• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/usb/musb/
1/*
2 * Copyright (C) 2005-2006 by Texas Instruments
3 *
4 * This file implements a DMA  interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
8
9#include <linux/platform_device.h>
10#include <linux/slab.h>
11#include <linux/usb.h>
12
13#include "musb_core.h"
14#include "musb_debug.h"
15#include "cppi_dma.h"
16
17
18/* CPPI DMA status 7-mar-2006:
19 *
20 * - See musb_{host,gadget}.c for more info
21 *
22 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
23 *   which can easily saturate the CPU under non-mass-storage loads.
24 *
25 * NOTES 24-aug-2006 (2.6.18-rc4):
26 *
27 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
28 *   evidently after the 1 byte packet was received and acked, the queue
29 *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
30 *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
31 *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
32 *   of its next (512 byte) packet.  IRQ issues?
33 *
34 * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
35 * evidently also directly update the RX and TX CSRs ... so audit all
36 * host and peripheral side DMA code to avoid CSR access after DMA has
37 * been started.
38 */
39
40/* REVISIT now we can avoid preallocating these descriptors; or
41 * more simply, switch to a global freelist not per-channel ones.
42 * Note: at full speed, 64 descriptors == 4K bulk data.
43 */
44#define NUM_TXCHAN_BD       64
45#define NUM_RXCHAN_BD       64
46
47static inline void cpu_drain_writebuffer(void)
48{
49	wmb();
50#ifdef	CONFIG_CPU_ARM926T
51	/* REVISIT this "should not be needed",
52	 * but lack of it sure seemed to hurt ...
53	 */
54	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
55#endif
56}
57
58static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
59{
60	struct cppi_descriptor	*bd = c->freelist;
61
62	if (bd)
63		c->freelist = bd->next;
64	return bd;
65}
66
67static inline void
68cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
69{
70	if (!bd)
71		return;
72	bd->next = c->freelist;
73	c->freelist = bd;
74}
75
76/*
77 *  Start DMA controller
78 *
79 *  Initialize the DMA controller as necessary.
80 */
81
82/* zero out entire rx state RAM entry for the channel */
83static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
84{
85	musb_writel(&rx->rx_skipbytes, 0, 0);
86	musb_writel(&rx->rx_head, 0, 0);
87	musb_writel(&rx->rx_sop, 0, 0);
88	musb_writel(&rx->rx_current, 0, 0);
89	musb_writel(&rx->rx_buf_current, 0, 0);
90	musb_writel(&rx->rx_len_len, 0, 0);
91	musb_writel(&rx->rx_cnt_cnt, 0, 0);
92}
93
94/* zero out entire tx state RAM entry for the channel */
95static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
96{
97	musb_writel(&tx->tx_head, 0, 0);
98	musb_writel(&tx->tx_buf, 0, 0);
99	musb_writel(&tx->tx_current, 0, 0);
100	musb_writel(&tx->tx_buf_current, 0, 0);
101	musb_writel(&tx->tx_info, 0, 0);
102	musb_writel(&tx->tx_rem_len, 0, 0);
103	/* musb_writel(&tx->tx_dummy, 0, 0); */
104	musb_writel(&tx->tx_complete, 0, ptr);
105}
106
107static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
108{
109	int	j;
110
111	/* initialize channel fields */
112	c->head = NULL;
113	c->tail = NULL;
114	c->last_processed = NULL;
115	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
116	c->controller = cppi;
117	c->is_rndis = 0;
118	c->freelist = NULL;
119
120	/* build the BD Free list for the channel */
121	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
122		struct cppi_descriptor	*bd;
123		dma_addr_t		dma;
124
125		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
126		bd->dma = dma;
127		cppi_bd_free(c, bd);
128	}
129}
130
131static int cppi_channel_abort(struct dma_channel *);
132
133static void cppi_pool_free(struct cppi_channel *c)
134{
135	struct cppi		*cppi = c->controller;
136	struct cppi_descriptor	*bd;
137
138	(void) cppi_channel_abort(&c->channel);
139	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
140	c->controller = NULL;
141
142	/* free all its bds */
143	bd = c->last_processed;
144	do {
145		if (bd)
146			dma_pool_free(cppi->pool, bd, bd->dma);
147		bd = cppi_bd_alloc(c);
148	} while (bd);
149	c->last_processed = NULL;
150}
151
152static int __init cppi_controller_start(struct dma_controller *c)
153{
154	struct cppi	*controller;
155	void __iomem	*tibase;
156	int		i;
157
158	controller = container_of(c, struct cppi, controller);
159
160	/* do whatever is necessary to start controller */
161	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
162		controller->tx[i].transmit = true;
163		controller->tx[i].index = i;
164	}
165	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
166		controller->rx[i].transmit = false;
167		controller->rx[i].index = i;
168	}
169
170	/* setup BD list on a per channel basis */
171	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
172		cppi_pool_init(controller, controller->tx + i);
173	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
174		cppi_pool_init(controller, controller->rx + i);
175
176	tibase =  controller->tibase;
177	INIT_LIST_HEAD(&controller->tx_complete);
178
179	/* initialise tx/rx channel head pointers to zero */
180	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
181		struct cppi_channel	*tx_ch = controller->tx + i;
182		struct cppi_tx_stateram __iomem *tx;
183
184		INIT_LIST_HEAD(&tx_ch->tx_complete);
185
186		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
187		tx_ch->state_ram = tx;
188		cppi_reset_tx(tx, 0);
189	}
190	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
191		struct cppi_channel	*rx_ch = controller->rx + i;
192		struct cppi_rx_stateram __iomem *rx;
193
194		INIT_LIST_HEAD(&rx_ch->tx_complete);
195
196		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
197		rx_ch->state_ram = rx;
198		cppi_reset_rx(rx);
199	}
200
201	/* enable individual cppi channels */
202	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
203			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
205			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
206
207	/* enable tx/rx CPPI control */
208	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
209	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
210
211	/* disable RNDIS mode, also host rx RNDIS autorequest */
212	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
213	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
214
215	return 0;
216}
217
218/*
219 *  Stop DMA controller
220 *
221 *  De-Init the DMA controller as necessary.
222 */
223
224static int cppi_controller_stop(struct dma_controller *c)
225{
226	struct cppi		*controller;
227	void __iomem		*tibase;
228	int			i;
229
230	controller = container_of(c, struct cppi, controller);
231
232	tibase = controller->tibase;
233	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
234	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
235			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
236	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
237			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
238
239	DBG(1, "Tearing down RX and TX Channels\n");
240	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
241		controller->tx[i].last_processed = NULL;
242		cppi_pool_free(controller->tx + i);
243	}
244	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
245		cppi_pool_free(controller->rx + i);
246
247	/* in Tx Case proper teardown is supported. We resort to disabling
248	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
249	 * complete TX CPPI cannot be disabled.
250	 */
251	/*disable tx/rx cppi */
252	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
253	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
254
255	return 0;
256}
257
258/* While dma channel is allocated, we only want the core irqs active
259 * for fault reports, otherwise we'd get irqs that we don't care about.
260 * Except for TX irqs, where dma done != fifo empty and reusable ...
261 *
262 * NOTE: docs don't say either way, but irq masking **enables** irqs.
263 *
264 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
265 */
266static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
267{
268	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
269}
270
271static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
272{
273	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
274}
275
276
277/*
278 * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
279 * each transfer direction of a non-control endpoint, so allocating
280 * (and deallocating) is mostly a way to notice bad housekeeping on
281 * the software side.  We assume the irqs are always active.
282 */
283static struct dma_channel *
284cppi_channel_allocate(struct dma_controller *c,
285		struct musb_hw_ep *ep, u8 transmit)
286{
287	struct cppi		*controller;
288	u8			index;
289	struct cppi_channel	*cppi_ch;
290	void __iomem		*tibase;
291
292	controller = container_of(c, struct cppi, controller);
293	tibase = controller->tibase;
294
295	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
296	index = ep->epnum - 1;
297
298	/* return the corresponding CPPI Channel Handle, and
299	 * probably disable the non-CPPI irq until we need it.
300	 */
301	if (transmit) {
302		if (index >= ARRAY_SIZE(controller->tx)) {
303			DBG(1, "no %cX%d CPPI channel\n", 'T', index);
304			return NULL;
305		}
306		cppi_ch = controller->tx + index;
307	} else {
308		if (index >= ARRAY_SIZE(controller->rx)) {
309			DBG(1, "no %cX%d CPPI channel\n", 'R', index);
310			return NULL;
311		}
312		cppi_ch = controller->rx + index;
313		core_rxirq_disable(tibase, ep->epnum);
314	}
315
316	/* REVISIT make this an error later once the same driver code works
317	 * with the other DMA engine too
318	 */
319	if (cppi_ch->hw_ep)
320		DBG(1, "re-allocating DMA%d %cX channel %p\n",
321				index, transmit ? 'T' : 'R', cppi_ch);
322	cppi_ch->hw_ep = ep;
323	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
324	cppi_ch->channel.max_len = 0x7fffffff;
325
326	DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
327	return &cppi_ch->channel;
328}
329
330/* Release a CPPI Channel.  */
331static void cppi_channel_release(struct dma_channel *channel)
332{
333	struct cppi_channel	*c;
334	void __iomem		*tibase;
335
336	/* REVISIT:  for paranoia, check state and abort if needed... */
337
338	c = container_of(channel, struct cppi_channel, channel);
339	tibase = c->controller->tibase;
340	if (!c->hw_ep)
341		DBG(1, "releasing idle DMA channel %p\n", c);
342	else if (!c->transmit)
343		core_rxirq_enable(tibase, c->index + 1);
344
345	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
346	c->hw_ep = NULL;
347	channel->status = MUSB_DMA_STATUS_UNKNOWN;
348}
349
350/* Context: controller irqlocked */
351static void
352cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
353{
354	void __iomem			*base = c->controller->mregs;
355	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
356
357	musb_ep_select(base, c->index + 1);
358
359	DBG(level, "RX DMA%d%s: %d left, csr %04x, "
360			"%08x H%08x S%08x C%08x, "
361			"B%08x L%08x %08x .. %08x"
362			"\n",
363		c->index, tag,
364		musb_readl(c->controller->tibase,
365			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
366		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
367
368		musb_readl(&rx->rx_skipbytes, 0),
369		musb_readl(&rx->rx_head, 0),
370		musb_readl(&rx->rx_sop, 0),
371		musb_readl(&rx->rx_current, 0),
372
373		musb_readl(&rx->rx_buf_current, 0),
374		musb_readl(&rx->rx_len_len, 0),
375		musb_readl(&rx->rx_cnt_cnt, 0),
376		musb_readl(&rx->rx_complete, 0)
377		);
378}
379
380/* Context: controller irqlocked */
381static void
382cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
383{
384	void __iomem			*base = c->controller->mregs;
385	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
386
387	musb_ep_select(base, c->index + 1);
388
389	DBG(level, "TX DMA%d%s: csr %04x, "
390			"H%08x S%08x C%08x %08x, "
391			"F%08x L%08x .. %08x"
392			"\n",
393		c->index, tag,
394		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
395
396		musb_readl(&tx->tx_head, 0),
397		musb_readl(&tx->tx_buf, 0),
398		musb_readl(&tx->tx_current, 0),
399		musb_readl(&tx->tx_buf_current, 0),
400
401		musb_readl(&tx->tx_info, 0),
402		musb_readl(&tx->tx_rem_len, 0),
403		/* dummy/unused word 6 */
404		musb_readl(&tx->tx_complete, 0)
405		);
406}
407
408/* Context: controller irqlocked */
409static inline void
410cppi_rndis_update(struct cppi_channel *c, int is_rx,
411		void __iomem *tibase, int is_rndis)
412{
413	/* we may need to change the rndis flag for this cppi channel */
414	if (c->is_rndis != is_rndis) {
415		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
416		u32	temp = 1 << (c->index);
417
418		if (is_rx)
419			temp <<= 16;
420		if (is_rndis)
421			value |= temp;
422		else
423			value &= ~temp;
424		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
425		c->is_rndis = is_rndis;
426	}
427}
428
429#ifdef CONFIG_USB_MUSB_DEBUG
430static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
431{
432	pr_debug("RXBD/%s %08x: "
433			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
434			tag, bd->dma,
435			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
436			bd->hw_options);
437}
438#endif
439
440static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
441{
442#ifdef CONFIG_USB_MUSB_DEBUG
443	struct cppi_descriptor	*bd;
444
445	if (!_dbg_level(level))
446		return;
447	cppi_dump_rx(level, rx, tag);
448	if (rx->last_processed)
449		cppi_dump_rxbd("last", rx->last_processed);
450	for (bd = rx->head; bd; bd = bd->next)
451		cppi_dump_rxbd("active", bd);
452#endif
453}
454
455
456/* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
457 * so we won't ever use it (see "CPPI RX Woes" below).
458 */
459static inline int cppi_autoreq_update(struct cppi_channel *rx,
460		void __iomem *tibase, int onepacket, unsigned n_bds)
461{
462	u32	val;
463
464#ifdef	RNDIS_RX_IS_USABLE
465	u32	tmp;
466	/* assert(is_host_active(musb)) */
467
468	/* start from "AutoReq never" */
469	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
470	val = tmp & ~((0x3) << (rx->index * 2));
471
472	/* HCD arranged reqpkt for packet #1.  we arrange int
473	 * for all but the last one, maybe in two segments.
474	 */
475	if (!onepacket) {
476		/* one segment, autoreq "all-but-last" */
477		val |= ((0x1) << (rx->index * 2));
478	}
479
480	if (val != tmp) {
481		int n = 100;
482
483		/* make sure that autoreq is updated before continuing */
484		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
485		do {
486			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
487			if (tmp == val)
488				break;
489			cpu_relax();
490		} while (n-- > 0);
491	}
492#endif
493
494	/* REQPKT is turned off after each segment */
495	if (n_bds && rx->channel.actual_len) {
496		void __iomem	*regs = rx->hw_ep->regs;
497
498		val = musb_readw(regs, MUSB_RXCSR);
499		if (!(val & MUSB_RXCSR_H_REQPKT)) {
500			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
501			musb_writew(regs, MUSB_RXCSR, val);
502			/* flush writebufer */
503			val = musb_readw(regs, MUSB_RXCSR);
504		}
505	}
506	return n_bds;
507}
508
509
510/* Buffer enqueuing Logic:
511 *
512 *  - RX builds new queues each time, to help handle routine "early
513 *    termination" cases (faults, including errors and short reads)
514 *    more correctly.
515 *
516 *  - for now, TX reuses the same queue of BDs every time
517 *
518 * REVISIT long term, we want a normal dynamic model.
519 * ... the goal will be to append to the
520 * existing queue, processing completed "dma buffers" (segments) on the fly.
521 *
522 * Otherwise we force an IRQ latency between requests, which slows us a lot
523 * (especially in "transparent" dma).  Unfortunately that model seems to be
524 * inherent in the DMA model from the Mentor code, except in the rare case
525 * of transfers big enough (~128+ KB) that we could append "middle" segments
526 * in the TX paths.  (RX can't do this, see below.)
527 *
528 * That's true even in the CPPI- friendly iso case, where most urbs have
529 * several small segments provided in a group and where the "packet at a time"
530 * "transparent" DMA model is always correct, even on the RX side.
531 */
532
533/*
534 * CPPI TX:
535 * ========
536 * TX is a lot more reasonable than RX; it doesn't need to run in
537 * irq-per-packet mode very often.  RNDIS mode seems to behave too
538 * (except how it handles the exactly-N-packets case).  Building a
539 * txdma queue with multiple requests (urb or usb_request) looks
540 * like it would work ... but fault handling would need much testing.
541 *
542 * The main issue with TX mode RNDIS relates to transfer lengths that
543 * are an exact multiple of the packet length.  It appears that there's
544 * a hiccup in that case (maybe the DMA completes before the ZLP gets
545 * written?) boiling down to not being able to rely on CPPI writing any
546 * terminating zero length packet before the next transfer is written.
547 * So that's punted to PIO; better yet, gadget drivers can avoid it.
548 *
549 * Plus, there's allegedly an undocumented constraint that rndis transfer
550 * length be a multiple of 64 bytes ... but the chip doesn't act that
551 * way, and we really don't _want_ that behavior anyway.
552 *
553 * On TX, "transparent" mode works ... although experiments have shown
554 * problems trying to use the SOP/EOP bits in different USB packets.
555 *
556 * REVISIT try to handle terminating zero length packets using CPPI
557 * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
558 * links avoid that issue by forcing them to avoid zlps.)
559 */
560static void
561cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
562{
563	unsigned		maxpacket = tx->maxpacket;
564	dma_addr_t		addr = tx->buf_dma + tx->offset;
565	size_t			length = tx->buf_len - tx->offset;
566	struct cppi_descriptor	*bd;
567	unsigned		n_bds;
568	unsigned		i;
569	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
570	int			rndis;
571
572	/* TX can use the CPPI "rndis" mode, where we can probably fit this
573	 * transfer in one BD and one IRQ.  The only time we would NOT want
574	 * to use it is when hardware constraints prevent it, or if we'd
575	 * trigger the "send a ZLP?" confusion.
576	 */
577	rndis = (maxpacket & 0x3f) == 0
578		&& length > maxpacket
579		&& length < 0xffff
580		&& (length % maxpacket) != 0;
581
582	if (rndis) {
583		maxpacket = length;
584		n_bds = 1;
585	} else {
586		n_bds = length / maxpacket;
587		if (!length || (length % maxpacket))
588			n_bds++;
589		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
590		length = min(n_bds * maxpacket, length);
591	}
592
593	DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
594			tx->index,
595			maxpacket,
596			rndis ? "rndis" : "transparent",
597			n_bds,
598			addr, length);
599
600	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
601
602	/* assuming here that channel_program is called during
603	 * transfer initiation ... current code maintains state
604	 * for one outstanding request only (no queues, not even
605	 * the implicit ones of an iso urb).
606	 */
607
608	bd = tx->freelist;
609	tx->head = bd;
610	tx->last_processed = NULL;
611
612
613	/* Prepare queue of BDs first, then hand it to hardware.
614	 * All BDs except maybe the last should be of full packet
615	 * size; for RNDIS there _is_ only that last packet.
616	 */
617	for (i = 0; i < n_bds; ) {
618		if (++i < n_bds && bd->next)
619			bd->hw_next = bd->next->dma;
620		else
621			bd->hw_next = 0;
622
623		bd->hw_bufp = tx->buf_dma + tx->offset;
624
625		if ((tx->offset + maxpacket) <= tx->buf_len) {
626			tx->offset += maxpacket;
627			bd->hw_off_len = maxpacket;
628			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
629				| CPPI_OWN_SET | maxpacket;
630		} else {
631			/* only this one may be a partial USB Packet */
632			u32		partial_len;
633
634			partial_len = tx->buf_len - tx->offset;
635			tx->offset = tx->buf_len;
636			bd->hw_off_len = partial_len;
637
638			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
639				| CPPI_OWN_SET | partial_len;
640			if (partial_len == 0)
641				bd->hw_options |= CPPI_ZERO_SET;
642		}
643
644		DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
645				bd, bd->hw_next, bd->hw_bufp,
646				bd->hw_off_len, bd->hw_options);
647
648		/* update the last BD enqueued to the list */
649		tx->tail = bd;
650		bd = bd->next;
651	}
652
653	/* BDs live in DMA-coherent memory, but writes might be pending */
654	cpu_drain_writebuffer();
655
656	/* Write to the HeadPtr in state RAM to trigger */
657	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
658
659	cppi_dump_tx(5, tx, "/S");
660}
661
662/*
663 * CPPI RX Woes:
664 * =============
665 * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
666 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
667 * (Full speed transfers have similar scenarios.)
668 *
669 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
670 * and the next packet goes into a buffer that's queued later; while (b) fills
671 * the buffer with 1024 bytes.  How to do that with CPPI?
672 *
673 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
674 *   (b) loses **BADLY** because nothing (!) happens when that second packet
675 *   fills the buffer, much less when a third one arrives.  (Which makes this
676 *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
677 *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
678 *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
679 *   implement that mode by default ... which is no accident.)
680 *
681 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
682 *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
683 *   ignores SOP/EOP markings and processes both of those BDs; so both packets
684 *   are loaded into the buffer (with a 212 byte gap between them), and the next
685 *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
686 *   are intended as outputs for RX queues, not inputs...)
687 *
688 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
689 *   reliably make both cases work, with software handling both cases correctly
690 *   and at the significant penalty of needing an IRQ per packet.  (The lack of
691 *   I/O overlap can be slightly ameliorated by enabling double buffering.)
692 *
693 * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
694 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
695 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
696 * with guaranteed driver level fault recovery and scrubbing out what's left
697 * of that garbaged datastream.
698 *
699 * But there seems to be no way to identify the cases where CPPI RNDIS mode
700 * is appropriate -- which do NOT include RNDIS host drivers, but do include
701 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
702 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
703 * that applies best on the peripheral side (and which could fail rudely).
704 *
705 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
706 * cases other than mass storage class.  Otherwise we're correct but slow,
707 * since CPPI penalizes our need for a "true RNDIS" default mode.
708 */
709
710
711/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
712 *
713 * IFF
714 *  (a)	peripheral mode ... since rndis peripherals could pad their
715 *	writes to hosts, causing i/o failure; or we'd have to cope with
716 *	a largely unknowable variety of host side protocol variants
717 *  (b)	and short reads are NOT errors ... since full reads would
718 *	cause those same i/o failures
719 *  (c)	and read length is
720 *	- less than 64KB (max per cppi descriptor)
721 *	- not a multiple of 4096 (g_zero default, full reads typical)
722 *	- N (>1) packets long, ditto (full reads not EXPECTED)
723 * THEN
724 *   try rx rndis mode
725 *
726 * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
727 * fill out the whole buffer.  Buggy host side usb network drivers could
728 * trigger that, but "in the field" such bugs seem to be all but unknown.
729 *
730 * So this module parameter lets the heuristic be disabled.  When using
731 * gadgetfs, the heuristic will probably need to be disabled.
732 */
733static int cppi_rx_rndis = 1;
734
735module_param(cppi_rx_rndis, bool, 0);
736MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
737
738
739/**
740 * cppi_next_rx_segment - dma read for the next chunk of a buffer
741 * @musb: the controller
742 * @rx: dma channel
743 * @onepacket: true unless caller treats short reads as errors, and
744 *	performs fault recovery above usbcore.
745 * Context: controller irqlocked
746 *
747 * See above notes about why we can't use multi-BD RX queues except in
748 * rare cases (mass storage class), and can never use the hardware "rndis"
749 * mode (since it's not a "true" RNDIS mode) with complete safety..
750 *
751 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
752 * code to recover from corrupted datastreams after each short transfer.
753 */
754static void
755cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
756{
757	unsigned		maxpacket = rx->maxpacket;
758	dma_addr_t		addr = rx->buf_dma + rx->offset;
759	size_t			length = rx->buf_len - rx->offset;
760	struct cppi_descriptor	*bd, *tail;
761	unsigned		n_bds;
762	unsigned		i;
763	void __iomem		*tibase = musb->ctrl_base;
764	int			is_rndis = 0;
765	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
766
767	if (onepacket) {
768		/* almost every USB driver, host or peripheral side */
769		n_bds = 1;
770
771		/* maybe apply the heuristic above */
772		if (cppi_rx_rndis
773				&& is_peripheral_active(musb)
774				&& length > maxpacket
775				&& (length & ~0xffff) == 0
776				&& (length & 0x0fff) != 0
777				&& (length & (maxpacket - 1)) == 0) {
778			maxpacket = length;
779			is_rndis = 1;
780		}
781	} else {
782		/* virtually nothing except mass storage class */
783		if (length > 0xffff) {
784			n_bds = 0xffff / maxpacket;
785			length = n_bds * maxpacket;
786		} else {
787			n_bds = length / maxpacket;
788			if (length % maxpacket)
789				n_bds++;
790		}
791		if (n_bds == 1)
792			onepacket = 1;
793		else
794			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
795	}
796
797	/* In host mode, autorequest logic can generate some IN tokens; it's
798	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
799	 * finishes. So:  multipacket transfers involve two or more segments.
800	 * And always at least two IRQs ... RNDIS mode is not an option.
801	 */
802	if (is_host_active(musb))
803		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
804
805	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
806
807	length = min(n_bds * maxpacket, length);
808
809	DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
810			"dma 0x%x len %u %u/%u\n",
811			rx->index, maxpacket,
812			onepacket
813				? (is_rndis ? "rndis" : "onepacket")
814				: "multipacket",
815			n_bds,
816			musb_readl(tibase,
817				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
818					& 0xffff,
819			addr, length, rx->channel.actual_len, rx->buf_len);
820
821	/* only queue one segment at a time, since the hardware prevents
822	 * correct queue shutdown after unexpected short packets
823	 */
824	bd = cppi_bd_alloc(rx);
825	rx->head = bd;
826
827	/* Build BDs for all packets in this segment */
828	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
829		u32	bd_len;
830
831		if (i) {
832			bd = cppi_bd_alloc(rx);
833			if (!bd)
834				break;
835			tail->next = bd;
836			tail->hw_next = bd->dma;
837		}
838		bd->hw_next = 0;
839
840		/* all but the last packet will be maxpacket size */
841		if (maxpacket < length)
842			bd_len = maxpacket;
843		else
844			bd_len = length;
845
846		bd->hw_bufp = addr;
847		addr += bd_len;
848		rx->offset += bd_len;
849
850		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
851		bd->buflen = bd_len;
852
853		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
854		length -= bd_len;
855	}
856
857	/* we always expect at least one reusable BD! */
858	if (!tail) {
859		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
860		return;
861	} else if (i < n_bds)
862		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
863
864	tail->next = NULL;
865	tail->hw_next = 0;
866
867	bd = rx->head;
868	rx->tail = tail;
869
870	/* short reads and other faults should terminate this entire
871	 * dma segment.  we want one "dma packet" per dma segment, not
872	 * one per USB packet, terminating the whole queue at once...
873	 * NOTE that current hardware seems to ignore SOP and EOP.
874	 */
875	bd->hw_options |= CPPI_SOP_SET;
876	tail->hw_options |= CPPI_EOP_SET;
877
878#ifdef CONFIG_USB_MUSB_DEBUG
879	if (_dbg_level(5)) {
880		struct cppi_descriptor	*d;
881
882		for (d = rx->head; d; d = d->next)
883			cppi_dump_rxbd("S", d);
884	}
885#endif
886
887	/* in case the preceding transfer left some state... */
888	tail = rx->last_processed;
889	if (tail) {
890		tail->next = bd;
891		tail->hw_next = bd->dma;
892	}
893
894	core_rxirq_enable(tibase, rx->index + 1);
895
896	/* BDs live in DMA-coherent memory, but writes might be pending */
897	cpu_drain_writebuffer();
898
899	/* REVISIT specs say to write this AFTER the BUFCNT register
900	 * below ... but that loses badly.
901	 */
902	musb_writel(&rx_ram->rx_head, 0, bd->dma);
903
904	/* bufferCount must be at least 3, and zeroes on completion
905	 * unless it underflows below zero, or stops at two, or keeps
906	 * growing ... grr.
907	 */
908	i = musb_readl(tibase,
909			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
910			& 0xffff;
911
912	if (!i)
913		musb_writel(tibase,
914			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
915			n_bds + 2);
916	else if (n_bds > (i - 3))
917		musb_writel(tibase,
918			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
919			n_bds - (i - 3));
920
921	i = musb_readl(tibase,
922			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
923			& 0xffff;
924	if (i < (2 + n_bds)) {
925		DBG(2, "bufcnt%d underrun - %d (for %d)\n",
926					rx->index, i, n_bds);
927		musb_writel(tibase,
928			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
929			n_bds + 2);
930	}
931
932	cppi_dump_rx(4, rx, "/S");
933}
934
935/**
936 * cppi_channel_program - program channel for data transfer
937 * @ch: the channel
938 * @maxpacket: max packet size
939 * @mode: For RX, 1 unless the usb protocol driver promised to treat
940 *	all short reads as errors and kick in high level fault recovery.
941 *	For TX, ignored because of RNDIS mode races/glitches.
942 * @dma_addr: dma address of buffer
943 * @len: length of buffer
944 * Context: controller irqlocked
945 */
946static int cppi_channel_program(struct dma_channel *ch,
947		u16 maxpacket, u8 mode,
948		dma_addr_t dma_addr, u32 len)
949{
950	struct cppi_channel	*cppi_ch;
951	struct cppi		*controller;
952	struct musb		*musb;
953
954	cppi_ch = container_of(ch, struct cppi_channel, channel);
955	controller = cppi_ch->controller;
956	musb = controller->musb;
957
958	switch (ch->status) {
959	case MUSB_DMA_STATUS_BUS_ABORT:
960	case MUSB_DMA_STATUS_CORE_ABORT:
961		/* fault irq handler should have handled cleanup */
962		WARNING("%cX DMA%d not cleaned up after abort!\n",
963				cppi_ch->transmit ? 'T' : 'R',
964				cppi_ch->index);
965		/* WARN_ON(1); */
966		break;
967	case MUSB_DMA_STATUS_BUSY:
968		WARNING("program active channel?  %cX DMA%d\n",
969				cppi_ch->transmit ? 'T' : 'R',
970				cppi_ch->index);
971		/* WARN_ON(1); */
972		break;
973	case MUSB_DMA_STATUS_UNKNOWN:
974		DBG(1, "%cX DMA%d not allocated!\n",
975				cppi_ch->transmit ? 'T' : 'R',
976				cppi_ch->index);
977		/* FALLTHROUGH */
978	case MUSB_DMA_STATUS_FREE:
979		break;
980	}
981
982	ch->status = MUSB_DMA_STATUS_BUSY;
983
984	/* set transfer parameters, then queue up its first segment */
985	cppi_ch->buf_dma = dma_addr;
986	cppi_ch->offset = 0;
987	cppi_ch->maxpacket = maxpacket;
988	cppi_ch->buf_len = len;
989	cppi_ch->channel.actual_len = 0;
990
991	/* TX channel? or RX? */
992	if (cppi_ch->transmit)
993		cppi_next_tx_segment(musb, cppi_ch);
994	else
995		cppi_next_rx_segment(musb, cppi_ch, mode);
996
997	return true;
998}
999
1000static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1001{
1002	struct cppi_channel		*rx = &cppi->rx[ch];
1003	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
1004	struct cppi_descriptor		*bd;
1005	struct cppi_descriptor		*last = rx->last_processed;
1006	bool				completed = false;
1007	bool				acked = false;
1008	int				i;
1009	dma_addr_t			safe2ack;
1010	void __iomem			*regs = rx->hw_ep->regs;
1011
1012	cppi_dump_rx(6, rx, "/K");
1013
1014	bd = last ? last->next : rx->head;
1015	if (!bd)
1016		return false;
1017
1018	/* run through all completed BDs */
1019	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1020			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1021			i++, bd = bd->next) {
1022		u16	len;
1023
1024		/* catch latest BD writes from CPPI */
1025		rmb();
1026		if (!completed && (bd->hw_options & CPPI_OWN_SET))
1027			break;
1028
1029		DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1030			"off.len %08x opt.len %08x (%d)\n",
1031			bd->dma, bd->hw_next, bd->hw_bufp,
1032			bd->hw_off_len, bd->hw_options,
1033			rx->channel.actual_len);
1034
1035		/* actual packet received length */
1036		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1037			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1038		else
1039			len = 0;
1040
1041		if (bd->hw_options & CPPI_EOQ_MASK)
1042			completed = true;
1043
1044		if (!completed && len < bd->buflen) {
1045			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
1046			 * must have been cleared, and no more DMA packets may
1047			 * active be in the queue... TI docs didn't say, but
1048			 * CPPI ignores those BDs even though OWN is still set.
1049			 */
1050			completed = true;
1051			DBG(3, "rx short %d/%d (%d)\n",
1052					len, bd->buflen,
1053					rx->channel.actual_len);
1054		}
1055
1056		/* If we got here, we expect to ack at least one BD; meanwhile
1057		 * CPPI may completing other BDs while we scan this list...
1058		 *
1059		 * RACE: we can notice OWN cleared before CPPI raises the
1060		 * matching irq by writing that BD as the completion pointer.
1061		 * In such cases, stop scanning and wait for the irq, avoiding
1062		 * lost acks and states where BD ownership is unclear.
1063		 */
1064		if (bd->dma == safe2ack) {
1065			musb_writel(&state->rx_complete, 0, safe2ack);
1066			safe2ack = musb_readl(&state->rx_complete, 0);
1067			acked = true;
1068			if (bd->dma == safe2ack)
1069				safe2ack = 0;
1070		}
1071
1072		rx->channel.actual_len += len;
1073
1074		cppi_bd_free(rx, last);
1075		last = bd;
1076
1077		/* stop scanning on end-of-segment */
1078		if (bd->hw_next == 0)
1079			completed = true;
1080	}
1081	rx->last_processed = last;
1082
1083	/* dma abort, lost ack, or ... */
1084	if (!acked && last) {
1085		int	csr;
1086
1087		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1088			musb_writel(&state->rx_complete, 0, safe2ack);
1089		if (safe2ack == 0) {
1090			cppi_bd_free(rx, last);
1091			rx->last_processed = NULL;
1092
1093			/* if we land here on the host side, H_REQPKT will
1094			 * be clear and we need to restart the queue...
1095			 */
1096			WARN_ON(rx->head);
1097		}
1098		musb_ep_select(cppi->mregs, rx->index + 1);
1099		csr = musb_readw(regs, MUSB_RXCSR);
1100		if (csr & MUSB_RXCSR_DMAENAB) {
1101			DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1102				rx->index,
1103				rx->head, rx->tail,
1104				rx->last_processed
1105					? rx->last_processed->dma
1106					: 0,
1107				completed ? ", completed" : "",
1108				csr);
1109			cppi_dump_rxq(4, "/what?", rx);
1110		}
1111	}
1112	if (!completed) {
1113		int	csr;
1114
1115		rx->head = bd;
1116
1117		/* REVISIT seems like "autoreq all but EOP" doesn't...
1118		 * setting it here "should" be racey, but seems to work
1119		 */
1120		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1121		if (is_host_active(cppi->musb)
1122				&& bd
1123				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
1124			csr |= MUSB_RXCSR_H_REQPKT;
1125			musb_writew(regs, MUSB_RXCSR,
1126					MUSB_RXCSR_H_WZC_BITS | csr);
1127			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1128		}
1129	} else {
1130		rx->head = NULL;
1131		rx->tail = NULL;
1132	}
1133
1134	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1135	return completed;
1136}
1137
1138irqreturn_t cppi_interrupt(int irq, void *dev_id)
1139{
1140	struct musb		*musb = dev_id;
1141	struct cppi		*cppi;
1142	void __iomem		*tibase;
1143	struct musb_hw_ep	*hw_ep = NULL;
1144	u32			rx, tx;
1145	int			i, index;
1146	unsigned long		flags;
1147
1148	cppi = container_of(musb->dma_controller, struct cppi, controller);
1149	if (cppi->irq)
1150		spin_lock_irqsave(&musb->lock, flags);
1151
1152	tibase = musb->ctrl_base;
1153
1154	tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1155	rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1156
1157	if (!tx && !rx)
1158		return IRQ_NONE;
1159
1160	DBG(4, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1161
1162	/* process TX channels */
1163	for (index = 0; tx; tx = tx >> 1, index++) {
1164		struct cppi_channel		*tx_ch;
1165		struct cppi_tx_stateram __iomem	*tx_ram;
1166		bool				completed = false;
1167		struct cppi_descriptor		*bd;
1168
1169		if (!(tx & 1))
1170			continue;
1171
1172		tx_ch = cppi->tx + index;
1173		tx_ram = tx_ch->state_ram;
1174
1175
1176		cppi_dump_tx(5, tx_ch, "/E");
1177
1178		bd = tx_ch->head;
1179
1180		/*
1181		 * If Head is null then this could mean that a abort interrupt
1182		 * that needs to be acknowledged.
1183		 */
1184		if (NULL == bd) {
1185			DBG(1, "null BD\n");
1186			tx_ram->tx_complete = 0;
1187			continue;
1188		}
1189
1190		/* run through all completed BDs */
1191		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1192				i++, bd = bd->next) {
1193			u16	len;
1194
1195			/* catch latest BD writes from CPPI */
1196			rmb();
1197			if (bd->hw_options & CPPI_OWN_SET)
1198				break;
1199
1200			DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1201					bd, bd->hw_next, bd->hw_bufp,
1202					bd->hw_off_len, bd->hw_options);
1203
1204			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1205			tx_ch->channel.actual_len += len;
1206
1207			tx_ch->last_processed = bd;
1208
1209			/* write completion register to acknowledge
1210			 * processing of completed BDs, and possibly
1211			 * release the IRQ; EOQ might not be set ...
1212			 *
1213			 * REVISIT use the same ack strategy as rx
1214			 *
1215			 * REVISIT have observed bit 18 set; huh??
1216			 */
1217			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1218				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1219
1220			/* stop scanning on end-of-segment */
1221			if (bd->hw_next == 0)
1222				completed = true;
1223		}
1224
1225		/* on end of segment, maybe go to next one */
1226		if (completed) {
1227			/* cppi_dump_tx(4, tx_ch, "/complete"); */
1228
1229			/* transfer more, or report completion */
1230			if (tx_ch->offset >= tx_ch->buf_len) {
1231				tx_ch->head = NULL;
1232				tx_ch->tail = NULL;
1233				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1234
1235				hw_ep = tx_ch->hw_ep;
1236
1237				musb_dma_completion(musb, index + 1, 1);
1238
1239			} else {
1240				/* Bigger transfer than we could fit in
1241				 * that first batch of descriptors...
1242				 */
1243				cppi_next_tx_segment(musb, tx_ch);
1244			}
1245		} else
1246			tx_ch->head = bd;
1247	}
1248
1249	/* Start processing the RX block */
1250	for (index = 0; rx; rx = rx >> 1, index++) {
1251
1252		if (rx & 1) {
1253			struct cppi_channel		*rx_ch;
1254
1255			rx_ch = cppi->rx + index;
1256
1257			/* let incomplete dma segments finish */
1258			if (!cppi_rx_scan(cppi, index))
1259				continue;
1260
1261			/* start another dma segment if needed */
1262			if (rx_ch->channel.actual_len != rx_ch->buf_len
1263					&& rx_ch->channel.actual_len
1264						== rx_ch->offset) {
1265				cppi_next_rx_segment(musb, rx_ch, 1);
1266				continue;
1267			}
1268
1269			/* all segments completed! */
1270			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1271
1272			hw_ep = rx_ch->hw_ep;
1273
1274			core_rxirq_disable(tibase, index + 1);
1275			musb_dma_completion(musb, index + 1, 0);
1276		}
1277	}
1278
1279	/* write to CPPI EOI register to re-enable interrupts */
1280	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1281
1282	if (cppi->irq)
1283		spin_unlock_irqrestore(&musb->lock, flags);
1284
1285	return IRQ_HANDLED;
1286}
1287
1288/* Instantiate a software object representing a DMA controller. */
1289struct dma_controller *__init
1290dma_controller_create(struct musb *musb, void __iomem *mregs)
1291{
1292	struct cppi		*controller;
1293	struct device		*dev = musb->controller;
1294	struct platform_device	*pdev = to_platform_device(dev);
1295	int			irq = platform_get_irq(pdev, 1);
1296
1297	controller = kzalloc(sizeof *controller, GFP_KERNEL);
1298	if (!controller)
1299		return NULL;
1300
1301	controller->mregs = mregs;
1302	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1303
1304	controller->musb = musb;
1305	controller->controller.start = cppi_controller_start;
1306	controller->controller.stop = cppi_controller_stop;
1307	controller->controller.channel_alloc = cppi_channel_allocate;
1308	controller->controller.channel_release = cppi_channel_release;
1309	controller->controller.channel_program = cppi_channel_program;
1310	controller->controller.channel_abort = cppi_channel_abort;
1311
1312	/* NOTE: allocating from on-chip SRAM would give the least
1313	 * contention for memory access, if that ever matters here.
1314	 */
1315
1316	/* setup BufferPool */
1317	controller->pool = dma_pool_create("cppi",
1318			controller->musb->controller,
1319			sizeof(struct cppi_descriptor),
1320			CPPI_DESCRIPTOR_ALIGN, 0);
1321	if (!controller->pool) {
1322		kfree(controller);
1323		return NULL;
1324	}
1325
1326	if (irq > 0) {
1327		if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1328			dev_err(dev, "request_irq %d failed!\n", irq);
1329			dma_controller_destroy(&controller->controller);
1330			return NULL;
1331		}
1332		controller->irq = irq;
1333	}
1334
1335	return &controller->controller;
1336}
1337
1338/*
1339 *  Destroy a previously-instantiated DMA controller.
1340 */
1341void dma_controller_destroy(struct dma_controller *c)
1342{
1343	struct cppi	*cppi;
1344
1345	cppi = container_of(c, struct cppi, controller);
1346
1347	if (cppi->irq)
1348		free_irq(cppi->irq, cppi->musb);
1349
1350	/* assert:  caller stopped the controller first */
1351	dma_pool_destroy(cppi->pool);
1352
1353	kfree(cppi);
1354}
1355
1356/*
1357 * Context: controller irqlocked, endpoint selected
1358 */
1359static int cppi_channel_abort(struct dma_channel *channel)
1360{
1361	struct cppi_channel	*cppi_ch;
1362	struct cppi		*controller;
1363	void __iomem		*mbase;
1364	void __iomem		*tibase;
1365	void __iomem		*regs;
1366	u32			value;
1367	struct cppi_descriptor	*queue;
1368
1369	cppi_ch = container_of(channel, struct cppi_channel, channel);
1370
1371	controller = cppi_ch->controller;
1372
1373	switch (channel->status) {
1374	case MUSB_DMA_STATUS_BUS_ABORT:
1375	case MUSB_DMA_STATUS_CORE_ABORT:
1376		/* from RX or TX fault irq handler */
1377	case MUSB_DMA_STATUS_BUSY:
1378		/* the hardware needs shutting down */
1379		regs = cppi_ch->hw_ep->regs;
1380		break;
1381	case MUSB_DMA_STATUS_UNKNOWN:
1382	case MUSB_DMA_STATUS_FREE:
1383		return 0;
1384	default:
1385		return -EINVAL;
1386	}
1387
1388	if (!cppi_ch->transmit && cppi_ch->head)
1389		cppi_dump_rxq(3, "/abort", cppi_ch);
1390
1391	mbase = controller->mregs;
1392	tibase = controller->tibase;
1393
1394	queue = cppi_ch->head;
1395	cppi_ch->head = NULL;
1396	cppi_ch->tail = NULL;
1397
1398	/* REVISIT should rely on caller having done this,
1399	 * and caller should rely on us not changing it.
1400	 * peripheral code is safe ... check host too.
1401	 */
1402	musb_ep_select(mbase, cppi_ch->index + 1);
1403
1404	if (cppi_ch->transmit) {
1405		struct cppi_tx_stateram __iomem *tx_ram;
1406		/* REVISIT put timeouts on these controller handshakes */
1407
1408		cppi_dump_tx(6, cppi_ch, " (teardown)");
1409
1410		/* teardown DMA engine then usb core */
1411		do {
1412			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1413		} while (!(value & CPPI_TEAR_READY));
1414		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1415
1416		tx_ram = cppi_ch->state_ram;
1417		do {
1418			value = musb_readl(&tx_ram->tx_complete, 0);
1419		} while (0xFFFFFFFC != value);
1420
1421
1422		value = musb_readw(regs, MUSB_TXCSR);
1423		value &= ~MUSB_TXCSR_DMAENAB;
1424		value |= MUSB_TXCSR_FLUSHFIFO;
1425		musb_writew(regs, MUSB_TXCSR, value);
1426		musb_writew(regs, MUSB_TXCSR, value);
1427
1428		/*
1429		 * 1. Write to completion Ptr value 0x1(bit 0 set)
1430		 *    (write back mode)
1431		 * 2. Wait for abort interrupt and then put the channel in
1432		 *    compare mode by writing 1 to the tx_complete register.
1433		 */
1434		cppi_reset_tx(tx_ram, 1);
1435		cppi_ch->head = 0;
1436		musb_writel(&tx_ram->tx_complete, 0, 1);
1437		cppi_dump_tx(5, cppi_ch, " (done teardown)");
1438
1439		/* REVISIT tx side _should_ clean up the same way
1440		 * as the RX side ... this does no cleanup at all!
1441		 */
1442
1443	} else /* RX */ {
1444		u16			csr;
1445
1446		/* NOTE: docs don't guarantee any of this works ...  we
1447		 * expect that if the usb core stops telling the cppi core
1448		 * to pull more data from it, then it'll be safe to flush
1449		 * current RX DMA state iff any pending fifo transfer is done.
1450		 */
1451
1452		core_rxirq_disable(tibase, cppi_ch->index + 1);
1453
1454		/* for host, ensure ReqPkt is never set again */
1455		if (is_host_active(cppi_ch->controller->musb)) {
1456			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1457			value &= ~((0x3) << (cppi_ch->index * 2));
1458			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1459		}
1460
1461		csr = musb_readw(regs, MUSB_RXCSR);
1462
1463		/* for host, clear (just) ReqPkt at end of current packet(s) */
1464		if (is_host_active(cppi_ch->controller->musb)) {
1465			csr |= MUSB_RXCSR_H_WZC_BITS;
1466			csr &= ~MUSB_RXCSR_H_REQPKT;
1467		} else
1468			csr |= MUSB_RXCSR_P_WZC_BITS;
1469
1470		/* clear dma enable */
1471		csr &= ~(MUSB_RXCSR_DMAENAB);
1472		musb_writew(regs, MUSB_RXCSR, csr);
1473		csr = musb_readw(regs, MUSB_RXCSR);
1474
1475		/* Quiesce: wait for current dma to finish (if not cleanup).
1476		 * We can't use bit zero of stateram->rx_sop, since that
1477		 * refers to an entire "DMA packet" not just emptying the
1478		 * current fifo.  Most segments need multiple usb packets.
1479		 */
1480		if (channel->status == MUSB_DMA_STATUS_BUSY)
1481			udelay(50);
1482
1483		/* scan the current list, reporting any data that was
1484		 * transferred and acking any IRQ
1485		 */
1486		cppi_rx_scan(controller, cppi_ch->index);
1487
1488		/* clobber the existing state once it's idle
1489		 *
1490		 * NOTE:  arguably, we should also wait for all the other
1491		 * RX channels to quiesce (how??) and then temporarily
1492		 * disable RXCPPI_CTRL_REG ... but it seems that we can
1493		 * rely on the controller restarting from state ram, with
1494		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
1495		 * correct itself after the next DMA transfer though.
1496		 *
1497		 * REVISIT does using rndis mode change that?
1498		 */
1499		cppi_reset_rx(cppi_ch->state_ram);
1500
1501		/* next DMA request _should_ load cppi head ptr */
1502
1503		/* ... we don't "free" that list, only mutate it in place.  */
1504		cppi_dump_rx(5, cppi_ch, " (done abort)");
1505
1506		/* clean up previously pending bds */
1507		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1508		cppi_ch->last_processed = NULL;
1509
1510		while (queue) {
1511			struct cppi_descriptor	*tmp = queue->next;
1512
1513			cppi_bd_free(cppi_ch, queue);
1514			queue = tmp;
1515		}
1516	}
1517
1518	channel->status = MUSB_DMA_STATUS_FREE;
1519	cppi_ch->buf_dma = 0;
1520	cppi_ch->offset = 0;
1521	cppi_ch->buf_len = 0;
1522	cppi_ch->maxpacket = 0;
1523	return 0;
1524}
1525
1526/* TBD Queries:
1527 *
1528 * Power Management ... probably turn off cppi during suspend, restart;
1529 * check state ram?  Clocking is presumably shared with usb core.
1530 */
1531