• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/usb/storage/
1/*
2 * Driver for Alauda-based card readers
3 *
4 * Current development and maintenance by:
5 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6 *
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8 *
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
12 *
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
16 *
17 * For protocol info, see http://alauda.sourceforge.net
18 *
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/module.h>
35#include <linux/slab.h>
36
37#include <scsi/scsi.h>
38#include <scsi/scsi_cmnd.h>
39#include <scsi/scsi_device.h>
40
41#include "usb.h"
42#include "transport.h"
43#include "protocol.h"
44#include "debug.h"
45
46MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48MODULE_LICENSE("GPL");
49
50/*
51 * Status bytes
52 */
53#define ALAUDA_STATUS_ERROR		0x01
54#define ALAUDA_STATUS_READY		0x40
55
56/*
57 * Control opcodes (for request field)
58 */
59#define ALAUDA_GET_XD_MEDIA_STATUS	0x08
60#define ALAUDA_GET_SM_MEDIA_STATUS	0x98
61#define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
62#define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
63#define ALAUDA_GET_XD_MEDIA_SIG		0x86
64#define ALAUDA_GET_SM_MEDIA_SIG		0x96
65
66/*
67 * Bulk command identity (byte 0)
68 */
69#define ALAUDA_BULK_CMD			0x40
70
71/*
72 * Bulk opcodes (byte 1)
73 */
74#define ALAUDA_BULK_GET_REDU_DATA	0x85
75#define ALAUDA_BULK_READ_BLOCK		0x94
76#define ALAUDA_BULK_ERASE_BLOCK		0xa3
77#define ALAUDA_BULK_WRITE_BLOCK		0xb4
78#define ALAUDA_BULK_GET_STATUS2		0xb7
79#define ALAUDA_BULK_RESET_MEDIA		0xe0
80
81/*
82 * Port to operate on (byte 8)
83 */
84#define ALAUDA_PORT_XD			0x00
85#define ALAUDA_PORT_SM			0x01
86
87/*
88 * LBA and PBA are unsigned ints. Special values.
89 */
90#define UNDEF    0xffff
91#define SPARE    0xfffe
92#define UNUSABLE 0xfffd
93
94struct alauda_media_info {
95	unsigned long capacity;		/* total media size in bytes */
96	unsigned int pagesize;		/* page size in bytes */
97	unsigned int blocksize;		/* number of pages per block */
98	unsigned int uzonesize;		/* number of usable blocks per zone */
99	unsigned int zonesize;		/* number of blocks per zone */
100	unsigned int blockmask;		/* mask to get page from address */
101
102	unsigned char pageshift;
103	unsigned char blockshift;
104	unsigned char zoneshift;
105
106	u16 **lba_to_pba;		/* logical to physical block map */
107	u16 **pba_to_lba;		/* physical to logical block map */
108};
109
110struct alauda_info {
111	struct alauda_media_info port[2];
112	int wr_ep;			/* endpoint to write data out of */
113
114	unsigned char sense_key;
115	unsigned long sense_asc;	/* additional sense code */
116	unsigned long sense_ascq;	/* additional sense code qualifier */
117};
118
119#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120#define LSB_of(s) ((s)&0xFF)
121#define MSB_of(s) ((s)>>8)
122
123#define MEDIA_PORT(us) us->srb->device->lun
124#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125
126#define PBA_LO(pba) ((pba & 0xF) << 5)
127#define PBA_HI(pba) (pba >> 3)
128#define PBA_ZONE(pba) (pba >> 11)
129
130static int init_alauda(struct us_data *us);
131
132
133/*
134 * The table of devices
135 */
136#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137		    vendorName, productName, useProtocol, useTransport, \
138		    initFunction, flags) \
139{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140  .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
141
142struct usb_device_id alauda_usb_ids[] = {
143#	include "unusual_alauda.h"
144	{ }		/* Terminating entry */
145};
146MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147
148#undef UNUSUAL_DEV
149
150/*
151 * The flags table
152 */
153#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154		    vendor_name, product_name, use_protocol, use_transport, \
155		    init_function, Flags) \
156{ \
157	.vendorName = vendor_name,	\
158	.productName = product_name,	\
159	.useProtocol = use_protocol,	\
160	.useTransport = use_transport,	\
161	.initFunction = init_function,	\
162}
163
164static struct us_unusual_dev alauda_unusual_dev_list[] = {
165#	include "unusual_alauda.h"
166	{ }		/* Terminating entry */
167};
168
169#undef UNUSUAL_DEV
170
171
172/*
173 * Media handling
174 */
175
176struct alauda_card_info {
177	unsigned char id;		/* id byte */
178	unsigned char chipshift;	/* 1<<cs bytes total capacity */
179	unsigned char pageshift;	/* 1<<ps bytes in a page */
180	unsigned char blockshift;	/* 1<<bs pages per block */
181	unsigned char zoneshift;	/* 1<<zs blocks per zone */
182};
183
184static struct alauda_card_info alauda_card_ids[] = {
185	/* NAND flash */
186	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
187	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
188	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
189	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
190	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
191	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
192	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
193	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
194	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
195	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
196	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
197	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
198	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
199	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
200
201	/* MASK ROM */
202	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
203	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
204	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
205	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
206	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
207	{ 0,}
208};
209
210static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211	int i;
212
213	for (i = 0; alauda_card_ids[i].id != 0; i++)
214		if (alauda_card_ids[i].id == id)
215			return &(alauda_card_ids[i]);
216	return NULL;
217}
218
219/*
220 * ECC computation.
221 */
222
223static unsigned char parity[256];
224static unsigned char ecc2[256];
225
226static void nand_init_ecc(void) {
227	int i, j, a;
228
229	parity[0] = 0;
230	for (i = 1; i < 256; i++)
231		parity[i] = (parity[i&(i-1)] ^ 1);
232
233	for (i = 0; i < 256; i++) {
234		a = 0;
235		for (j = 0; j < 8; j++) {
236			if (i & (1<<j)) {
237				if ((j & 1) == 0)
238					a ^= 0x04;
239				if ((j & 2) == 0)
240					a ^= 0x10;
241				if ((j & 4) == 0)
242					a ^= 0x40;
243			}
244		}
245		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
246	}
247}
248
249/* compute 3-byte ecc on 256 bytes */
250static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251	int i, j, a;
252	unsigned char par, bit, bits[8];
253
254	par = 0;
255	for (j = 0; j < 8; j++)
256		bits[j] = 0;
257
258	/* collect 16 checksum bits */
259	for (i = 0; i < 256; i++) {
260		par ^= data[i];
261		bit = parity[data[i]];
262		for (j = 0; j < 8; j++)
263			if ((i & (1<<j)) == 0)
264				bits[j] ^= bit;
265	}
266
267	/* put 4+4+4 = 12 bits in the ecc */
268	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
269	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
270
271	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
272	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
273
274	ecc[2] = ecc2[par];
275}
276
277static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
278	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
279}
280
281static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
282	memcpy(data, ecc, 3);
283}
284
285/*
286 * Alauda driver
287 */
288
289/*
290 * Forget our PBA <---> LBA mappings for a particular port
291 */
292static void alauda_free_maps (struct alauda_media_info *media_info)
293{
294	unsigned int shift = media_info->zoneshift
295		+ media_info->blockshift + media_info->pageshift;
296	unsigned int num_zones = media_info->capacity >> shift;
297	unsigned int i;
298
299	if (media_info->lba_to_pba != NULL)
300		for (i = 0; i < num_zones; i++) {
301			kfree(media_info->lba_to_pba[i]);
302			media_info->lba_to_pba[i] = NULL;
303		}
304
305	if (media_info->pba_to_lba != NULL)
306		for (i = 0; i < num_zones; i++) {
307			kfree(media_info->pba_to_lba[i]);
308			media_info->pba_to_lba[i] = NULL;
309		}
310}
311
312/*
313 * Returns 2 bytes of status data
314 * The first byte describes media status, and second byte describes door status
315 */
316static int alauda_get_media_status(struct us_data *us, unsigned char *data)
317{
318	int rc;
319	unsigned char command;
320
321	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
322		command = ALAUDA_GET_XD_MEDIA_STATUS;
323	else
324		command = ALAUDA_GET_SM_MEDIA_STATUS;
325
326	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
327		command, 0xc0, 0, 1, data, 2);
328
329	US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n",
330		data[0], data[1]);
331
332	return rc;
333}
334
335/*
336 * Clears the "media was changed" bit so that we know when it changes again
337 * in the future.
338 */
339static int alauda_ack_media(struct us_data *us)
340{
341	unsigned char command;
342
343	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
344		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
345	else
346		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
347
348	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
349		command, 0x40, 0, 1, NULL, 0);
350}
351
352/*
353 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
354 * and some other details.
355 */
356static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
357{
358	unsigned char command;
359
360	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
361		command = ALAUDA_GET_XD_MEDIA_SIG;
362	else
363		command = ALAUDA_GET_SM_MEDIA_SIG;
364
365	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
366		command, 0xc0, 0, 0, data, 4);
367}
368
369/*
370 * Resets the media status (but not the whole device?)
371 */
372static int alauda_reset_media(struct us_data *us)
373{
374	unsigned char *command = us->iobuf;
375
376	memset(command, 0, 9);
377	command[0] = ALAUDA_BULK_CMD;
378	command[1] = ALAUDA_BULK_RESET_MEDIA;
379	command[8] = MEDIA_PORT(us);
380
381	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
382		command, 9, NULL);
383}
384
385/*
386 * Examines the media and deduces capacity, etc.
387 */
388static int alauda_init_media(struct us_data *us)
389{
390	unsigned char *data = us->iobuf;
391	int ready = 0;
392	struct alauda_card_info *media_info;
393	unsigned int num_zones;
394
395	while (ready == 0) {
396		msleep(20);
397
398		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
399			return USB_STOR_TRANSPORT_ERROR;
400
401		if (data[0] & 0x10)
402			ready = 1;
403	}
404
405	US_DEBUGP("alauda_init_media: We are ready for action!\n");
406
407	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
408		return USB_STOR_TRANSPORT_ERROR;
409
410	msleep(10);
411
412	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
413		return USB_STOR_TRANSPORT_ERROR;
414
415	if (data[0] != 0x14) {
416		US_DEBUGP("alauda_init_media: Media not ready after ack\n");
417		return USB_STOR_TRANSPORT_ERROR;
418	}
419
420	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
421		return USB_STOR_TRANSPORT_ERROR;
422
423	US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n",
424		data[0], data[1], data[2], data[3]);
425	media_info = alauda_card_find_id(data[1]);
426	if (media_info == NULL) {
427		printk(KERN_WARNING
428			"alauda_init_media: Unrecognised media signature: "
429			"%02X %02X %02X %02X\n",
430			data[0], data[1], data[2], data[3]);
431		return USB_STOR_TRANSPORT_ERROR;
432	}
433
434	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
435	US_DEBUGP("Found media with capacity: %ldMB\n",
436		MEDIA_INFO(us).capacity >> 20);
437
438	MEDIA_INFO(us).pageshift = media_info->pageshift;
439	MEDIA_INFO(us).blockshift = media_info->blockshift;
440	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
441
442	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
445
446	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
448
449	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
453
454	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455		return USB_STOR_TRANSPORT_ERROR;
456
457	return USB_STOR_TRANSPORT_GOOD;
458}
459
460/*
461 * Examines the media status and does the right thing when the media has gone,
462 * appeared, or changed.
463 */
464static int alauda_check_media(struct us_data *us)
465{
466	struct alauda_info *info = (struct alauda_info *) us->extra;
467	unsigned char status[2];
468	int rc;
469
470	rc = alauda_get_media_status(us, status);
471
472	/* Check for no media or door open */
473	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474		|| ((status[1] & 0x01) == 0)) {
475		US_DEBUGP("alauda_check_media: No media, or door open\n");
476		alauda_free_maps(&MEDIA_INFO(us));
477		info->sense_key = 0x02;
478		info->sense_asc = 0x3A;
479		info->sense_ascq = 0x00;
480		return USB_STOR_TRANSPORT_FAILED;
481	}
482
483	/* Check for media change */
484	if (status[0] & 0x08) {
485		US_DEBUGP("alauda_check_media: Media change detected\n");
486		alauda_free_maps(&MEDIA_INFO(us));
487		alauda_init_media(us);
488
489		info->sense_key = UNIT_ATTENTION;
490		info->sense_asc = 0x28;
491		info->sense_ascq = 0x00;
492		return USB_STOR_TRANSPORT_FAILED;
493	}
494
495	return USB_STOR_TRANSPORT_GOOD;
496}
497
498/*
499 * Checks the status from the 2nd status register
500 * Returns 3 bytes of status data, only the first is known
501 */
502static int alauda_check_status2(struct us_data *us)
503{
504	int rc;
505	unsigned char command[] = {
506		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
508	};
509	unsigned char data[3];
510
511	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512		command, 9, NULL);
513	if (rc != USB_STOR_XFER_GOOD)
514		return rc;
515
516	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517		data, 3, NULL);
518	if (rc != USB_STOR_XFER_GOOD)
519		return rc;
520
521	US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]);
522	if (data[0] & ALAUDA_STATUS_ERROR)
523		return USB_STOR_XFER_ERROR;
524
525	return USB_STOR_XFER_GOOD;
526}
527
528/*
529 * Gets the redundancy data for the first page of a PBA
530 * Returns 16 bytes.
531 */
532static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
533{
534	int rc;
535	unsigned char command[] = {
536		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
538	};
539
540	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541		command, 9, NULL);
542	if (rc != USB_STOR_XFER_GOOD)
543		return rc;
544
545	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546		data, 16, NULL);
547}
548
549/*
550 * Finds the first unused PBA in a zone
551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
552 */
553static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554	unsigned int zone)
555{
556	u16 *pba_to_lba = info->pba_to_lba[zone];
557	unsigned int i;
558
559	for (i = 0; i < info->zonesize; i++)
560		if (pba_to_lba[i] == UNDEF)
561			return (zone << info->zoneshift) + i;
562
563	return 0;
564}
565
566/*
567 * Reads the redundancy data for all PBA's in a zone
568 * Produces lba <--> pba mappings
569 */
570static int alauda_read_map(struct us_data *us, unsigned int zone)
571{
572	unsigned char *data = us->iobuf;
573	int result;
574	int i, j;
575	unsigned int zonesize = MEDIA_INFO(us).zonesize;
576	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577	unsigned int lba_offset, lba_real, blocknum;
578	unsigned int zone_base_lba = zone * uzonesize;
579	unsigned int zone_base_pba = zone * zonesize;
580	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582	if (lba_to_pba == NULL || pba_to_lba == NULL) {
583		result = USB_STOR_TRANSPORT_ERROR;
584		goto error;
585	}
586
587	US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone);
588
589	/* 1024 PBA's per zone */
590	for (i = 0; i < zonesize; i++)
591		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
592
593	for (i = 0; i < zonesize; i++) {
594		blocknum = zone_base_pba + i;
595
596		result = alauda_get_redu_data(us, blocknum, data);
597		if (result != USB_STOR_XFER_GOOD) {
598			result = USB_STOR_TRANSPORT_ERROR;
599			goto error;
600		}
601
602		/* special PBAs have control field 0^16 */
603		for (j = 0; j < 16; j++)
604			if (data[j] != 0)
605				goto nonz;
606		pba_to_lba[i] = UNUSABLE;
607		US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum);
608		continue;
609
610	nonz:
611		/* unwritten PBAs have control field FF^16 */
612		for (j = 0; j < 16; j++)
613			if (data[j] != 0xff)
614				goto nonff;
615		continue;
616
617	nonff:
618		/* normal PBAs start with six FFs */
619		if (j < 6) {
620			US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: "
621			       "reserved area = %02X%02X%02X%02X "
622			       "data status %02X block status %02X\n",
623			       blocknum, data[0], data[1], data[2], data[3],
624			       data[4], data[5]);
625			pba_to_lba[i] = UNUSABLE;
626			continue;
627		}
628
629		if ((data[6] >> 4) != 0x01) {
630			US_DEBUGP("alauda_read_map: PBA %d has invalid address "
631			       "field %02X%02X/%02X%02X\n",
632			       blocknum, data[6], data[7], data[11], data[12]);
633			pba_to_lba[i] = UNUSABLE;
634			continue;
635		}
636
637		/* check even parity */
638		if (parity[data[6] ^ data[7]]) {
639			printk(KERN_WARNING
640			       "alauda_read_map: Bad parity in LBA for block %d"
641			       " (%02X %02X)\n", i, data[6], data[7]);
642			pba_to_lba[i] = UNUSABLE;
643			continue;
644		}
645
646		lba_offset = short_pack(data[7], data[6]);
647		lba_offset = (lba_offset & 0x07FF) >> 1;
648		lba_real = lba_offset + zone_base_lba;
649
650		/*
651		 * Every 1024 physical blocks ("zone"), the LBA numbers
652		 * go back to zero, but are within a higher block of LBA's.
653		 * Also, there is a maximum of 1000 LBA's per zone.
654		 * In other words, in PBA 1024-2047 you will find LBA 0-999
655		 * which are really LBA 1000-1999. This allows for 24 bad
656		 * or special physical blocks per zone.
657		 */
658
659		if (lba_offset >= uzonesize) {
660			printk(KERN_WARNING
661			       "alauda_read_map: Bad low LBA %d for block %d\n",
662			       lba_real, blocknum);
663			continue;
664		}
665
666		if (lba_to_pba[lba_offset] != UNDEF) {
667			printk(KERN_WARNING
668			       "alauda_read_map: "
669			       "LBA %d seen for PBA %d and %d\n",
670			       lba_real, lba_to_pba[lba_offset], blocknum);
671			continue;
672		}
673
674		pba_to_lba[i] = lba_real;
675		lba_to_pba[lba_offset] = blocknum;
676		continue;
677	}
678
679	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
680	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
681	result = 0;
682	goto out;
683
684error:
685	kfree(lba_to_pba);
686	kfree(pba_to_lba);
687out:
688	return result;
689}
690
691/*
692 * Checks to see whether we have already mapped a certain zone
693 * If we haven't, the map is generated
694 */
695static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
696{
697	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
698		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
699		alauda_read_map(us, zone);
700}
701
702/*
703 * Erases an entire block
704 */
705static int alauda_erase_block(struct us_data *us, u16 pba)
706{
707	int rc;
708	unsigned char command[] = {
709		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
710		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
711	};
712	unsigned char buf[2];
713
714	US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba);
715
716	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
717		command, 9, NULL);
718	if (rc != USB_STOR_XFER_GOOD)
719		return rc;
720
721	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
722		buf, 2, NULL);
723	if (rc != USB_STOR_XFER_GOOD)
724		return rc;
725
726	US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n",
727		buf[0], buf[1]);
728	return rc;
729}
730
731/*
732 * Reads data from a certain offset page inside a PBA, including interleaved
733 * redundancy data. Returns (pagesize+64)*pages bytes in data.
734 */
735static int alauda_read_block_raw(struct us_data *us, u16 pba,
736		unsigned int page, unsigned int pages, unsigned char *data)
737{
738	int rc;
739	unsigned char command[] = {
740		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
741		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
742	};
743
744	US_DEBUGP("alauda_read_block: pba %d page %d count %d\n",
745		pba, page, pages);
746
747	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
748		command, 9, NULL);
749	if (rc != USB_STOR_XFER_GOOD)
750		return rc;
751
752	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
753		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
754}
755
756/*
757 * Reads data from a certain offset page inside a PBA, excluding redundancy
758 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
759 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
760 * trailing bytes outside this function.
761 */
762static int alauda_read_block(struct us_data *us, u16 pba,
763		unsigned int page, unsigned int pages, unsigned char *data)
764{
765	int i, rc;
766	unsigned int pagesize = MEDIA_INFO(us).pagesize;
767
768	rc = alauda_read_block_raw(us, pba, page, pages, data);
769	if (rc != USB_STOR_XFER_GOOD)
770		return rc;
771
772	/* Cut out the redundancy data */
773	for (i = 0; i < pages; i++) {
774		int dest_offset = i * pagesize;
775		int src_offset = i * (pagesize + 64);
776		memmove(data + dest_offset, data + src_offset, pagesize);
777	}
778
779	return rc;
780}
781
782/*
783 * Writes an entire block of data and checks status after write.
784 * Redundancy data must be already included in data. Data should be
785 * (pagesize+64)*blocksize bytes in length.
786 */
787static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
788{
789	int rc;
790	struct alauda_info *info = (struct alauda_info *) us->extra;
791	unsigned char command[] = {
792		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
793		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
794	};
795
796	US_DEBUGP("alauda_write_block: pba %d\n", pba);
797
798	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
799		command, 9, NULL);
800	if (rc != USB_STOR_XFER_GOOD)
801		return rc;
802
803	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
804		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
805		NULL);
806	if (rc != USB_STOR_XFER_GOOD)
807		return rc;
808
809	return alauda_check_status2(us);
810}
811
812/*
813 * Write some data to a specific LBA.
814 */
815static int alauda_write_lba(struct us_data *us, u16 lba,
816		 unsigned int page, unsigned int pages,
817		 unsigned char *ptr, unsigned char *blockbuffer)
818{
819	u16 pba, lbap, new_pba;
820	unsigned char *bptr, *cptr, *xptr;
821	unsigned char ecc[3];
822	int i, result;
823	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
824	unsigned int zonesize = MEDIA_INFO(us).zonesize;
825	unsigned int pagesize = MEDIA_INFO(us).pagesize;
826	unsigned int blocksize = MEDIA_INFO(us).blocksize;
827	unsigned int lba_offset = lba % uzonesize;
828	unsigned int new_pba_offset;
829	unsigned int zone = lba / uzonesize;
830
831	alauda_ensure_map_for_zone(us, zone);
832
833	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
834	if (pba == 1) {
835		/* Maybe it is impossible to write to PBA 1.
836		   Fake success, but don't do anything. */
837		printk(KERN_WARNING
838		       "alauda_write_lba: avoid writing to pba 1\n");
839		return USB_STOR_TRANSPORT_GOOD;
840	}
841
842	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
843	if (!new_pba) {
844		printk(KERN_WARNING
845		       "alauda_write_lba: Out of unused blocks\n");
846		return USB_STOR_TRANSPORT_ERROR;
847	}
848
849	/* read old contents */
850	if (pba != UNDEF) {
851		result = alauda_read_block_raw(us, pba, 0,
852			blocksize, blockbuffer);
853		if (result != USB_STOR_XFER_GOOD)
854			return result;
855	} else {
856		memset(blockbuffer, 0, blocksize * (pagesize + 64));
857	}
858
859	lbap = (lba_offset << 1) | 0x1000;
860	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
861		lbap ^= 1;
862
863	/* check old contents and fill lba */
864	for (i = 0; i < blocksize; i++) {
865		bptr = blockbuffer + (i * (pagesize + 64));
866		cptr = bptr + pagesize;
867		nand_compute_ecc(bptr, ecc);
868		if (!nand_compare_ecc(cptr+13, ecc)) {
869			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
870				  i, pba);
871			nand_store_ecc(cptr+13, ecc);
872		}
873		nand_compute_ecc(bptr + (pagesize / 2), ecc);
874		if (!nand_compare_ecc(cptr+8, ecc)) {
875			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
876				  i, pba);
877			nand_store_ecc(cptr+8, ecc);
878		}
879		cptr[6] = cptr[11] = MSB_of(lbap);
880		cptr[7] = cptr[12] = LSB_of(lbap);
881	}
882
883	/* copy in new stuff and compute ECC */
884	xptr = ptr;
885	for (i = page; i < page+pages; i++) {
886		bptr = blockbuffer + (i * (pagesize + 64));
887		cptr = bptr + pagesize;
888		memcpy(bptr, xptr, pagesize);
889		xptr += pagesize;
890		nand_compute_ecc(bptr, ecc);
891		nand_store_ecc(cptr+13, ecc);
892		nand_compute_ecc(bptr + (pagesize / 2), ecc);
893		nand_store_ecc(cptr+8, ecc);
894	}
895
896	result = alauda_write_block(us, new_pba, blockbuffer);
897	if (result != USB_STOR_XFER_GOOD)
898		return result;
899
900	new_pba_offset = new_pba - (zone * zonesize);
901	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
902	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
903	US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n",
904		lba, new_pba);
905
906	if (pba != UNDEF) {
907		unsigned int pba_offset = pba - (zone * zonesize);
908		result = alauda_erase_block(us, pba);
909		if (result != USB_STOR_XFER_GOOD)
910			return result;
911		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
912	}
913
914	return USB_STOR_TRANSPORT_GOOD;
915}
916
917/*
918 * Read data from a specific sector address
919 */
920static int alauda_read_data(struct us_data *us, unsigned long address,
921		unsigned int sectors)
922{
923	unsigned char *buffer;
924	u16 lba, max_lba;
925	unsigned int page, len, offset;
926	unsigned int blockshift = MEDIA_INFO(us).blockshift;
927	unsigned int pageshift = MEDIA_INFO(us).pageshift;
928	unsigned int blocksize = MEDIA_INFO(us).blocksize;
929	unsigned int pagesize = MEDIA_INFO(us).pagesize;
930	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
931	struct scatterlist *sg;
932	int result;
933
934	/*
935	 * Since we only read in one block at a time, we have to create
936	 * a bounce buffer and move the data a piece at a time between the
937	 * bounce buffer and the actual transfer buffer.
938	 * We make this buffer big enough to hold temporary redundancy data,
939	 * which we use when reading the data blocks.
940	 */
941
942	len = min(sectors, blocksize) * (pagesize + 64);
943	buffer = kmalloc(len, GFP_NOIO);
944	if (buffer == NULL) {
945		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
946		return USB_STOR_TRANSPORT_ERROR;
947	}
948
949	/* Figure out the initial LBA and page */
950	lba = address >> blockshift;
951	page = (address & MEDIA_INFO(us).blockmask);
952	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
953
954	result = USB_STOR_TRANSPORT_GOOD;
955	offset = 0;
956	sg = NULL;
957
958	while (sectors > 0) {
959		unsigned int zone = lba / uzonesize; /* integer division */
960		unsigned int lba_offset = lba - (zone * uzonesize);
961		unsigned int pages;
962		u16 pba;
963		alauda_ensure_map_for_zone(us, zone);
964
965		/* Not overflowing capacity? */
966		if (lba >= max_lba) {
967			US_DEBUGP("Error: Requested lba %u exceeds "
968				  "maximum %u\n", lba, max_lba);
969			result = USB_STOR_TRANSPORT_ERROR;
970			break;
971		}
972
973		/* Find number of pages we can read in this block */
974		pages = min(sectors, blocksize - page);
975		len = pages << pageshift;
976
977		/* Find where this lba lives on disk */
978		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
979
980		if (pba == UNDEF) {	/* this lba was never written */
981			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
982				  pages, lba, page);
983
984			/* This is not really an error. It just means
985			   that the block has never been written.
986			   Instead of returning USB_STOR_TRANSPORT_ERROR
987			   it is better to return all zero data. */
988
989			memset(buffer, 0, len);
990		} else {
991			US_DEBUGP("Read %d pages, from PBA %d"
992				  " (LBA %d) page %d\n",
993				  pages, pba, lba, page);
994
995			result = alauda_read_block(us, pba, page, pages, buffer);
996			if (result != USB_STOR_TRANSPORT_GOOD)
997				break;
998		}
999
1000		/* Store the data in the transfer buffer */
1001		usb_stor_access_xfer_buf(buffer, len, us->srb,
1002				&sg, &offset, TO_XFER_BUF);
1003
1004		page = 0;
1005		lba++;
1006		sectors -= pages;
1007	}
1008
1009	kfree(buffer);
1010	return result;
1011}
1012
1013/*
1014 * Write data to a specific sector address
1015 */
1016static int alauda_write_data(struct us_data *us, unsigned long address,
1017		unsigned int sectors)
1018{
1019	unsigned char *buffer, *blockbuffer;
1020	unsigned int page, len, offset;
1021	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1022	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1023	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1024	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1025	struct scatterlist *sg;
1026	u16 lba, max_lba;
1027	int result;
1028
1029	/*
1030	 * Since we don't write the user data directly to the device,
1031	 * we have to create a bounce buffer and move the data a piece
1032	 * at a time between the bounce buffer and the actual transfer buffer.
1033	 */
1034
1035	len = min(sectors, blocksize) * pagesize;
1036	buffer = kmalloc(len, GFP_NOIO);
1037	if (buffer == NULL) {
1038		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1039		return USB_STOR_TRANSPORT_ERROR;
1040	}
1041
1042	/*
1043	 * We also need a temporary block buffer, where we read in the old data,
1044	 * overwrite parts with the new data, and manipulate the redundancy data
1045	 */
1046	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1047	if (blockbuffer == NULL) {
1048		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1049		kfree(buffer);
1050		return USB_STOR_TRANSPORT_ERROR;
1051	}
1052
1053	/* Figure out the initial LBA and page */
1054	lba = address >> blockshift;
1055	page = (address & MEDIA_INFO(us).blockmask);
1056	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1057
1058	result = USB_STOR_TRANSPORT_GOOD;
1059	offset = 0;
1060	sg = NULL;
1061
1062	while (sectors > 0) {
1063		/* Write as many sectors as possible in this block */
1064		unsigned int pages = min(sectors, blocksize - page);
1065		len = pages << pageshift;
1066
1067		/* Not overflowing capacity? */
1068		if (lba >= max_lba) {
1069			US_DEBUGP("alauda_write_data: Requested lba %u exceeds "
1070				  "maximum %u\n", lba, max_lba);
1071			result = USB_STOR_TRANSPORT_ERROR;
1072			break;
1073		}
1074
1075		/* Get the data from the transfer buffer */
1076		usb_stor_access_xfer_buf(buffer, len, us->srb,
1077				&sg, &offset, FROM_XFER_BUF);
1078
1079		result = alauda_write_lba(us, lba, page, pages, buffer,
1080			blockbuffer);
1081		if (result != USB_STOR_TRANSPORT_GOOD)
1082			break;
1083
1084		page = 0;
1085		lba++;
1086		sectors -= pages;
1087	}
1088
1089	kfree(buffer);
1090	kfree(blockbuffer);
1091	return result;
1092}
1093
1094/*
1095 * Our interface with the rest of the world
1096 */
1097
1098static void alauda_info_destructor(void *extra)
1099{
1100	struct alauda_info *info = (struct alauda_info *) extra;
1101	int port;
1102
1103	if (!info)
1104		return;
1105
1106	for (port = 0; port < 2; port++) {
1107		struct alauda_media_info *media_info = &info->port[port];
1108
1109		alauda_free_maps(media_info);
1110		kfree(media_info->lba_to_pba);
1111		kfree(media_info->pba_to_lba);
1112	}
1113}
1114
1115/*
1116 * Initialize alauda_info struct and find the data-write endpoint
1117 */
1118static int init_alauda(struct us_data *us)
1119{
1120	struct alauda_info *info;
1121	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1122	nand_init_ecc();
1123
1124	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1125	if (!us->extra) {
1126		US_DEBUGP("init_alauda: Gah! Can't allocate storage for"
1127			"alauda info struct!\n");
1128		return USB_STOR_TRANSPORT_ERROR;
1129	}
1130	info = (struct alauda_info *) us->extra;
1131	us->extra_destructor = alauda_info_destructor;
1132
1133	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1134		altsetting->endpoint[0].desc.bEndpointAddress
1135		& USB_ENDPOINT_NUMBER_MASK);
1136
1137	return USB_STOR_TRANSPORT_GOOD;
1138}
1139
1140static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1141{
1142	int rc;
1143	struct alauda_info *info = (struct alauda_info *) us->extra;
1144	unsigned char *ptr = us->iobuf;
1145	static unsigned char inquiry_response[36] = {
1146		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1147	};
1148
1149	if (srb->cmnd[0] == INQUIRY) {
1150		US_DEBUGP("alauda_transport: INQUIRY. "
1151			"Returning bogus response.\n");
1152		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1153		fill_inquiry_response(us, ptr, 36);
1154		return USB_STOR_TRANSPORT_GOOD;
1155	}
1156
1157	if (srb->cmnd[0] == TEST_UNIT_READY) {
1158		US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n");
1159		return alauda_check_media(us);
1160	}
1161
1162	if (srb->cmnd[0] == READ_CAPACITY) {
1163		unsigned int num_zones;
1164		unsigned long capacity;
1165
1166		rc = alauda_check_media(us);
1167		if (rc != USB_STOR_TRANSPORT_GOOD)
1168			return rc;
1169
1170		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1171			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1172
1173		capacity = num_zones * MEDIA_INFO(us).uzonesize
1174			* MEDIA_INFO(us).blocksize;
1175
1176		/* Report capacity and page size */
1177		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1178		((__be32 *) ptr)[1] = cpu_to_be32(512);
1179
1180		usb_stor_set_xfer_buf(ptr, 8, srb);
1181		return USB_STOR_TRANSPORT_GOOD;
1182	}
1183
1184	if (srb->cmnd[0] == READ_10) {
1185		unsigned int page, pages;
1186
1187		rc = alauda_check_media(us);
1188		if (rc != USB_STOR_TRANSPORT_GOOD)
1189			return rc;
1190
1191		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1192		page <<= 16;
1193		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1194		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1195
1196		US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n",
1197			  page, pages);
1198
1199		return alauda_read_data(us, page, pages);
1200	}
1201
1202	if (srb->cmnd[0] == WRITE_10) {
1203		unsigned int page, pages;
1204
1205		rc = alauda_check_media(us);
1206		if (rc != USB_STOR_TRANSPORT_GOOD)
1207			return rc;
1208
1209		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1210		page <<= 16;
1211		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1212		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1213
1214		US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n",
1215			  page, pages);
1216
1217		return alauda_write_data(us, page, pages);
1218	}
1219
1220	if (srb->cmnd[0] == REQUEST_SENSE) {
1221		US_DEBUGP("alauda_transport: REQUEST_SENSE.\n");
1222
1223		memset(ptr, 0, 18);
1224		ptr[0] = 0xF0;
1225		ptr[2] = info->sense_key;
1226		ptr[7] = 11;
1227		ptr[12] = info->sense_asc;
1228		ptr[13] = info->sense_ascq;
1229		usb_stor_set_xfer_buf(ptr, 18, srb);
1230
1231		return USB_STOR_TRANSPORT_GOOD;
1232	}
1233
1234	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1235		/* sure.  whatever.  not like we can stop the user from popping
1236		   the media out of the device (no locking doors, etc) */
1237		return USB_STOR_TRANSPORT_GOOD;
1238	}
1239
1240	US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n",
1241		srb->cmnd[0], srb->cmnd[0]);
1242	info->sense_key = 0x05;
1243	info->sense_asc = 0x20;
1244	info->sense_ascq = 0x00;
1245	return USB_STOR_TRANSPORT_FAILED;
1246}
1247
1248static int alauda_probe(struct usb_interface *intf,
1249			 const struct usb_device_id *id)
1250{
1251	struct us_data *us;
1252	int result;
1253
1254	result = usb_stor_probe1(&us, intf, id,
1255			(id - alauda_usb_ids) + alauda_unusual_dev_list);
1256	if (result)
1257		return result;
1258
1259	us->transport_name  = "Alauda Control/Bulk";
1260	us->transport = alauda_transport;
1261	us->transport_reset = usb_stor_Bulk_reset;
1262	us->max_lun = 1;
1263
1264	result = usb_stor_probe2(us);
1265	return result;
1266}
1267
1268static struct usb_driver alauda_driver = {
1269	.name =		"ums-alauda",
1270	.probe =	alauda_probe,
1271	.disconnect =	usb_stor_disconnect,
1272	.suspend =	usb_stor_suspend,
1273	.resume =	usb_stor_resume,
1274	.reset_resume =	usb_stor_reset_resume,
1275	.pre_reset =	usb_stor_pre_reset,
1276	.post_reset =	usb_stor_post_reset,
1277	.id_table =	alauda_usb_ids,
1278	.soft_unbind =	1,
1279};
1280
1281static int __init alauda_init(void)
1282{
1283	return usb_register(&alauda_driver);
1284}
1285
1286static void __exit alauda_exit(void)
1287{
1288	usb_deregister(&alauda_driver);
1289}
1290
1291module_init(alauda_init);
1292module_exit(alauda_exit);
1293