/*
214	 * Note: we must free any quota before locking the superblock,
215	 * as writing the quota to disk may need the lock as well.
216	 */
217	dquot_initialize(inode);
218	ext4_xattr_delete_inode(handle, inode);
219	dquot_free_inode(inode);
220	dquot_drop(inode);
221
222	is_directory = S_ISDIR(inode->i_mode);
223
224	/* Do this BEFORE marking the inode not in use or returning an error */
225	ext4_clear_inode(inode);
226
227	es = EXT4_SB(sb)->s_es;
228	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
229		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
230		goto error_return;
231	}
232	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
233	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
234	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
235	if (!bitmap_bh)
236		goto error_return;
237
238	BUFFER_TRACE(bitmap_bh, "get_write_access");
239	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
240	if (fatal)
241		goto error_return;
242
243	fatal = -ESRCH;
244	gdp = ext4_get_group_desc(sb, block_group, &bh2);
245	if (gdp) {
246		BUFFER_TRACE(bh2, "get_write_access");
247		fatal = ext4_journal_get_write_access(handle, bh2);
248	}
249	ext4_lock_group(sb, block_group);
250	cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
251	if (fatal || !cleared) {
252		ext4_unlock_group(sb, block_group);
253		goto out;
254	}
255
256	count = ext4_free_inodes_count(sb, gdp) + 1;
257	ext4_free_inodes_set(sb, gdp, count);
258	if (is_directory) {
259		count = ext4_used_dirs_count(sb, gdp) - 1;
260		ext4_used_dirs_set(sb, gdp, count);
261		percpu_counter_dec(&sbi->s_dirs_counter);
262	}
263	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
264	ext4_unlock_group(sb, block_group);
265
266	percpu_counter_inc(&sbi->s_freeinodes_counter);
267	if (sbi->s_log_groups_per_flex) {
268		ext4_group_t f = ext4_flex_group(sbi, block_group);
269
270		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
271		if (is_directory)
272			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
273	}
274	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
275	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
276out:
277	if (cleared) {
278		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
279		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
280		if (!fatal)
281			fatal = err;
282		ext4_mark_super_dirty(sb);
283	} else
284		ext4_error(sb, "bit already cleared for inode %lu", ino);
285
286error_return:
287	brelse(bitmap_bh);
288	ext4_std_error(sb, fatal);
289}
290
291/*
292 * There are two policies for allocating an inode.  If the new inode is
293 * a directory, then a forward search is made for a block group with both
294 * free space and a low directory-to-inode ratio; if that fails, then of
295 * the groups with above-average free space, that group with the fewest
296 * directories already is chosen.
297 *
298 * For other inodes, search forward from the parent directory\'s block
299 * group to find a free inode.
300 */
301static int find_group_dir(struct super_block *sb, struct inode *parent,
302				ext4_group_t *best_group)
303{
304	ext4_group_t ngroups = ext4_get_groups_count(sb);
305	unsigned int freei, avefreei;
306	struct ext4_group_desc *desc, *best_desc = NULL;
307	ext4_group_t group;
308	int ret = -1;
309
310	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
311	avefreei = freei / ngroups;
312
313	for (group = 0; group < ngroups; group++) {
314		desc = ext4_get_group_desc(sb, group, NULL);
315		if (!desc || !ext4_free_inodes_count(sb, desc))
316			continue;
317		if (ext4_free_inodes_count(sb, desc) < avefreei)
318			continue;
319		if (!best_desc ||
320		    (ext4_free_blks_count(sb, desc) >
321		     ext4_free_blks_count(sb, best_desc))) {
322			*best_group = group;
323			best_desc = desc;
324			ret = 0;
325		}
326	}
327	return ret;
328}
329
330#define free_block_ratio 10
331
332static int find_group_flex(struct super_block *sb, struct inode *parent,
333			   ext4_group_t *best_group)
334{
335	struct ext4_sb_info *sbi = EXT4_SB(sb);
336	struct ext4_group_desc *desc;
337	struct flex_groups *flex_group = sbi->s_flex_groups;
338	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
339	ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
340	ext4_group_t ngroups = ext4_get_groups_count(sb);
341	int flex_size = ext4_flex_bg_size(sbi);
342	ext4_group_t best_flex = parent_fbg_group;
343	int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
344	int flexbg_free_blocks;
345	int flex_freeb_ratio;
346	ext4_group_t n_fbg_groups;
347	ext4_group_t i;
348
349	n_fbg_groups = (ngroups + flex_size - 1) >>
350		sbi->s_log_groups_per_flex;
351
352find_close_to_parent:
353	flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
354	flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
355	if (atomic_read(&flex_group[best_flex].free_inodes) &&
356	    flex_freeb_ratio > free_block_ratio)
357		goto found_flexbg;
358
359	if (best_flex && best_flex == parent_fbg_group) {
360		best_flex--;
361		goto find_close_to_parent;
362	}
363
364	for (i = 0; i < n_fbg_groups; i++) {
365		if (i == parent_fbg_group || i == parent_fbg_group - 1)
366			continue;
367
368		flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
369		flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
370
371		if (flex_freeb_ratio > free_block_ratio &&
372		    (atomic_read(&flex_group[i].free_inodes))) {
373			best_flex = i;
374			goto found_flexbg;
375		}
376
377		if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
378		    ((atomic_read(&flex_group[i].free_blocks) >
379		      atomic_read(&flex_group[best_flex].free_blocks)) &&
380		     atomic_read(&flex_group[i].free_inodes)))
381			best_flex = i;
382	}
383
384	if (!atomic_read(&flex_group[best_flex].free_inodes) ||
385	    !atomic_read(&flex_group[best_flex].free_blocks))
386		return -1;
387
388found_flexbg:
389	for (i = best_flex * flex_size; i < ngroups &&
390		     i < (best_flex + 1) * flex_size; i++) {
391		desc = ext4_get_group_desc(sb, i, NULL);
392		if (ext4_free_inodes_count(sb, desc)) {
393			*best_group = i;
394			goto out;
395		}
396	}
397
398	return -1;
399out:
400	return 0;
401}
402
403struct orlov_stats {
404	__u32 free_inodes;
405	__u32 free_blocks;
406	__u32 used_dirs;
407};
408
409/*
410 * Helper function for Orlov's allocator; returns critical information
411 * for a particular block group or flex_bg.  If flex_size is 1, then g
412 * is a block group number; otherwise it is flex_bg number.
413 */
414void get_orlov_stats(struct super_block *sb, ext4_group_t g,
415		       int flex_size, struct orlov_stats *stats)
416{
417	struct ext4_group_desc *desc;
418	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
419
420	if (flex_size > 1) {
421		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
422		stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
423		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
424		return;
425	}
426
427	desc = ext4_get_group_desc(sb, g, NULL);
428	if (desc) {
429		stats->free_inodes = ext4_free_inodes_count(sb, desc);
430		stats->free_blocks = ext4_free_blks_count(sb, desc);
431		stats->used_dirs = ext4_used_dirs_count(sb, desc);
432	} else {
433		stats->free_inodes = 0;
434		stats->free_blocks = 0;
435		stats->used_dirs = 0;
436	}
437}
438
439/*
440 * Orlov's allocator for directories.
441 *
442 * We always try to spread first-level directories.
443 *
444 * If there are blockgroups with both free inodes and free blocks counts
445 * not worse than average we return one with smallest directory count.
446 * Otherwise we simply return a random group.
447 *
448 * For the rest rules look so:
449 *
450 * It's OK to put directory into a group unless
451 * it has too many directories already (max_dirs) or
452 * it has too few free inodes left (min_inodes) or
453 * it has too few free blocks left (min_blocks) or
454 * Parent's group is preferred, if it doesn't satisfy these
455 * conditions we search cyclically through the rest. If none
456 * of the groups look good we just look for a group with more
457 * free inodes than average (starting at parent's group).
458 */
459
460static int find_group_orlov(struct super_block *sb, struct inode *parent,
461			    ext4_group_t *group, int mode,
462			    const struct qstr *qstr)
463{
464	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
465	struct ext4_sb_info *sbi = EXT4_SB(sb);
466	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
467	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
468	unsigned int freei, avefreei;
469	ext4_fsblk_t freeb, avefreeb;
470	unsigned int ndirs;
471	int max_dirs, min_inodes;
472	ext4_grpblk_t min_blocks;
473	ext4_group_t i, grp, g, ngroups;
474	struct ext4_group_desc *desc;
475	struct orlov_stats stats;
476	int flex_size = ext4_flex_bg_size(sbi);
477	struct dx_hash_info hinfo;
478
479	ngroups = real_ngroups;
480	if (flex_size > 1) {
481		ngroups = (real_ngroups + flex_size - 1) >>
482			sbi->s_log_groups_per_flex;
483		parent_group >>= sbi->s_log_groups_per_flex;
484	}
485
486	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
487	avefreei = freei / ngroups;
488	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
489	avefreeb = freeb;
490	do_div(avefreeb, ngroups);
491	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
492
493	if (S_ISDIR(mode) &&
494	    ((parent == sb->s_root->d_inode) ||
495	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
496		int best_ndir = inodes_per_group;
497		int ret = -1;
498
499		if (qstr) {
500			hinfo.hash_version = DX_HASH_HALF_MD4;
501			hinfo.seed = sbi->s_hash_seed;
502			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
503			grp = hinfo.hash;
504		} else
505			get_random_bytes(&grp, sizeof(grp));
506		parent_group = (unsigned)grp % ngroups;
507		for (i = 0; i < ngroups; i++) {
508			g = (parent_group + i) % ngroups;
509			get_orlov_stats(sb, g, flex_size, &stats);
510			if (!stats.free_inodes)
511				continue;
512			if (stats.used_dirs >= best_ndir)
513				continue;
514			if (stats.free_inodes < avefreei)
515				continue;
516			if (stats.free_blocks < avefreeb)
517				continue;
518			grp = g;
519			ret = 0;
520			best_ndir = stats.used_dirs;
521		}
522		if (ret)
523			goto fallback;
524	found_flex_bg:
525		if (flex_size == 1) {
526			*group = grp;
527			return 0;
528		}
529
530		/*
531		 * We pack inodes at the beginning of the flexgroup's
532		 * inode tables.  Block allocation decisions will do
533		 * something similar, although regular files will
534		 * start at 2nd block group of the flexgroup.  See
535		 * ext4_ext_find_goal() and ext4_find_near().
536		 */
537		grp *= flex_size;
538		for (i = 0; i < flex_size; i++) {
539			if (grp+i >= real_ngroups)
540				break;
541			desc = ext4_get_group_desc(sb, grp+i, NULL);
542			if (desc && ext4_free_inodes_count(sb, desc)) {
543				*group = grp+i;
544				return 0;
545			}
546		}
547		goto fallback;
548	}
549
550	max_dirs = ndirs / ngroups + inodes_per_group / 16;
551	min_inodes = avefreei - inodes_per_group*flex_size / 4;
552	if (min_inodes < 1)
553		min_inodes = 1;
554	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
555
556	/*
557	 * Start looking in the flex group where we last allocated an
558	 * inode for this parent directory
559	 */
560	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
561		parent_group = EXT4_I(parent)->i_last_alloc_group;
562		if (flex_size > 1)
563			parent_group >>= sbi->s_log_groups_per_flex;
564	}
565
566	for (i = 0; i < ngroups; i++) {
567		grp = (parent_group + i) % ngroups;
568		get_orlov_stats(sb, grp, flex_size, &stats);
569		if (stats.used_dirs >= max_dirs)
570			continue;
571		if (stats.free_inodes < min_inodes)
572			continue;
573		if (stats.free_blocks < min_blocks)
574			continue;
575		goto found_flex_bg;
576	}
577
578fallback:
579	ngroups = real_ngroups;
580	avefreei = freei / ngroups;
581fallback_retry:
582	parent_group = EXT4_I(parent)->i_block_group;
583	for (i = 0; i < ngroups; i++) {
584		grp = (parent_group + i) % ngroups;
585		desc = ext4_get_group_desc(sb, grp, NULL);
586		if (desc && ext4_free_inodes_count(sb, desc) &&
587		    ext4_free_inodes_count(sb, desc) >= avefreei) {
588			*group = grp;
589			return 0;
590		}
591	}
592
593	if (avefreei) {
594		/*
595		 * The free-inodes counter is approximate, and for really small
596		 * filesystems the above test can fail to find any blockgroups
597		 */
598		avefreei = 0;
599		goto fallback_retry;
600	}
601
602	return -1;
603}
604
605static int find_group_other(struct super_block *sb, struct inode *parent,
606			    ext4_group_t *group, int mode)
607{
608	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
609	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
610	struct ext4_group_desc *desc;
611	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
612
613	/*
614	 * Try to place the inode is the same flex group as its
615	 * parent.  If we can't find space, use the Orlov algorithm to
616	 * find another flex group, and store that information in the
617	 * parent directory's inode information so that use that flex
618	 * group for future allocations.
619	 */
620	if (flex_size > 1) {
621		int retry = 0;
622
623	try_again:
624		parent_group &= ~(flex_size-1);
625		last = parent_group + flex_size;
626		if (last > ngroups)
627			last = ngroups;
628		for  (i = parent_group; i < last; i++) {
629			desc = ext4_get_group_desc(sb, i, NULL);
630			if (desc && ext4_free_inodes_count(sb, desc)) {
631				*group = i;
632				return 0;
633			}
634		}
635		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
636			retry = 1;
637			parent_group = EXT4_I(parent)->i_last_alloc_group;
638			goto try_again;
639		}
640		/*
641		 * If this didn't work, use the Orlov search algorithm
642		 * to find a new flex group; we pass in the mode to
643		 * avoid the topdir algorithms.
644		 */
645		*group = parent_group + flex_size;
646		if (*group > ngroups)
647			*group = 0;
648		return find_group_orlov(sb, parent, group, mode, 0);
649	}
650
651	/*
652	 * Try to place the inode in its parent directory
653	 */
654	*group = parent_group;
655	desc = ext4_get_group_desc(sb, *group, NULL);
656	if (desc && ext4_free_inodes_count(sb, desc) &&
657			ext4_free_blks_count(sb, desc))
658		return 0;
659
660	/*
661	 * We're going to place this inode in a different blockgroup from its
662	 * parent.  We want to cause files in a common directory to all land in
663	 * the same blockgroup.  But we want files which are in a different
664	 * directory which shares a blockgroup with our parent to land in a
665	 * different blockgroup.
666	 *
667	 * So add our directory's i_ino into the starting point for the hash.
668	 */
669	*group = (*group + parent->i_ino) % ngroups;
670
671	/*
672	 * Use a quadratic hash to find a group with a free inode and some free
673	 * blocks.
674	 */
675	for (i = 1; i < ngroups; i <<= 1) {
676		*group += i;
677		if (*group >= ngroups)
678			*group -= ngroups;
679		desc = ext4_get_group_desc(sb, *group, NULL);
680		if (desc && ext4_free_inodes_count(sb, desc) &&
681				ext4_free_blks_count(sb, desc))
682			return 0;
683	}
684
685	/*
686	 * That failed: try linear search for a free inode, even if that group
687	 * has no free blocks.
688	 */
689	*group = parent_group;
690	for (i = 0; i < ngroups; i++) {
691		if (++*group >= ngroups)
692			*group = 0;
693		desc = ext4_get_group_desc(sb, *group, NULL);
694		if (desc && ext4_free_inodes_count(sb, desc))
695			return 0;
696	}
697
698	return -1;
699}
700
701/*
702 * claim the inode from the inode bitmap. If the group
703 * is uninit we need to take the groups's ext4_group_lock
704 * and clear the uninit flag. The inode bitmap update
705 * and group desc uninit flag clear should be done
706 * after holding ext4_group_lock so that ext4_read_inode_bitmap
707 * doesn't race with the ext4_claim_inode
708 */
709static int ext4_claim_inode(struct super_block *sb,
710			struct buffer_head *inode_bitmap_bh,
711			unsigned long ino, ext4_group_t group, int mode)
712{
713	int free = 0, retval = 0, count;
714	struct ext4_sb_info *sbi = EXT4_SB(sb);
715	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
716
717	ext4_lock_group(sb, group);
718	if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
719		/* not a free inode */
720		retval = 1;
721		goto err_ret;
722	}
723	ino++;
724	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
725			ino > EXT4_INODES_PER_GROUP(sb)) {
726		ext4_unlock_group(sb, group);
727		ext4_error(sb, "reserved inode or inode > inodes count - "
728			   "block_group = %u, inode=%lu", group,
729			   ino + group * EXT4_INODES_PER_GROUP(sb));
730		return 1;
731	}
732	/* If we didn't allocate from within the initialized part of the inode
733	 * table then we need to initialize up to this inode. */
734	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
735
736		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
737			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
738			/* When marking the block group with
739			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
740			 * on the value of bg_itable_unused even though
741			 * mke2fs could have initialized the same for us.
742			 * Instead we calculated the value below
743			 */
744
745			free = 0;
746		} else {
747			free = EXT4_INODES_PER_GROUP(sb) -
748				ext4_itable_unused_count(sb, gdp);
749		}
750
751		/*
752		 * Check the relative inode number against the last used
753		 * relative inode number in this group. if it is greater
754		 * we need to  update the bg_itable_unused count
755		 *
756		 */
757		if (ino > free)
758			ext4_itable_unused_set(sb, gdp,
759					(EXT4_INODES_PER_GROUP(sb) - ino));
760	}
761	count = ext4_free_inodes_count(sb, gdp) - 1;
762	ext4_free_inodes_set(sb, gdp, count);
763	if (S_ISDIR(mode)) {
764		count = ext4_used_dirs_count(sb, gdp) + 1;
765		ext4_used_dirs_set(sb, gdp, count);
766		if (sbi->s_log_groups_per_flex) {
767			ext4_group_t f = ext4_flex_group(sbi, group);
768
769			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
770		}
771	}
772	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
773err_ret:
774	ext4_unlock_group(sb, group);
775	return retval;
776}
777
778/*
779 * There are two policies for allocating an inode.  If the new inode is
780 * a directory, then a forward search is made for a block group with both
781 * free space and a low directory-to-inode ratio; if that fails, then of
782 * the groups with above-average free space, that group with the fewest
783 * directories already is chosen.
784 *
785 * For other inodes, search forward from the parent directory's block
786 * group to find a free inode.
787 */
788struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
789			     const struct qstr *qstr, __u32 goal)
790{
791	struct super_block *sb;
792	struct buffer_head *inode_bitmap_bh = NULL;
793	struct buffer_head *group_desc_bh;
794	ext4_group_t ngroups, group = 0;
795	unsigned long ino = 0;
796	struct inode *inode;
797	struct ext4_group_desc *gdp = NULL;
798	struct ext4_inode_info *ei;
799	struct ext4_sb_info *sbi;
800	int ret2, err = 0;
801	struct inode *ret;
802	ext4_group_t i;
803	int free = 0;
804	static int once = 1;
805	ext4_group_t flex_group;
806
807	/* Cannot create files in a deleted directory */
808	if (!dir || !dir->i_nlink)
809		return ERR_PTR(-EPERM);
810
811	sb = dir->i_sb;
812	ngroups = ext4_get_groups_count(sb);
813	trace_ext4_request_inode(dir, mode);
814	inode = new_inode(sb);
815	if (!inode)
816		return ERR_PTR(-ENOMEM);
817	ei = EXT4_I(inode);
818	sbi = EXT4_SB(sb);
819
820	if (!goal)
821		goal = sbi->s_inode_goal;
822
823	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
824		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
825		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
826		ret2 = 0;
827		goto got_group;
828	}
829
830	if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
831		ret2 = find_group_flex(sb, dir, &group);
832		if (ret2 == -1) {
833			ret2 = find_group_other(sb, dir, &group, mode);
834			if (ret2 == 0 && once) {
835				once = 0;
836				printk(KERN_NOTICE "ext4: find_group_flex "
837				       "failed, fallback succeeded dir %lu\n",
838				       dir->i_ino);
839			}
840		}
841		goto got_group;
842	}
843
844	if (S_ISDIR(mode)) {
845		if (test_opt(sb, OLDALLOC))
846			ret2 = find_group_dir(sb, dir, &group);
847		else
848			ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
849	} else
850		ret2 = find_group_other(sb, dir, &group, mode);
851
852got_group:
853	EXT4_I(dir)->i_last_alloc_group = group;
854	err = -ENOSPC;
855	if (ret2 == -1)
856		goto out;
857
858	for (i = 0; i < ngroups; i++, ino = 0) {
859		err = -EIO;
860
861		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
862		if (!gdp)
863			goto fail;
864
865		brelse(inode_bitmap_bh);
866		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
867		if (!inode_bitmap_bh)
868			goto fail;
869
870repeat_in_this_group:
871		ino = ext4_find_next_zero_bit((unsigned long *)
872					      inode_bitmap_bh->b_data,
873					      EXT4_INODES_PER_GROUP(sb), ino);
874
875		if (ino < EXT4_INODES_PER_GROUP(sb)) {
876
877			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
878			err = ext4_journal_get_write_access(handle,
879							    inode_bitmap_bh);
880			if (err)
881				goto fail;
882
883			BUFFER_TRACE(group_desc_bh, "get_write_access");
884			err = ext4_journal_get_write_access(handle,
885								group_desc_bh);
886			if (err)
887				goto fail;
888			if (!ext4_claim_inode(sb, inode_bitmap_bh,
889						ino, group, mode)) {
890				/* we won it */
891				BUFFER_TRACE(inode_bitmap_bh,
892					"call ext4_handle_dirty_metadata");
893				err = ext4_handle_dirty_metadata(handle,
894								 NULL,
895							inode_bitmap_bh);
896				if (err)
897					goto fail;
898				/* zero bit is inode number 1*/
899				ino++;
900				goto got;
901			}
902			/* we lost it */
903			ext4_handle_release_buffer(handle, inode_bitmap_bh);
904			ext4_handle_release_buffer(handle, group_desc_bh);
905
906			if (++ino < EXT4_INODES_PER_GROUP(sb))
907				goto repeat_in_this_group;
908		}
909
910		/*
911		 * This case is possible in concurrent environment.  It is very
912		 * rare.  We cannot repeat the find_group_xxx() call because
913		 * that will simply return the same blockgroup, because the
914		 * group descriptor metadata has not yet been updated.
915		 * So we just go onto the next blockgroup.
916		 */
917		if (++group == ngroups)
918			group = 0;
919	}
920	err = -ENOSPC;
921	goto out;
922
923got:
924	/* We may have to initialize the block bitmap if it isn't already */
925	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
926	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
927		struct buffer_head *block_bitmap_bh;
928
929		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
930		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
931		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
932		if (err) {
933			brelse(block_bitmap_bh);
934			goto fail;
935		}
936
937		free = 0;
938		ext4_lock_group(sb, group);
939		/* recheck and clear flag under lock if we still need to */
940		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
941			free = ext4_free_blocks_after_init(sb, group, gdp);
942			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
943			ext4_free_blks_set(sb, gdp, free);
944			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
945								gdp);
946		}
947		ext4_unlock_group(sb, group);
948
949		/* Don't need to dirty bitmap block if we didn't change it */
950		if (free) {
951			BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
952			err = ext4_handle_dirty_metadata(handle,
953							NULL, block_bitmap_bh);
954		}
955
956		brelse(block_bitmap_bh);
957		if (err)
958			goto fail;
959	}
960	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
961	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
962	if (err)
963		goto fail;
964
965	percpu_counter_dec(&sbi->s_freeinodes_counter);
966	if (S_ISDIR(mode))
967		percpu_counter_inc(&sbi->s_dirs_counter);
968	ext4_mark_super_dirty(sb);
969
970	if (sbi->s_log_groups_per_flex) {
971		flex_group = ext4_flex_group(sbi, group);
972		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
973	}
974
975	if (test_opt(sb, GRPID)) {
976		inode->i_mode = mode;
977		inode->i_uid = current_fsuid();
978		inode->i_gid = dir->i_gid;
979	} else
980		inode_init_owner(inode, dir, mode);
981
982	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
983	/* This is the optimal IO size (for stat), not the fs block size */
984	inode->i_blocks = 0;
985	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
986						       ext4_current_time(inode);
987
988	memset(ei->i_data, 0, sizeof(ei->i_data));
989	ei->i_dir_start_lookup = 0;
990	ei->i_disksize = 0;
991
992	/*
993	 * Don't inherit extent flag from directory, amongst others. We set
994	 * extent flag on newly created directory and file only if -o extent
995	 * mount option is specified
996	 */
997	ei->i_flags =
998		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
999	ei->i_file_acl = 0;
1000	ei->i_dtime = 0;
1001	ei->i_block_group = group;
1002	ei->i_last_alloc_group = ~0;
1003
1004	ext4_set_inode_flags(inode);
1005	if (IS_DIRSYNC(inode))
1006		ext4_handle_sync(handle);
1007	if (insert_inode_locked(inode) < 0) {
1008		err = -EINVAL;
1009		goto fail_drop;
1010	}
1011	spin_lock(&sbi->s_next_gen_lock);
1012	inode->i_generation = sbi->s_next_generation++;
1013	spin_unlock(&sbi->s_next_gen_lock);
1014
1015	ei->i_state_flags = 0;
1016	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1017
1018	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1019
1020	ret = inode;
1021	dquot_initialize(inode);
1022	err = dquot_alloc_inode(inode);
1023	if (err)
1024		goto fail_drop;
1025
1026	err = ext4_init_acl(handle, inode, dir);
1027	if (err)
1028		goto fail_free_drop;
1029
1030	err = ext4_init_security(handle, inode, dir);
1031	if (err)
1032		goto fail_free_drop;
1033
1034	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1035		/* set extent flag only for directory, file and normal symlink*/
1036		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1037			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1038			ext4_ext_tree_init(handle, inode);
1039		}
1040	}
1041
1042	err = ext4_mark_inode_dirty(handle, inode);
1043	if (err) {
1044		ext4_std_error(sb, err);
1045		goto fail_free_drop;
1046	}
1047
1048	ext4_debug("allocating inode %lu\n", inode->i_ino);
1049	trace_ext4_allocate_inode(inode, dir, mode);
1050	goto really_out;
1051fail:
1052	ext4_std_error(sb, err);
1053out:
1054	iput(inode);
1055	ret = ERR_PTR(err);
1056really_out:
1057	brelse(inode_bitmap_bh);
1058	return ret;
1059
1060fail_free_drop:
1061	dquot_free_inode(inode);
1062
1063fail_drop:
1064	dquot_drop(inode);
1065	inode->i_flags |= S_NOQUOTA;
1066	inode->i_nlink = 0;
1067	unlock_new_inode(inode);
1068	iput(inode);
1069	brelse(inode_bitmap_bh);
1070	return ERR_PTR(err);
1071}
1072
1073/* Verify that we are loading a valid orphan from disk */
1074struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1075{
1076	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1077	ext4_group_t block_group;
1078	int bit;
1079	struct buffer_head *bitmap_bh;
1080	struct inode *inode = NULL;
1081	long err = -EIO;
1082
1083	/* Error cases - e2fsck has already cleaned up for us */
1084	if (ino > max_ino) {
1085		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1086		goto error;
1087	}
1088
1089	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1090	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1091	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1092	if (!bitmap_bh) {
1093		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1094		goto error;
1095	}
1096
1097	/* Having the inode bit set should be a 100% indicator that this
1098	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1099	 * inodes that were being truncated, so we can't check i_nlink==0.
1100	 */
1101	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1102		goto bad_orphan;
1103
1104	inode = ext4_iget(sb, ino);
1105	if (IS_ERR(inode))
1106		goto iget_failed;
1107
1108	/*
1109	 * If the orphans has i_nlinks > 0 then it should be able to be
1110	 * truncated, otherwise it won't be removed from the orphan list
1111	 * during processing and an infinite loop will result.
1112	 */
1113	if (inode->i_nlink && !ext4_can_truncate(inode))
1114		goto bad_orphan;
1115
1116	if (NEXT_ORPHAN(inode) > max_ino)
1117		goto bad_orphan;
1118	brelse(bitmap_bh);
1119	return inode;
1120
1121iget_failed:
1122	err = PTR_ERR(inode);
1123	inode = NULL;
1124bad_orphan:
1125	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1126	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1127	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1128	       ext4_test_bit(bit, bitmap_bh->b_data));
1129	printk(KERN_NOTICE "inode=%p\n", inode);
1130	if (inode) {
1131		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1132		       is_bad_inode(inode));
1133		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1134		       NEXT_ORPHAN(inode));
1135		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1136		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1137		/* Avoid freeing blocks if we got a bad deleted inode */
1138		if (inode->i_nlink == 0)
1139			inode->i_blocks = 0;
1140		iput(inode);
1141	}
1142	brelse(bitmap_bh);
1143error:
1144	return ERR_PTR(err);
1145}
1146
1147unsigned long ext4_count_free_inodes(struct super_block *sb)
1148{
1149	unsigned long desc_count;
1150	struct ext4_group_desc *gdp;
1151	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1152#ifdef EXT4FS_DEBUG
1153	struct ext4_super_block *es;
1154	unsigned long bitmap_count, x;
1155	struct buffer_head *bitmap_bh = NULL;
1156
1157	es = EXT4_SB(sb)->s_es;
1158	desc_count = 0;
1159	bitmap_count = 0;
1160	gdp = NULL;
1161	for (i = 0; i < ngroups; i++) {
1162		gdp = ext4_get_group_desc(sb, i, NULL);
1163		if (!gdp)
1164			continue;
1165		desc_count += ext4_free_inodes_count(sb, gdp);
1166		brelse(bitmap_bh);
1167		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1168		if (!bitmap_bh)
1169			continue;
1170
1171		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1172		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1173			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1174		bitmap_count += x;
1175	}
1176	brelse(bitmap_bh);
1177	printk(KERN_DEBUG "ext4_count_free_inodes: "
1178	       "stored = %u, computed = %lu, %lu\n",
1179	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1180	return desc_count;
1181#else
1182	desc_count = 0;
1183	for (i = 0; i < ngroups; i++) {
1184		gdp = ext4_get_group_desc(sb, i, NULL);
1185		if (!gdp)
1186			continue;
1187		desc_count += ext4_free_inodes_count(sb, gdp);
1188		cond_resched();
1189	}
1190	return desc_count;
1191#endif
1192}
1193
1194/* Called at mount-time, super-block is locked */
1195unsigned long ext4_count_dirs(struct super_block * sb)
1196{
1197	unsigned long count = 0;
1198	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1199
1200	for (i = 0; i < ngroups; i++) {
1201		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1202		if (!gdp)
1203			continue;
1204		count += ext4_used_dirs_count(sb, gdp);
1205	}
1206	return count;
1207}
1208