• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/usb/core/
1/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/pci.h>	/* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/timer.h>
12#include <linux/ctype.h>
13#include <linux/nls.h>
14#include <linux/device.h>
15#include <linux/scatterlist.h>
16#include <linux/usb/quirks.h>
17#include <linux/usb/hcd.h>	/* for usbcore internals */
18#include <asm/byteorder.h>
19
20#include "usb.h"
21
22static void cancel_async_set_config(struct usb_device *udev);
23
24struct api_context {
25	struct completion	done;
26	int			status;
27};
28
29static void usb_api_blocking_completion(struct urb *urb)
30{
31	struct api_context *ctx = urb->context;
32
33	ctx->status = urb->status;
34	complete(&ctx->done);
35}
36
37
38/*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45{
46	struct api_context ctx;
47	unsigned long expire;
48	int retval;
49
50	init_completion(&ctx.done);
51	urb->context = &ctx;
52	urb->actual_length = 0;
53	retval = usb_submit_urb(urb, GFP_NOIO);
54	if (unlikely(retval))
55		goto out;
56
57	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59		usb_kill_urb(urb);
60		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62		dev_dbg(&urb->dev->dev,
63			"%s timed out on ep%d%s len=%u/%u\n",
64			current->comm,
65			usb_endpoint_num(&urb->ep->desc),
66			usb_urb_dir_in(urb) ? "in" : "out",
67			urb->actual_length,
68			urb->transfer_buffer_length);
69	} else
70		retval = ctx.status;
71out:
72	if (actual_length)
73		*actual_length = urb->actual_length;
74
75	usb_free_urb(urb);
76	return retval;
77}
78
79/*-------------------------------------------------------------------*/
80/* returns status (negative) or length (positive) */
81static int usb_internal_control_msg(struct usb_device *usb_dev,
82				    unsigned int pipe,
83				    struct usb_ctrlrequest *cmd,
84				    void *data, int len, int timeout)
85{
86	struct urb *urb;
87	int retv;
88	int length;
89
90	urb = usb_alloc_urb(0, GFP_NOIO);
91	if (!urb)
92		return -ENOMEM;
93
94	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95			     len, usb_api_blocking_completion, NULL);
96
97	retv = usb_start_wait_urb(urb, timeout, &length);
98	if (retv < 0)
99		return retv;
100	else
101		return length;
102}
103
104/**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 *	out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler.  If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete.  Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133		    __u8 requesttype, __u16 value, __u16 index, void *data,
134		    __u16 size, int timeout)
135{
136	struct usb_ctrlrequest *dr;
137	int ret;
138
139	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140	if (!dr)
141		return -ENOMEM;
142
143	dr->bRequestType = requesttype;
144	dr->bRequest = request;
145	dr->wValue = cpu_to_le16(value);
146	dr->wIndex = cpu_to_le16(index);
147	dr->wLength = cpu_to_le16(size);
148
149	/* dbg("usb_control_msg"); */
150
151	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153	kfree(dr);
154
155	return ret;
156}
157EXPORT_SYMBOL_GPL(usb_control_msg);
158
159/**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 *	in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 *	timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number.  The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler.  If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete.  Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186		      void *data, int len, int *actual_length, int timeout)
187{
188	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189}
190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192/**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 *	in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 *	timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number.  The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler.  If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete.  Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224		 void *data, int len, int *actual_length, int timeout)
225{
226	struct urb *urb;
227	struct usb_host_endpoint *ep;
228
229	ep = usb_pipe_endpoint(usb_dev, pipe);
230	if (!ep || len < 0)
231		return -EINVAL;
232
233	urb = usb_alloc_urb(0, GFP_KERNEL);
234	if (!urb)
235		return -ENOMEM;
236
237	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238			USB_ENDPOINT_XFER_INT) {
239		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241				usb_api_blocking_completion, NULL,
242				ep->desc.bInterval);
243	} else
244		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245				usb_api_blocking_completion, NULL);
246
247	return usb_start_wait_urb(urb, timeout, actual_length);
248}
249EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251/*-------------------------------------------------------------------*/
252
253static void sg_clean(struct usb_sg_request *io)
254{
255	if (io->urbs) {
256		while (io->entries--)
257			usb_free_urb(io->urbs [io->entries]);
258		kfree(io->urbs);
259		io->urbs = NULL;
260	}
261	io->dev = NULL;
262}
263
264static void sg_complete(struct urb *urb)
265{
266	struct usb_sg_request *io = urb->context;
267	int status = urb->status;
268
269	spin_lock(&io->lock);
270
271	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272	 * reports, until the completion callback (this!) returns.  That lets
273	 * device driver code (like this routine) unlink queued urbs first,
274	 * if it needs to, since the HC won't work on them at all.  So it's
275	 * not possible for page N+1 to overwrite page N, and so on.
276	 *
277	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278	 * complete before the HCD can get requests away from hardware,
279	 * though never during cleanup after a hard fault.
280	 */
281	if (io->status
282			&& (io->status != -ECONNRESET
283				|| status != -ECONNRESET)
284			&& urb->actual_length) {
285		dev_err(io->dev->bus->controller,
286			"dev %s ep%d%s scatterlist error %d/%d\n",
287			io->dev->devpath,
288			usb_endpoint_num(&urb->ep->desc),
289			usb_urb_dir_in(urb) ? "in" : "out",
290			status, io->status);
291		/* BUG (); */
292	}
293
294	if (io->status == 0 && status && status != -ECONNRESET) {
295		int i, found, retval;
296
297		io->status = status;
298
299		/* the previous urbs, and this one, completed already.
300		 * unlink pending urbs so they won't rx/tx bad data.
301		 * careful: unlink can sometimes be synchronous...
302		 */
303		spin_unlock(&io->lock);
304		for (i = 0, found = 0; i < io->entries; i++) {
305			if (!io->urbs [i] || !io->urbs [i]->dev)
306				continue;
307			if (found) {
308				retval = usb_unlink_urb(io->urbs [i]);
309				if (retval != -EINPROGRESS &&
310				    retval != -ENODEV &&
311				    retval != -EBUSY)
312					dev_err(&io->dev->dev,
313						"%s, unlink --> %d\n",
314						__func__, retval);
315			} else if (urb == io->urbs [i])
316				found = 1;
317		}
318		spin_lock(&io->lock);
319	}
320	urb->dev = NULL;
321
322	/* on the last completion, signal usb_sg_wait() */
323	io->bytes += urb->actual_length;
324	io->count--;
325	if (!io->count)
326		complete(&io->complete);
327
328	spin_unlock(&io->lock);
329}
330
331
332/**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized.  until usb_sg_wait() returns,
335 *	treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * 	(for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * 	send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * Returns zero for success, else a negative errno value.  This initializes a
347 * scatter/gather request, allocating resources such as I/O mappings and urb
348 * memory (except maybe memory used by USB controller drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 */
357int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358		unsigned pipe, unsigned	period, struct scatterlist *sg,
359		int nents, size_t length, gfp_t mem_flags)
360{
361	int i;
362	int urb_flags;
363	int use_sg;
364
365	if (!io || !dev || !sg
366			|| usb_pipecontrol(pipe)
367			|| usb_pipeisoc(pipe)
368			|| nents <= 0)
369		return -EINVAL;
370
371	spin_lock_init(&io->lock);
372	io->dev = dev;
373	io->pipe = pipe;
374
375	if (dev->bus->sg_tablesize > 0) {
376		use_sg = true;
377		io->entries = 1;
378	} else {
379		use_sg = false;
380		io->entries = nents;
381	}
382
383	/* initialize all the urbs we'll use */
384	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385	if (!io->urbs)
386		goto nomem;
387
388	urb_flags = URB_NO_INTERRUPT;
389	if (usb_pipein(pipe))
390		urb_flags |= URB_SHORT_NOT_OK;
391
392	for_each_sg(sg, sg, io->entries, i) {
393		struct urb *urb;
394		unsigned len;
395
396		urb = usb_alloc_urb(0, mem_flags);
397		if (!urb) {
398			io->entries = i;
399			goto nomem;
400		}
401		io->urbs[i] = urb;
402
403		urb->dev = NULL;
404		urb->pipe = pipe;
405		urb->interval = period;
406		urb->transfer_flags = urb_flags;
407		urb->complete = sg_complete;
408		urb->context = io;
409		urb->sg = sg;
410
411		if (use_sg) {
412			/* There is no single transfer buffer */
413			urb->transfer_buffer = NULL;
414			urb->num_sgs = nents;
415
416			/* A length of zero means transfer the whole sg list */
417			len = length;
418			if (len == 0) {
419				struct scatterlist	*sg2;
420				int			j;
421
422				for_each_sg(sg, sg2, nents, j)
423					len += sg2->length;
424			}
425		} else {
426			/*
427			 * Some systems can't use DMA; they use PIO instead.
428			 * For their sakes, transfer_buffer is set whenever
429			 * possible.
430			 */
431			if (!PageHighMem(sg_page(sg)))
432				urb->transfer_buffer = sg_virt(sg);
433			else
434				urb->transfer_buffer = NULL;
435
436			len = sg->length;
437			if (length) {
438				len = min_t(unsigned, len, length);
439				length -= len;
440				if (length == 0)
441					io->entries = i + 1;
442			}
443		}
444		urb->transfer_buffer_length = len;
445	}
446	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447
448	/* transaction state */
449	io->count = io->entries;
450	io->status = 0;
451	io->bytes = 0;
452	init_completion(&io->complete);
453	return 0;
454
455nomem:
456	sg_clean(io);
457	return -ENOMEM;
458}
459EXPORT_SYMBOL_GPL(usb_sg_init);
460
461/**
462 * usb_sg_wait - synchronously execute scatter/gather request
463 * @io: request block handle, as initialized with usb_sg_init().
464 * 	some fields become accessible when this call returns.
465 * Context: !in_interrupt ()
466 *
467 * This function blocks until the specified I/O operation completes.  It
468 * leverages the grouping of the related I/O requests to get good transfer
469 * rates, by queueing the requests.  At higher speeds, such queuing can
470 * significantly improve USB throughput.
471 *
472 * There are three kinds of completion for this function.
473 * (1) success, where io->status is zero.  The number of io->bytes
474 *     transferred is as requested.
475 * (2) error, where io->status is a negative errno value.  The number
476 *     of io->bytes transferred before the error is usually less
477 *     than requested, and can be nonzero.
478 * (3) cancellation, a type of error with status -ECONNRESET that
479 *     is initiated by usb_sg_cancel().
480 *
481 * When this function returns, all memory allocated through usb_sg_init() or
482 * this call will have been freed.  The request block parameter may still be
483 * passed to usb_sg_cancel(), or it may be freed.  It could also be
484 * reinitialized and then reused.
485 *
486 * Data Transfer Rates:
487 *
488 * Bulk transfers are valid for full or high speed endpoints.
489 * The best full speed data rate is 19 packets of 64 bytes each
490 * per frame, or 1216 bytes per millisecond.
491 * The best high speed data rate is 13 packets of 512 bytes each
492 * per microframe, or 52 KBytes per millisecond.
493 *
494 * The reason to use interrupt transfers through this API would most likely
495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496 * could be transferred.  That capability is less useful for low or full
497 * speed interrupt endpoints, which allow at most one packet per millisecond,
498 * of at most 8 or 64 bytes (respectively).
499 *
500 * It is not necessary to call this function to reserve bandwidth for devices
501 * under an xHCI host controller, as the bandwidth is reserved when the
502 * configuration or interface alt setting is selected.
503 */
504void usb_sg_wait(struct usb_sg_request *io)
505{
506	int i;
507	int entries = io->entries;
508
509	/* queue the urbs.  */
510	spin_lock_irq(&io->lock);
511	i = 0;
512	while (i < entries && !io->status) {
513		int retval;
514
515		io->urbs[i]->dev = io->dev;
516		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517
518		/* after we submit, let completions or cancelations fire;
519		 * we handshake using io->status.
520		 */
521		spin_unlock_irq(&io->lock);
522		switch (retval) {
523			/* maybe we retrying will recover */
524		case -ENXIO:	/* hc didn't queue this one */
525		case -EAGAIN:
526		case -ENOMEM:
527			io->urbs[i]->dev = NULL;
528			retval = 0;
529			yield();
530			break;
531
532			/* no error? continue immediately.
533			 *
534			 * NOTE: to work better with UHCI (4K I/O buffer may
535			 * need 3K of TDs) it may be good to limit how many
536			 * URBs are queued at once; N milliseconds?
537			 */
538		case 0:
539			++i;
540			cpu_relax();
541			break;
542
543			/* fail any uncompleted urbs */
544		default:
545			io->urbs[i]->dev = NULL;
546			io->urbs[i]->status = retval;
547			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548				__func__, retval);
549			usb_sg_cancel(io);
550		}
551		spin_lock_irq(&io->lock);
552		if (retval && (io->status == 0 || io->status == -ECONNRESET))
553			io->status = retval;
554	}
555	io->count -= entries - i;
556	if (io->count == 0)
557		complete(&io->complete);
558	spin_unlock_irq(&io->lock);
559
560	/* OK, yes, this could be packaged as non-blocking.
561	 * So could the submit loop above ... but it's easier to
562	 * solve neither problem than to solve both!
563	 */
564	wait_for_completion(&io->complete);
565
566	sg_clean(io);
567}
568EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570/**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
578void usb_sg_cancel(struct usb_sg_request *io)
579{
580	unsigned long flags;
581
582	spin_lock_irqsave(&io->lock, flags);
583
584	/* shut everything down, if it didn't already */
585	if (!io->status) {
586		int i;
587
588		io->status = -ECONNRESET;
589		spin_unlock(&io->lock);
590		for (i = 0; i < io->entries; i++) {
591			int retval;
592
593			if (!io->urbs [i]->dev)
594				continue;
595			retval = usb_unlink_urb(io->urbs [i]);
596			if (retval != -EINPROGRESS && retval != -EBUSY)
597				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
598					__func__, retval);
599		}
600		spin_lock(&io->lock);
601	}
602	spin_unlock_irqrestore(&io->lock, flags);
603}
604EXPORT_SYMBOL_GPL(usb_sg_cancel);
605
606/*-------------------------------------------------------------------*/
607
608/**
609 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
610 * @dev: the device whose descriptor is being retrieved
611 * @type: the descriptor type (USB_DT_*)
612 * @index: the number of the descriptor
613 * @buf: where to put the descriptor
614 * @size: how big is "buf"?
615 * Context: !in_interrupt ()
616 *
617 * Gets a USB descriptor.  Convenience functions exist to simplify
618 * getting some types of descriptors.  Use
619 * usb_get_string() or usb_string() for USB_DT_STRING.
620 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
621 * are part of the device structure.
622 * In addition to a number of USB-standard descriptors, some
623 * devices also use class-specific or vendor-specific descriptors.
624 *
625 * This call is synchronous, and may not be used in an interrupt context.
626 *
627 * Returns the number of bytes received on success, or else the status code
628 * returned by the underlying usb_control_msg() call.
629 */
630int usb_get_descriptor(struct usb_device *dev, unsigned char type,
631		       unsigned char index, void *buf, int size)
632{
633	int i;
634	int result;
635
636	memset(buf, 0, size);	/* Make sure we parse really received data */
637
638	for (i = 0; i < 3; ++i) {
639		/* retry on length 0 or error; some devices are flakey */
640		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
641				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
642				(type << 8) + index, 0, buf, size,
643				USB_CTRL_GET_TIMEOUT);
644		if (result <= 0 && result != -ETIMEDOUT)
645			continue;
646		if (result > 1 && ((u8 *)buf)[1] != type) {
647			result = -ENODATA;
648			continue;
649		}
650		break;
651	}
652	return result;
653}
654EXPORT_SYMBOL_GPL(usb_get_descriptor);
655
656/**
657 * usb_get_string - gets a string descriptor
658 * @dev: the device whose string descriptor is being retrieved
659 * @langid: code for language chosen (from string descriptor zero)
660 * @index: the number of the descriptor
661 * @buf: where to put the string
662 * @size: how big is "buf"?
663 * Context: !in_interrupt ()
664 *
665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
666 * in little-endian byte order).
667 * The usb_string() function will often be a convenient way to turn
668 * these strings into kernel-printable form.
669 *
670 * Strings may be referenced in device, configuration, interface, or other
671 * descriptors, and could also be used in vendor-specific ways.
672 *
673 * This call is synchronous, and may not be used in an interrupt context.
674 *
675 * Returns the number of bytes received on success, or else the status code
676 * returned by the underlying usb_control_msg() call.
677 */
678static int usb_get_string(struct usb_device *dev, unsigned short langid,
679			  unsigned char index, void *buf, int size)
680{
681	int i;
682	int result;
683
684	for (i = 0; i < 3; ++i) {
685		/* retry on length 0 or stall; some devices are flakey */
686		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
687			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
688			(USB_DT_STRING << 8) + index, langid, buf, size,
689			USB_CTRL_GET_TIMEOUT);
690		if (result == 0 || result == -EPIPE)
691			continue;
692		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
693			result = -ENODATA;
694			continue;
695		}
696		break;
697	}
698	return result;
699}
700
701static void usb_try_string_workarounds(unsigned char *buf, int *length)
702{
703	int newlength, oldlength = *length;
704
705	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
706		if (!isprint(buf[newlength]) || buf[newlength + 1])
707			break;
708
709	if (newlength > 2) {
710		buf[0] = newlength;
711		*length = newlength;
712	}
713}
714
715static int usb_string_sub(struct usb_device *dev, unsigned int langid,
716			  unsigned int index, unsigned char *buf)
717{
718	int rc;
719
720	/* Try to read the string descriptor by asking for the maximum
721	 * possible number of bytes */
722	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
723		rc = -EIO;
724	else
725		rc = usb_get_string(dev, langid, index, buf, 255);
726
727	/* If that failed try to read the descriptor length, then
728	 * ask for just that many bytes */
729	if (rc < 2) {
730		rc = usb_get_string(dev, langid, index, buf, 2);
731		if (rc == 2)
732			rc = usb_get_string(dev, langid, index, buf, buf[0]);
733	}
734
735	if (rc >= 2) {
736		if (!buf[0] && !buf[1])
737			usb_try_string_workarounds(buf, &rc);
738
739		/* There might be extra junk at the end of the descriptor */
740		if (buf[0] < rc)
741			rc = buf[0];
742
743		rc = rc - (rc & 1); /* force a multiple of two */
744	}
745
746	if (rc < 2)
747		rc = (rc < 0 ? rc : -EINVAL);
748
749	return rc;
750}
751
752static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
753{
754	int err;
755
756	if (dev->have_langid)
757		return 0;
758
759	if (dev->string_langid < 0)
760		return -EPIPE;
761
762	err = usb_string_sub(dev, 0, 0, tbuf);
763
764	/* If the string was reported but is malformed, default to english
765	 * (0x0409) */
766	if (err == -ENODATA || (err > 0 && err < 4)) {
767		dev->string_langid = 0x0409;
768		dev->have_langid = 1;
769		dev_err(&dev->dev,
770			"string descriptor 0 malformed (err = %d), "
771			"defaulting to 0x%04x\n",
772				err, dev->string_langid);
773		return 0;
774	}
775
776	/* In case of all other errors, we assume the device is not able to
777	 * deal with strings at all. Set string_langid to -1 in order to
778	 * prevent any string to be retrieved from the device */
779	if (err < 0) {
780		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
781					err);
782		dev->string_langid = -1;
783		return -EPIPE;
784	}
785
786	/* always use the first langid listed */
787	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
788	dev->have_langid = 1;
789	dev_dbg(&dev->dev, "default language 0x%04x\n",
790				dev->string_langid);
791	return 0;
792}
793
794/**
795 * usb_string - returns UTF-8 version of a string descriptor
796 * @dev: the device whose string descriptor is being retrieved
797 * @index: the number of the descriptor
798 * @buf: where to put the string
799 * @size: how big is "buf"?
800 * Context: !in_interrupt ()
801 *
802 * This converts the UTF-16LE encoded strings returned by devices, from
803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
804 * that are more usable in most kernel contexts.  Note that this function
805 * chooses strings in the first language supported by the device.
806 *
807 * This call is synchronous, and may not be used in an interrupt context.
808 *
809 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
810 */
811int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812{
813	unsigned char *tbuf;
814	int err;
815
816	if (dev->state == USB_STATE_SUSPENDED)
817		return -EHOSTUNREACH;
818	if (size <= 0 || !buf || !index)
819		return -EINVAL;
820	buf[0] = 0;
821	tbuf = kmalloc(256, GFP_NOIO);
822	if (!tbuf)
823		return -ENOMEM;
824
825	err = usb_get_langid(dev, tbuf);
826	if (err < 0)
827		goto errout;
828
829	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
830	if (err < 0)
831		goto errout;
832
833	size--;		/* leave room for trailing NULL char in output buffer */
834	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
835			UTF16_LITTLE_ENDIAN, buf, size);
836	buf[err] = 0;
837
838	if (tbuf[1] != USB_DT_STRING)
839		dev_dbg(&dev->dev,
840			"wrong descriptor type %02x for string %d (\"%s\")\n",
841			tbuf[1], index, buf);
842
843 errout:
844	kfree(tbuf);
845	return err;
846}
847EXPORT_SYMBOL_GPL(usb_string);
848
849/* one UTF-8-encoded 16-bit character has at most three bytes */
850#define MAX_USB_STRING_SIZE (127 * 3 + 1)
851
852/**
853 * usb_cache_string - read a string descriptor and cache it for later use
854 * @udev: the device whose string descriptor is being read
855 * @index: the descriptor index
856 *
857 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
858 * or NULL if the index is 0 or the string could not be read.
859 */
860char *usb_cache_string(struct usb_device *udev, int index)
861{
862	char *buf;
863	char *smallbuf = NULL;
864	int len;
865
866	if (index <= 0)
867		return NULL;
868
869	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
870	if (buf) {
871		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
872		if (len > 0) {
873			smallbuf = kmalloc(++len, GFP_NOIO);
874			if (!smallbuf)
875				return buf;
876			memcpy(smallbuf, buf, len);
877		}
878		kfree(buf);
879	}
880	return smallbuf;
881}
882
883/*
884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
885 * @dev: the device whose device descriptor is being updated
886 * @size: how much of the descriptor to read
887 * Context: !in_interrupt ()
888 *
889 * Updates the copy of the device descriptor stored in the device structure,
890 * which dedicates space for this purpose.
891 *
892 * Not exported, only for use by the core.  If drivers really want to read
893 * the device descriptor directly, they can call usb_get_descriptor() with
894 * type = USB_DT_DEVICE and index = 0.
895 *
896 * This call is synchronous, and may not be used in an interrupt context.
897 *
898 * Returns the number of bytes received on success, or else the status code
899 * returned by the underlying usb_control_msg() call.
900 */
901int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902{
903	struct usb_device_descriptor *desc;
904	int ret;
905
906	if (size > sizeof(*desc))
907		return -EINVAL;
908	desc = kmalloc(sizeof(*desc), GFP_NOIO);
909	if (!desc)
910		return -ENOMEM;
911
912	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
913	if (ret >= 0)
914		memcpy(&dev->descriptor, desc, size);
915	kfree(desc);
916	return ret;
917}
918
919/**
920 * usb_get_status - issues a GET_STATUS call
921 * @dev: the device whose status is being checked
922 * @type: USB_RECIP_*; for device, interface, or endpoint
923 * @target: zero (for device), else interface or endpoint number
924 * @data: pointer to two bytes of bitmap data
925 * Context: !in_interrupt ()
926 *
927 * Returns device, interface, or endpoint status.  Normally only of
928 * interest to see if the device is self powered, or has enabled the
929 * remote wakeup facility; or whether a bulk or interrupt endpoint
930 * is halted ("stalled").
931 *
932 * Bits in these status bitmaps are set using the SET_FEATURE request,
933 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
934 * function should be used to clear halt ("stall") status.
935 *
936 * This call is synchronous, and may not be used in an interrupt context.
937 *
938 * Returns the number of bytes received on success, or else the status code
939 * returned by the underlying usb_control_msg() call.
940 */
941int usb_get_status(struct usb_device *dev, int type, int target, void *data)
942{
943	int ret;
944	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
945
946	if (!status)
947		return -ENOMEM;
948
949	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
950		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
951		sizeof(*status), USB_CTRL_GET_TIMEOUT);
952
953	*(u16 *)data = *status;
954	kfree(status);
955	return ret;
956}
957EXPORT_SYMBOL_GPL(usb_get_status);
958
959/**
960 * usb_clear_halt - tells device to clear endpoint halt/stall condition
961 * @dev: device whose endpoint is halted
962 * @pipe: endpoint "pipe" being cleared
963 * Context: !in_interrupt ()
964 *
965 * This is used to clear halt conditions for bulk and interrupt endpoints,
966 * as reported by URB completion status.  Endpoints that are halted are
967 * sometimes referred to as being "stalled".  Such endpoints are unable
968 * to transmit or receive data until the halt status is cleared.  Any URBs
969 * queued for such an endpoint should normally be unlinked by the driver
970 * before clearing the halt condition, as described in sections 5.7.5
971 * and 5.8.5 of the USB 2.0 spec.
972 *
973 * Note that control and isochronous endpoints don't halt, although control
974 * endpoints report "protocol stall" (for unsupported requests) using the
975 * same status code used to report a true stall.
976 *
977 * This call is synchronous, and may not be used in an interrupt context.
978 *
979 * Returns zero on success, or else the status code returned by the
980 * underlying usb_control_msg() call.
981 */
982int usb_clear_halt(struct usb_device *dev, int pipe)
983{
984	int result;
985	int endp = usb_pipeendpoint(pipe);
986
987	if (usb_pipein(pipe))
988		endp |= USB_DIR_IN;
989
990	/* we don't care if it wasn't halted first. in fact some devices
991	 * (like some ibmcam model 1 units) seem to expect hosts to make
992	 * this request for iso endpoints, which can't halt!
993	 */
994	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
995		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
996		USB_ENDPOINT_HALT, endp, NULL, 0,
997		USB_CTRL_SET_TIMEOUT);
998
999	/* don't un-halt or force to DATA0 except on success */
1000	if (result < 0)
1001		return result;
1002
1003	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1004	 * the clear "took", so some devices could lock up if you check...
1005	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1006	 *
1007	 * NOTE:  make sure the logic here doesn't diverge much from
1008	 * the copy in usb-storage, for as long as we need two copies.
1009	 */
1010
1011	usb_reset_endpoint(dev, endp);
1012
1013	return 0;
1014}
1015EXPORT_SYMBOL_GPL(usb_clear_halt);
1016
1017static int create_intf_ep_devs(struct usb_interface *intf)
1018{
1019	struct usb_device *udev = interface_to_usbdev(intf);
1020	struct usb_host_interface *alt = intf->cur_altsetting;
1021	int i;
1022
1023	if (intf->ep_devs_created || intf->unregistering)
1024		return 0;
1025
1026	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1027		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1028	intf->ep_devs_created = 1;
1029	return 0;
1030}
1031
1032static void remove_intf_ep_devs(struct usb_interface *intf)
1033{
1034	struct usb_host_interface *alt = intf->cur_altsetting;
1035	int i;
1036
1037	if (!intf->ep_devs_created)
1038		return;
1039
1040	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1041		usb_remove_ep_devs(&alt->endpoint[i]);
1042	intf->ep_devs_created = 0;
1043}
1044
1045/**
1046 * usb_disable_endpoint -- Disable an endpoint by address
1047 * @dev: the device whose endpoint is being disabled
1048 * @epaddr: the endpoint's address.  Endpoint number for output,
1049 *	endpoint number + USB_DIR_IN for input
1050 * @reset_hardware: flag to erase any endpoint state stored in the
1051 *	controller hardware
1052 *
1053 * Disables the endpoint for URB submission and nukes all pending URBs.
1054 * If @reset_hardware is set then also deallocates hcd/hardware state
1055 * for the endpoint.
1056 */
1057void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1058		bool reset_hardware)
1059{
1060	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1061	struct usb_host_endpoint *ep;
1062
1063	if (!dev)
1064		return;
1065
1066	if (usb_endpoint_out(epaddr)) {
1067		ep = dev->ep_out[epnum];
1068		if (reset_hardware)
1069			dev->ep_out[epnum] = NULL;
1070	} else {
1071		ep = dev->ep_in[epnum];
1072		if (reset_hardware)
1073			dev->ep_in[epnum] = NULL;
1074	}
1075	if (ep) {
1076		ep->enabled = 0;
1077		usb_hcd_flush_endpoint(dev, ep);
1078		if (reset_hardware)
1079			usb_hcd_disable_endpoint(dev, ep);
1080	}
1081}
1082
1083/**
1084 * usb_reset_endpoint - Reset an endpoint's state.
1085 * @dev: the device whose endpoint is to be reset
1086 * @epaddr: the endpoint's address.  Endpoint number for output,
1087 *	endpoint number + USB_DIR_IN for input
1088 *
1089 * Resets any host-side endpoint state such as the toggle bit,
1090 * sequence number or current window.
1091 */
1092void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1093{
1094	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1095	struct usb_host_endpoint *ep;
1096
1097	if (usb_endpoint_out(epaddr))
1098		ep = dev->ep_out[epnum];
1099	else
1100		ep = dev->ep_in[epnum];
1101	if (ep)
1102		usb_hcd_reset_endpoint(dev, ep);
1103}
1104EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1105
1106
1107/**
1108 * usb_disable_interface -- Disable all endpoints for an interface
1109 * @dev: the device whose interface is being disabled
1110 * @intf: pointer to the interface descriptor
1111 * @reset_hardware: flag to erase any endpoint state stored in the
1112 *	controller hardware
1113 *
1114 * Disables all the endpoints for the interface's current altsetting.
1115 */
1116void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1117		bool reset_hardware)
1118{
1119	struct usb_host_interface *alt = intf->cur_altsetting;
1120	int i;
1121
1122	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1123		usb_disable_endpoint(dev,
1124				alt->endpoint[i].desc.bEndpointAddress,
1125				reset_hardware);
1126	}
1127}
1128
1129/**
1130 * usb_disable_device - Disable all the endpoints for a USB device
1131 * @dev: the device whose endpoints are being disabled
1132 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1133 *
1134 * Disables all the device's endpoints, potentially including endpoint 0.
1135 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1136 * pending urbs) and usbcore state for the interfaces, so that usbcore
1137 * must usb_set_configuration() before any interfaces could be used.
1138 */
1139void usb_disable_device(struct usb_device *dev, int skip_ep0)
1140{
1141	int i;
1142
1143	/* getting rid of interfaces will disconnect
1144	 * any drivers bound to them (a key side effect)
1145	 */
1146	if (dev->actconfig) {
1147		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1148			struct usb_interface	*interface;
1149
1150			/* remove this interface if it has been registered */
1151			interface = dev->actconfig->interface[i];
1152			if (!device_is_registered(&interface->dev))
1153				continue;
1154			dev_dbg(&dev->dev, "unregistering interface %s\n",
1155				dev_name(&interface->dev));
1156			interface->unregistering = 1;
1157			remove_intf_ep_devs(interface);
1158			device_del(&interface->dev);
1159		}
1160
1161		/* Now that the interfaces are unbound, nobody should
1162		 * try to access them.
1163		 */
1164		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1165			put_device(&dev->actconfig->interface[i]->dev);
1166			dev->actconfig->interface[i] = NULL;
1167		}
1168		dev->actconfig = NULL;
1169		if (dev->state == USB_STATE_CONFIGURED)
1170			usb_set_device_state(dev, USB_STATE_ADDRESS);
1171	}
1172
1173	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1174		skip_ep0 ? "non-ep0" : "all");
1175	for (i = skip_ep0; i < 16; ++i) {
1176		usb_disable_endpoint(dev, i, true);
1177		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1178	}
1179}
1180
1181/**
1182 * usb_enable_endpoint - Enable an endpoint for USB communications
1183 * @dev: the device whose interface is being enabled
1184 * @ep: the endpoint
1185 * @reset_ep: flag to reset the endpoint state
1186 *
1187 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1188 * For control endpoints, both the input and output sides are handled.
1189 */
1190void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1191		bool reset_ep)
1192{
1193	int epnum = usb_endpoint_num(&ep->desc);
1194	int is_out = usb_endpoint_dir_out(&ep->desc);
1195	int is_control = usb_endpoint_xfer_control(&ep->desc);
1196
1197	if (reset_ep)
1198		usb_hcd_reset_endpoint(dev, ep);
1199	if (is_out || is_control)
1200		dev->ep_out[epnum] = ep;
1201	if (!is_out || is_control)
1202		dev->ep_in[epnum] = ep;
1203	ep->enabled = 1;
1204}
1205
1206/**
1207 * usb_enable_interface - Enable all the endpoints for an interface
1208 * @dev: the device whose interface is being enabled
1209 * @intf: pointer to the interface descriptor
1210 * @reset_eps: flag to reset the endpoints' state
1211 *
1212 * Enables all the endpoints for the interface's current altsetting.
1213 */
1214void usb_enable_interface(struct usb_device *dev,
1215		struct usb_interface *intf, bool reset_eps)
1216{
1217	struct usb_host_interface *alt = intf->cur_altsetting;
1218	int i;
1219
1220	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1221		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1222}
1223
1224/**
1225 * usb_set_interface - Makes a particular alternate setting be current
1226 * @dev: the device whose interface is being updated
1227 * @interface: the interface being updated
1228 * @alternate: the setting being chosen.
1229 * Context: !in_interrupt ()
1230 *
1231 * This is used to enable data transfers on interfaces that may not
1232 * be enabled by default.  Not all devices support such configurability.
1233 * Only the driver bound to an interface may change its setting.
1234 *
1235 * Within any given configuration, each interface may have several
1236 * alternative settings.  These are often used to control levels of
1237 * bandwidth consumption.  For example, the default setting for a high
1238 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1239 * while interrupt transfers of up to 3KBytes per microframe are legal.
1240 * Also, isochronous endpoints may never be part of an
1241 * interface's default setting.  To access such bandwidth, alternate
1242 * interface settings must be made current.
1243 *
1244 * Note that in the Linux USB subsystem, bandwidth associated with
1245 * an endpoint in a given alternate setting is not reserved until an URB
1246 * is submitted that needs that bandwidth.  Some other operating systems
1247 * allocate bandwidth early, when a configuration is chosen.
1248 *
1249 * This call is synchronous, and may not be used in an interrupt context.
1250 * Also, drivers must not change altsettings while urbs are scheduled for
1251 * endpoints in that interface; all such urbs must first be completed
1252 * (perhaps forced by unlinking).
1253 *
1254 * Returns zero on success, or else the status code returned by the
1255 * underlying usb_control_msg() call.
1256 */
1257int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1258{
1259	struct usb_interface *iface;
1260	struct usb_host_interface *alt;
1261	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1262	int ret;
1263	int manual = 0;
1264	unsigned int epaddr;
1265	unsigned int pipe;
1266
1267	if (dev->state == USB_STATE_SUSPENDED)
1268		return -EHOSTUNREACH;
1269
1270	iface = usb_ifnum_to_if(dev, interface);
1271	if (!iface) {
1272		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1273			interface);
1274		return -EINVAL;
1275	}
1276
1277	alt = usb_altnum_to_altsetting(iface, alternate);
1278	if (!alt) {
1279		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1280			 alternate);
1281		return -EINVAL;
1282	}
1283
1284	/* Make sure we have enough bandwidth for this alternate interface.
1285	 * Remove the current alt setting and add the new alt setting.
1286	 */
1287	mutex_lock(&hcd->bandwidth_mutex);
1288	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1289	if (ret < 0) {
1290		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1291				alternate);
1292		mutex_unlock(&hcd->bandwidth_mutex);
1293		return ret;
1294	}
1295
1296	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1297		ret = -EPIPE;
1298	else
1299		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1300				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1301				   alternate, interface, NULL, 0, 5000);
1302
1303	/* 9.4.10 says devices don't need this and are free to STALL the
1304	 * request if the interface only has one alternate setting.
1305	 */
1306	if (ret == -EPIPE && iface->num_altsetting == 1) {
1307		dev_dbg(&dev->dev,
1308			"manual set_interface for iface %d, alt %d\n",
1309			interface, alternate);
1310		manual = 1;
1311	} else if (ret < 0) {
1312		/* Re-instate the old alt setting */
1313		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1314		mutex_unlock(&hcd->bandwidth_mutex);
1315		return ret;
1316	}
1317	mutex_unlock(&hcd->bandwidth_mutex);
1318
1319
1320	/* prevent submissions using previous endpoint settings */
1321	if (iface->cur_altsetting != alt) {
1322		remove_intf_ep_devs(iface);
1323		usb_remove_sysfs_intf_files(iface);
1324	}
1325	usb_disable_interface(dev, iface, true);
1326
1327	iface->cur_altsetting = alt;
1328
1329	/* If the interface only has one altsetting and the device didn't
1330	 * accept the request, we attempt to carry out the equivalent action
1331	 * by manually clearing the HALT feature for each endpoint in the
1332	 * new altsetting.
1333	 */
1334	if (manual) {
1335		int i;
1336
1337		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1338			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1339			pipe = __create_pipe(dev,
1340					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1341					(usb_endpoint_out(epaddr) ?
1342					USB_DIR_OUT : USB_DIR_IN);
1343
1344			usb_clear_halt(dev, pipe);
1345		}
1346	}
1347
1348	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1349	 *
1350	 * Note:
1351	 * Despite EP0 is always present in all interfaces/AS, the list of
1352	 * endpoints from the descriptor does not contain EP0. Due to its
1353	 * omnipresence one might expect EP0 being considered "affected" by
1354	 * any SetInterface request and hence assume toggles need to be reset.
1355	 * However, EP0 toggles are re-synced for every individual transfer
1356	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1357	 * (Likewise, EP0 never "halts" on well designed devices.)
1358	 */
1359	usb_enable_interface(dev, iface, true);
1360	if (device_is_registered(&iface->dev)) {
1361		usb_create_sysfs_intf_files(iface);
1362		create_intf_ep_devs(iface);
1363	}
1364	return 0;
1365}
1366EXPORT_SYMBOL_GPL(usb_set_interface);
1367
1368/**
1369 * usb_reset_configuration - lightweight device reset
1370 * @dev: the device whose configuration is being reset
1371 *
1372 * This issues a standard SET_CONFIGURATION request to the device using
1373 * the current configuration.  The effect is to reset most USB-related
1374 * state in the device, including interface altsettings (reset to zero),
1375 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1376 * endpoints).  Other usbcore state is unchanged, including bindings of
1377 * usb device drivers to interfaces.
1378 *
1379 * Because this affects multiple interfaces, avoid using this with composite
1380 * (multi-interface) devices.  Instead, the driver for each interface may
1381 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1382 * some devices don't support the SET_INTERFACE request, and others won't
1383 * reset all the interface state (notably endpoint state).  Resetting the whole
1384 * configuration would affect other drivers' interfaces.
1385 *
1386 * The caller must own the device lock.
1387 *
1388 * Returns zero on success, else a negative error code.
1389 */
1390int usb_reset_configuration(struct usb_device *dev)
1391{
1392	int			i, retval;
1393	struct usb_host_config	*config;
1394	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1395
1396	if (dev->state == USB_STATE_SUSPENDED)
1397		return -EHOSTUNREACH;
1398
1399	/* caller must have locked the device and must own
1400	 * the usb bus readlock (so driver bindings are stable);
1401	 * calls during probe() are fine
1402	 */
1403
1404	for (i = 1; i < 16; ++i) {
1405		usb_disable_endpoint(dev, i, true);
1406		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1407	}
1408
1409	config = dev->actconfig;
1410	retval = 0;
1411	mutex_lock(&hcd->bandwidth_mutex);
1412	/* Make sure we have enough bandwidth for each alternate setting 0 */
1413	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1414		struct usb_interface *intf = config->interface[i];
1415		struct usb_host_interface *alt;
1416
1417		alt = usb_altnum_to_altsetting(intf, 0);
1418		if (!alt)
1419			alt = &intf->altsetting[0];
1420		if (alt != intf->cur_altsetting)
1421			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1422					intf->cur_altsetting, alt);
1423		if (retval < 0)
1424			break;
1425	}
1426	/* If not, reinstate the old alternate settings */
1427	if (retval < 0) {
1428reset_old_alts:
1429		for (i--; i >= 0; i--) {
1430			struct usb_interface *intf = config->interface[i];
1431			struct usb_host_interface *alt;
1432
1433			alt = usb_altnum_to_altsetting(intf, 0);
1434			if (!alt)
1435				alt = &intf->altsetting[0];
1436			if (alt != intf->cur_altsetting)
1437				usb_hcd_alloc_bandwidth(dev, NULL,
1438						alt, intf->cur_altsetting);
1439		}
1440		mutex_unlock(&hcd->bandwidth_mutex);
1441		return retval;
1442	}
1443	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1444			USB_REQ_SET_CONFIGURATION, 0,
1445			config->desc.bConfigurationValue, 0,
1446			NULL, 0, USB_CTRL_SET_TIMEOUT);
1447	if (retval < 0)
1448		goto reset_old_alts;
1449	mutex_unlock(&hcd->bandwidth_mutex);
1450
1451	/* re-init hc/hcd interface/endpoint state */
1452	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1453		struct usb_interface *intf = config->interface[i];
1454		struct usb_host_interface *alt;
1455
1456		alt = usb_altnum_to_altsetting(intf, 0);
1457
1458		/* No altsetting 0?  We'll assume the first altsetting.
1459		 * We could use a GetInterface call, but if a device is
1460		 * so non-compliant that it doesn't have altsetting 0
1461		 * then I wouldn't trust its reply anyway.
1462		 */
1463		if (!alt)
1464			alt = &intf->altsetting[0];
1465
1466		if (alt != intf->cur_altsetting) {
1467			remove_intf_ep_devs(intf);
1468			usb_remove_sysfs_intf_files(intf);
1469		}
1470		intf->cur_altsetting = alt;
1471		usb_enable_interface(dev, intf, true);
1472		if (device_is_registered(&intf->dev)) {
1473			usb_create_sysfs_intf_files(intf);
1474			create_intf_ep_devs(intf);
1475		}
1476	}
1477	return 0;
1478}
1479EXPORT_SYMBOL_GPL(usb_reset_configuration);
1480
1481static void usb_release_interface(struct device *dev)
1482{
1483	struct usb_interface *intf = to_usb_interface(dev);
1484	struct usb_interface_cache *intfc =
1485			altsetting_to_usb_interface_cache(intf->altsetting);
1486
1487	kref_put(&intfc->ref, usb_release_interface_cache);
1488	kfree(intf);
1489}
1490
1491#ifdef	CONFIG_HOTPLUG
1492static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1493{
1494	struct usb_device *usb_dev;
1495	struct usb_interface *intf;
1496	struct usb_host_interface *alt;
1497
1498	intf = to_usb_interface(dev);
1499	usb_dev = interface_to_usbdev(intf);
1500	alt = intf->cur_altsetting;
1501
1502	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1503		   alt->desc.bInterfaceClass,
1504		   alt->desc.bInterfaceSubClass,
1505		   alt->desc.bInterfaceProtocol))
1506		return -ENOMEM;
1507
1508	if (add_uevent_var(env,
1509		   "MODALIAS=usb:"
1510		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1511		   le16_to_cpu(usb_dev->descriptor.idVendor),
1512		   le16_to_cpu(usb_dev->descriptor.idProduct),
1513		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1514		   usb_dev->descriptor.bDeviceClass,
1515		   usb_dev->descriptor.bDeviceSubClass,
1516		   usb_dev->descriptor.bDeviceProtocol,
1517		   alt->desc.bInterfaceClass,
1518		   alt->desc.bInterfaceSubClass,
1519		   alt->desc.bInterfaceProtocol))
1520		return -ENOMEM;
1521
1522	return 0;
1523}
1524
1525#else
1526
1527static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1528{
1529	return -ENODEV;
1530}
1531#endif	/* CONFIG_HOTPLUG */
1532
1533struct device_type usb_if_device_type = {
1534	.name =		"usb_interface",
1535	.release =	usb_release_interface,
1536	.uevent =	usb_if_uevent,
1537};
1538
1539static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1540						struct usb_host_config *config,
1541						u8 inum)
1542{
1543	struct usb_interface_assoc_descriptor *retval = NULL;
1544	struct usb_interface_assoc_descriptor *intf_assoc;
1545	int first_intf;
1546	int last_intf;
1547	int i;
1548
1549	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1550		intf_assoc = config->intf_assoc[i];
1551		if (intf_assoc->bInterfaceCount == 0)
1552			continue;
1553
1554		first_intf = intf_assoc->bFirstInterface;
1555		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1556		if (inum >= first_intf && inum <= last_intf) {
1557			if (!retval)
1558				retval = intf_assoc;
1559			else
1560				dev_err(&dev->dev, "Interface #%d referenced"
1561					" by multiple IADs\n", inum);
1562		}
1563	}
1564
1565	return retval;
1566}
1567
1568
1569/*
1570 * Internal function to queue a device reset
1571 *
1572 * This is initialized into the workstruct in 'struct
1573 * usb_device->reset_ws' that is launched by
1574 * message.c:usb_set_configuration() when initializing each 'struct
1575 * usb_interface'.
1576 *
1577 * It is safe to get the USB device without reference counts because
1578 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1579 * this function will be ran only if @iface is alive (and before
1580 * freeing it any scheduled instances of it will have been cancelled).
1581 *
1582 * We need to set a flag (usb_dev->reset_running) because when we call
1583 * the reset, the interfaces might be unbound. The current interface
1584 * cannot try to remove the queued work as it would cause a deadlock
1585 * (you cannot remove your work from within your executing
1586 * workqueue). This flag lets it know, so that
1587 * usb_cancel_queued_reset() doesn't try to do it.
1588 *
1589 * See usb_queue_reset_device() for more details
1590 */
1591static void __usb_queue_reset_device(struct work_struct *ws)
1592{
1593	int rc;
1594	struct usb_interface *iface =
1595		container_of(ws, struct usb_interface, reset_ws);
1596	struct usb_device *udev = interface_to_usbdev(iface);
1597
1598	rc = usb_lock_device_for_reset(udev, iface);
1599	if (rc >= 0) {
1600		iface->reset_running = 1;
1601		usb_reset_device(udev);
1602		iface->reset_running = 0;
1603		usb_unlock_device(udev);
1604	}
1605}
1606
1607
1608/*
1609 * usb_set_configuration - Makes a particular device setting be current
1610 * @dev: the device whose configuration is being updated
1611 * @configuration: the configuration being chosen.
1612 * Context: !in_interrupt(), caller owns the device lock
1613 *
1614 * This is used to enable non-default device modes.  Not all devices
1615 * use this kind of configurability; many devices only have one
1616 * configuration.
1617 *
1618 * @configuration is the value of the configuration to be installed.
1619 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1620 * must be non-zero; a value of zero indicates that the device in
1621 * unconfigured.  However some devices erroneously use 0 as one of their
1622 * configuration values.  To help manage such devices, this routine will
1623 * accept @configuration = -1 as indicating the device should be put in
1624 * an unconfigured state.
1625 *
1626 * USB device configurations may affect Linux interoperability,
1627 * power consumption and the functionality available.  For example,
1628 * the default configuration is limited to using 100mA of bus power,
1629 * so that when certain device functionality requires more power,
1630 * and the device is bus powered, that functionality should be in some
1631 * non-default device configuration.  Other device modes may also be
1632 * reflected as configuration options, such as whether two ISDN
1633 * channels are available independently; and choosing between open
1634 * standard device protocols (like CDC) or proprietary ones.
1635 *
1636 * Note that a non-authorized device (dev->authorized == 0) will only
1637 * be put in unconfigured mode.
1638 *
1639 * Note that USB has an additional level of device configurability,
1640 * associated with interfaces.  That configurability is accessed using
1641 * usb_set_interface().
1642 *
1643 * This call is synchronous. The calling context must be able to sleep,
1644 * must own the device lock, and must not hold the driver model's USB
1645 * bus mutex; usb interface driver probe() methods cannot use this routine.
1646 *
1647 * Returns zero on success, or else the status code returned by the
1648 * underlying call that failed.  On successful completion, each interface
1649 * in the original device configuration has been destroyed, and each one
1650 * in the new configuration has been probed by all relevant usb device
1651 * drivers currently known to the kernel.
1652 */
1653int usb_set_configuration(struct usb_device *dev, int configuration)
1654{
1655	int i, ret;
1656	struct usb_host_config *cp = NULL;
1657	struct usb_interface **new_interfaces = NULL;
1658	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1659	int n, nintf;
1660
1661	if (dev->authorized == 0 || configuration == -1)
1662		configuration = 0;
1663	else {
1664		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1665			if (dev->config[i].desc.bConfigurationValue ==
1666					configuration) {
1667				cp = &dev->config[i];
1668				break;
1669			}
1670		}
1671	}
1672	if ((!cp && configuration != 0))
1673		return -EINVAL;
1674
1675	/* The USB spec says configuration 0 means unconfigured.
1676	 * But if a device includes a configuration numbered 0,
1677	 * we will accept it as a correctly configured state.
1678	 * Use -1 if you really want to unconfigure the device.
1679	 */
1680	if (cp && configuration == 0)
1681		dev_warn(&dev->dev, "config 0 descriptor??\n");
1682
1683	/* Allocate memory for new interfaces before doing anything else,
1684	 * so that if we run out then nothing will have changed. */
1685	n = nintf = 0;
1686	if (cp) {
1687		nintf = cp->desc.bNumInterfaces;
1688		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1689				GFP_NOIO);
1690		if (!new_interfaces) {
1691			dev_err(&dev->dev, "Out of memory\n");
1692			return -ENOMEM;
1693		}
1694
1695		for (; n < nintf; ++n) {
1696			new_interfaces[n] = kzalloc(
1697					sizeof(struct usb_interface),
1698					GFP_NOIO);
1699			if (!new_interfaces[n]) {
1700				dev_err(&dev->dev, "Out of memory\n");
1701				ret = -ENOMEM;
1702free_interfaces:
1703				while (--n >= 0)
1704					kfree(new_interfaces[n]);
1705				kfree(new_interfaces);
1706				return ret;
1707			}
1708		}
1709
1710		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1711		if (i < 0)
1712			dev_warn(&dev->dev, "new config #%d exceeds power "
1713					"limit by %dmA\n",
1714					configuration, -i);
1715	}
1716
1717	/* Wake up the device so we can send it the Set-Config request */
1718	ret = usb_autoresume_device(dev);
1719	if (ret)
1720		goto free_interfaces;
1721
1722	/* if it's already configured, clear out old state first.
1723	 * getting rid of old interfaces means unbinding their drivers.
1724	 */
1725	if (dev->state != USB_STATE_ADDRESS)
1726		usb_disable_device(dev, 1);	/* Skip ep0 */
1727
1728	/* Get rid of pending async Set-Config requests for this device */
1729	cancel_async_set_config(dev);
1730
1731	/* Make sure we have bandwidth (and available HCD resources) for this
1732	 * configuration.  Remove endpoints from the schedule if we're dropping
1733	 * this configuration to set configuration 0.  After this point, the
1734	 * host controller will not allow submissions to dropped endpoints.  If
1735	 * this call fails, the device state is unchanged.
1736	 */
1737	mutex_lock(&hcd->bandwidth_mutex);
1738	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1739	if (ret < 0) {
1740		mutex_unlock(&hcd->bandwidth_mutex);
1741		usb_autosuspend_device(dev);
1742		goto free_interfaces;
1743	}
1744
1745	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1746			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1747			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1748	if (ret < 0) {
1749		/* All the old state is gone, so what else can we do?
1750		 * The device is probably useless now anyway.
1751		 */
1752		cp = NULL;
1753	}
1754
1755	dev->actconfig = cp;
1756	if (!cp) {
1757		usb_set_device_state(dev, USB_STATE_ADDRESS);
1758		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1759		mutex_unlock(&hcd->bandwidth_mutex);
1760		usb_autosuspend_device(dev);
1761		goto free_interfaces;
1762	}
1763	mutex_unlock(&hcd->bandwidth_mutex);
1764	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1765
1766	/* Initialize the new interface structures and the
1767	 * hc/hcd/usbcore interface/endpoint state.
1768	 */
1769	for (i = 0; i < nintf; ++i) {
1770		struct usb_interface_cache *intfc;
1771		struct usb_interface *intf;
1772		struct usb_host_interface *alt;
1773
1774		cp->interface[i] = intf = new_interfaces[i];
1775		intfc = cp->intf_cache[i];
1776		intf->altsetting = intfc->altsetting;
1777		intf->num_altsetting = intfc->num_altsetting;
1778		intf->intf_assoc = find_iad(dev, cp, i);
1779		kref_get(&intfc->ref);
1780
1781		alt = usb_altnum_to_altsetting(intf, 0);
1782
1783		/* No altsetting 0?  We'll assume the first altsetting.
1784		 * We could use a GetInterface call, but if a device is
1785		 * so non-compliant that it doesn't have altsetting 0
1786		 * then I wouldn't trust its reply anyway.
1787		 */
1788		if (!alt)
1789			alt = &intf->altsetting[0];
1790
1791		intf->cur_altsetting = alt;
1792		usb_enable_interface(dev, intf, true);
1793		intf->dev.parent = &dev->dev;
1794		intf->dev.driver = NULL;
1795		intf->dev.bus = &usb_bus_type;
1796		intf->dev.type = &usb_if_device_type;
1797		intf->dev.groups = usb_interface_groups;
1798		intf->dev.dma_mask = dev->dev.dma_mask;
1799		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1800		intf->minor = -1;
1801		device_initialize(&intf->dev);
1802		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1803			dev->bus->busnum, dev->devpath,
1804			configuration, alt->desc.bInterfaceNumber);
1805	}
1806	kfree(new_interfaces);
1807
1808	if (cp->string == NULL &&
1809			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1810		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1811
1812	/* Now that all the interfaces are set up, register them
1813	 * to trigger binding of drivers to interfaces.  probe()
1814	 * routines may install different altsettings and may
1815	 * claim() any interfaces not yet bound.  Many class drivers
1816	 * need that: CDC, audio, video, etc.
1817	 */
1818	for (i = 0; i < nintf; ++i) {
1819		struct usb_interface *intf = cp->interface[i];
1820
1821		dev_dbg(&dev->dev,
1822			"adding %s (config #%d, interface %d)\n",
1823			dev_name(&intf->dev), configuration,
1824			intf->cur_altsetting->desc.bInterfaceNumber);
1825		device_enable_async_suspend(&intf->dev);
1826		ret = device_add(&intf->dev);
1827		if (ret != 0) {
1828			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1829				dev_name(&intf->dev), ret);
1830			continue;
1831		}
1832		create_intf_ep_devs(intf);
1833	}
1834
1835	usb_autosuspend_device(dev);
1836	return 0;
1837}
1838
1839static LIST_HEAD(set_config_list);
1840static DEFINE_SPINLOCK(set_config_lock);
1841
1842struct set_config_request {
1843	struct usb_device	*udev;
1844	int			config;
1845	struct work_struct	work;
1846	struct list_head	node;
1847};
1848
1849/* Worker routine for usb_driver_set_configuration() */
1850static void driver_set_config_work(struct work_struct *work)
1851{
1852	struct set_config_request *req =
1853		container_of(work, struct set_config_request, work);
1854	struct usb_device *udev = req->udev;
1855
1856	usb_lock_device(udev);
1857	spin_lock(&set_config_lock);
1858	list_del(&req->node);
1859	spin_unlock(&set_config_lock);
1860
1861	if (req->config >= -1)		/* Is req still valid? */
1862		usb_set_configuration(udev, req->config);
1863	usb_unlock_device(udev);
1864	usb_put_dev(udev);
1865	kfree(req);
1866}
1867
1868/* Cancel pending Set-Config requests for a device whose configuration
1869 * was just changed
1870 */
1871static void cancel_async_set_config(struct usb_device *udev)
1872{
1873	struct set_config_request *req;
1874
1875	spin_lock(&set_config_lock);
1876	list_for_each_entry(req, &set_config_list, node) {
1877		if (req->udev == udev)
1878			req->config = -999;	/* Mark as cancelled */
1879	}
1880	spin_unlock(&set_config_lock);
1881}
1882
1883/**
1884 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1885 * @udev: the device whose configuration is being updated
1886 * @config: the configuration being chosen.
1887 * Context: In process context, must be able to sleep
1888 *
1889 * Device interface drivers are not allowed to change device configurations.
1890 * This is because changing configurations will destroy the interface the
1891 * driver is bound to and create new ones; it would be like a floppy-disk
1892 * driver telling the computer to replace the floppy-disk drive with a
1893 * tape drive!
1894 *
1895 * Still, in certain specialized circumstances the need may arise.  This
1896 * routine gets around the normal restrictions by using a work thread to
1897 * submit the change-config request.
1898 *
1899 * Returns 0 if the request was successfully queued, error code otherwise.
1900 * The caller has no way to know whether the queued request will eventually
1901 * succeed.
1902 */
1903int usb_driver_set_configuration(struct usb_device *udev, int config)
1904{
1905	struct set_config_request *req;
1906
1907	req = kmalloc(sizeof(*req), GFP_KERNEL);
1908	if (!req)
1909		return -ENOMEM;
1910	req->udev = udev;
1911	req->config = config;
1912	INIT_WORK(&req->work, driver_set_config_work);
1913
1914	spin_lock(&set_config_lock);
1915	list_add(&req->node, &set_config_list);
1916	spin_unlock(&set_config_lock);
1917
1918	usb_get_dev(udev);
1919	schedule_work(&req->work);
1920	return 0;
1921}
1922EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1923