• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, write to the
17	Free Software Foundation, Inc.,
18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22	Module: rt2500pci
23	Abstract: rt2500pci device specific routines.
24	Supported chipsets: RT2560.
25 */
26
27#include <linux/delay.h>
28#include <linux/etherdevice.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/pci.h>
33#include <linux/eeprom_93cx6.h>
34#include <linux/slab.h>
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt2500pci.h"
39
40/*
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
52 */
53#define WAIT_FOR_BBP(__dev, __reg) \
54	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55#define WAIT_FOR_RF(__dev, __reg) \
56	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59				const unsigned int word, const u8 value)
60{
61	u32 reg;
62
63	mutex_lock(&rt2x00dev->csr_mutex);
64
65	/*
66	 * Wait until the BBP becomes available, afterwards we
67	 * can safely write the new data into the register.
68	 */
69	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70		reg = 0;
71		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77	}
78
79	mutex_unlock(&rt2x00dev->csr_mutex);
80}
81
82static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83			       const unsigned int word, u8 *value)
84{
85	u32 reg;
86
87	mutex_lock(&rt2x00dev->csr_mutex);
88
89	/*
90	 * Wait until the BBP becomes available, afterwards we
91	 * can safely write the read request into the register.
92	 * After the data has been written, we wait until hardware
93	 * returns the correct value, if at any time the register
94	 * doesn't become available in time, reg will be 0xffffffff
95	 * which means we return 0xff to the caller.
96	 */
97	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98		reg = 0;
99		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105		WAIT_FOR_BBP(rt2x00dev, &reg);
106	}
107
108	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110	mutex_unlock(&rt2x00dev->csr_mutex);
111}
112
113static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114			       const unsigned int word, const u32 value)
115{
116	u32 reg;
117
118	mutex_lock(&rt2x00dev->csr_mutex);
119
120	/*
121	 * Wait until the RF becomes available, afterwards we
122	 * can safely write the new data into the register.
123	 */
124	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125		reg = 0;
126		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132		rt2x00_rf_write(rt2x00dev, word, value);
133	}
134
135	mutex_unlock(&rt2x00dev->csr_mutex);
136}
137
138static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139{
140	struct rt2x00_dev *rt2x00dev = eeprom->data;
141	u32 reg;
142
143	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147	eeprom->reg_data_clock =
148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149	eeprom->reg_chip_select =
150	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151}
152
153static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154{
155	struct rt2x00_dev *rt2x00dev = eeprom->data;
156	u32 reg = 0;
157
158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161			   !!eeprom->reg_data_clock);
162	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163			   !!eeprom->reg_chip_select);
164
165	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166}
167
168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
169static const struct rt2x00debug rt2500pci_rt2x00debug = {
170	.owner	= THIS_MODULE,
171	.csr	= {
172		.read		= rt2x00pci_register_read,
173		.write		= rt2x00pci_register_write,
174		.flags		= RT2X00DEBUGFS_OFFSET,
175		.word_base	= CSR_REG_BASE,
176		.word_size	= sizeof(u32),
177		.word_count	= CSR_REG_SIZE / sizeof(u32),
178	},
179	.eeprom	= {
180		.read		= rt2x00_eeprom_read,
181		.write		= rt2x00_eeprom_write,
182		.word_base	= EEPROM_BASE,
183		.word_size	= sizeof(u16),
184		.word_count	= EEPROM_SIZE / sizeof(u16),
185	},
186	.bbp	= {
187		.read		= rt2500pci_bbp_read,
188		.write		= rt2500pci_bbp_write,
189		.word_base	= BBP_BASE,
190		.word_size	= sizeof(u8),
191		.word_count	= BBP_SIZE / sizeof(u8),
192	},
193	.rf	= {
194		.read		= rt2x00_rf_read,
195		.write		= rt2500pci_rf_write,
196		.word_base	= RF_BASE,
197		.word_size	= sizeof(u32),
198		.word_count	= RF_SIZE / sizeof(u32),
199	},
200};
201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204{
205	u32 reg;
206
207	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209}
210
211#ifdef CONFIG_RT2X00_LIB_LEDS
212static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213				     enum led_brightness brightness)
214{
215	struct rt2x00_led *led =
216	    container_of(led_cdev, struct rt2x00_led, led_dev);
217	unsigned int enabled = brightness != LED_OFF;
218	u32 reg;
219
220	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224	else if (led->type == LED_TYPE_ACTIVITY)
225		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228}
229
230static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231			       unsigned long *delay_on,
232			       unsigned long *delay_off)
233{
234	struct rt2x00_led *led =
235	    container_of(led_cdev, struct rt2x00_led, led_dev);
236	u32 reg;
237
238	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243	return 0;
244}
245
246static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247			       struct rt2x00_led *led,
248			       enum led_type type)
249{
250	led->rt2x00dev = rt2x00dev;
251	led->type = type;
252	led->led_dev.brightness_set = rt2500pci_brightness_set;
253	led->led_dev.blink_set = rt2500pci_blink_set;
254	led->flags = LED_INITIALIZED;
255}
256#endif /* CONFIG_RT2X00_LIB_LEDS */
257
258/*
259 * Configuration handlers.
260 */
261static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262				    const unsigned int filter_flags)
263{
264	u32 reg;
265
266	/*
267	 * Start configuration steps.
268	 * Note that the version error will always be dropped
269	 * and broadcast frames will always be accepted since
270	 * there is no filter for it at this time.
271	 */
272	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274			   !(filter_flags & FIF_FCSFAIL));
275	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276			   !(filter_flags & FIF_PLCPFAIL));
277	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278			   !(filter_flags & FIF_CONTROL));
279	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280			   !(filter_flags & FIF_PROMISC_IN_BSS));
281	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
283			   !rt2x00dev->intf_ap_count);
284	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286			   !(filter_flags & FIF_ALLMULTI));
287	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289}
290
291static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292				  struct rt2x00_intf *intf,
293				  struct rt2x00intf_conf *conf,
294				  const unsigned int flags)
295{
296	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
297	unsigned int bcn_preload;
298	u32 reg;
299
300	if (flags & CONFIG_UPDATE_TYPE) {
301		/*
302		 * Enable beacon config
303		 */
304		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309
310		/*
311		 * Enable synchronisation.
312		 */
313		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
318	}
319
320	if (flags & CONFIG_UPDATE_MAC)
321		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322					      conf->mac, sizeof(conf->mac));
323
324	if (flags & CONFIG_UPDATE_BSSID)
325		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326					      conf->bssid, sizeof(conf->bssid));
327}
328
329static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
330				 struct rt2x00lib_erp *erp)
331{
332	int preamble_mask;
333	u32 reg;
334
335	/*
336	 * When short preamble is enabled, we should set bit 0x08
337	 */
338	preamble_mask = erp->short_preamble << 3;
339
340	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
342	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
343	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346
347	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
352
353	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
354	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
356	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
358
359	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
360	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
364
365	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
366	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
368	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370
371	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372
373	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
374	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
375	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
376
377	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
378	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
379	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
380	rt2x00pci_register_write(rt2x00dev, CSR12, reg);
381
382	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
383	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
384	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
385	rt2x00pci_register_write(rt2x00dev, CSR18, reg);
386
387	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
388	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
389	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
390	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
391}
392
393static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
394				 struct antenna_setup *ant)
395{
396	u32 reg;
397	u8 r14;
398	u8 r2;
399
400	/*
401	 * We should never come here because rt2x00lib is supposed
402	 * to catch this and send us the correct antenna explicitely.
403	 */
404	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
405	       ant->tx == ANTENNA_SW_DIVERSITY);
406
407	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
408	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
409	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
410
411	/*
412	 * Configure the TX antenna.
413	 */
414	switch (ant->tx) {
415	case ANTENNA_A:
416		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
417		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
418		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
419		break;
420	case ANTENNA_B:
421	default:
422		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
423		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
424		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
425		break;
426	}
427
428	/*
429	 * Configure the RX antenna.
430	 */
431	switch (ant->rx) {
432	case ANTENNA_A:
433		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
434		break;
435	case ANTENNA_B:
436	default:
437		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
438		break;
439	}
440
441	/*
442	 * RT2525E and RT5222 need to flip TX I/Q
443	 */
444	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
445		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
446		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
447		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
448
449		/*
450		 * RT2525E does not need RX I/Q Flip.
451		 */
452		if (rt2x00_rf(rt2x00dev, RF2525E))
453			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
454	} else {
455		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
456		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
457	}
458
459	rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
460	rt2500pci_bbp_write(rt2x00dev, 14, r14);
461	rt2500pci_bbp_write(rt2x00dev, 2, r2);
462}
463
464static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
465				     struct rf_channel *rf, const int txpower)
466{
467	u8 r70;
468
469	/*
470	 * Set TXpower.
471	 */
472	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
473
474	/*
475	 * Switch on tuning bits.
476	 * For RT2523 devices we do not need to update the R1 register.
477	 */
478	if (!rt2x00_rf(rt2x00dev, RF2523))
479		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
480	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
481
482	/*
483	 * For RT2525 we should first set the channel to half band higher.
484	 */
485	if (rt2x00_rf(rt2x00dev, RF2525)) {
486		static const u32 vals[] = {
487			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
488			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
489			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
490			0x00080d2e, 0x00080d3a
491		};
492
493		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
494		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
495		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
496		if (rf->rf4)
497			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
498	}
499
500	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
501	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
502	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
503	if (rf->rf4)
504		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
505
506	/*
507	 * Channel 14 requires the Japan filter bit to be set.
508	 */
509	r70 = 0x46;
510	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
511	rt2500pci_bbp_write(rt2x00dev, 70, r70);
512
513	msleep(1);
514
515	/*
516	 * Switch off tuning bits.
517	 * For RT2523 devices we do not need to update the R1 register.
518	 */
519	if (!rt2x00_rf(rt2x00dev, RF2523)) {
520		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
521		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
522	}
523
524	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
525	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
526
527	/*
528	 * Clear false CRC during channel switch.
529	 */
530	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
531}
532
533static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
534				     const int txpower)
535{
536	u32 rf3;
537
538	rt2x00_rf_read(rt2x00dev, 3, &rf3);
539	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
540	rt2500pci_rf_write(rt2x00dev, 3, rf3);
541}
542
543static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
544					 struct rt2x00lib_conf *libconf)
545{
546	u32 reg;
547
548	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
549	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
550			   libconf->conf->long_frame_max_tx_count);
551	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
552			   libconf->conf->short_frame_max_tx_count);
553	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
554}
555
556static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
557				struct rt2x00lib_conf *libconf)
558{
559	enum dev_state state =
560	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
561		STATE_SLEEP : STATE_AWAKE;
562	u32 reg;
563
564	if (state == STATE_SLEEP) {
565		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
566		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
567				   (rt2x00dev->beacon_int - 20) * 16);
568		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
569				   libconf->conf->listen_interval - 1);
570
571		/* We must first disable autowake before it can be enabled */
572		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
573		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
574
575		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
576		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
577	} else {
578		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
579		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
580		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
581	}
582
583	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
584}
585
586static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
587			     struct rt2x00lib_conf *libconf,
588			     const unsigned int flags)
589{
590	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
591		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
592					 libconf->conf->power_level);
593	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
594	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
595		rt2500pci_config_txpower(rt2x00dev,
596					 libconf->conf->power_level);
597	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
598		rt2500pci_config_retry_limit(rt2x00dev, libconf);
599	if (flags & IEEE80211_CONF_CHANGE_PS)
600		rt2500pci_config_ps(rt2x00dev, libconf);
601}
602
603/*
604 * Link tuning
605 */
606static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
607				 struct link_qual *qual)
608{
609	u32 reg;
610
611	/*
612	 * Update FCS error count from register.
613	 */
614	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
615	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
616
617	/*
618	 * Update False CCA count from register.
619	 */
620	rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
621	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
622}
623
624static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
625				     struct link_qual *qual, u8 vgc_level)
626{
627	if (qual->vgc_level_reg != vgc_level) {
628		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
629		qual->vgc_level = vgc_level;
630		qual->vgc_level_reg = vgc_level;
631	}
632}
633
634static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
635				  struct link_qual *qual)
636{
637	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
638}
639
640static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
641				 struct link_qual *qual, const u32 count)
642{
643	/*
644	 * To prevent collisions with MAC ASIC on chipsets
645	 * up to version C the link tuning should halt after 20
646	 * seconds while being associated.
647	 */
648	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
649	    rt2x00dev->intf_associated && count > 20)
650		return;
651
652	/*
653	 * Chipset versions C and lower should directly continue
654	 * to the dynamic CCA tuning. Chipset version D and higher
655	 * should go straight to dynamic CCA tuning when they
656	 * are not associated.
657	 */
658	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
659	    !rt2x00dev->intf_associated)
660		goto dynamic_cca_tune;
661
662	/*
663	 * A too low RSSI will cause too much false CCA which will
664	 * then corrupt the R17 tuning. To remidy this the tuning should
665	 * be stopped (While making sure the R17 value will not exceed limits)
666	 */
667	if (qual->rssi < -80 && count > 20) {
668		if (qual->vgc_level_reg >= 0x41)
669			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
670		return;
671	}
672
673	/*
674	 * Special big-R17 for short distance
675	 */
676	if (qual->rssi >= -58) {
677		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
678		return;
679	}
680
681	/*
682	 * Special mid-R17 for middle distance
683	 */
684	if (qual->rssi >= -74) {
685		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
686		return;
687	}
688
689	/*
690	 * Leave short or middle distance condition, restore r17
691	 * to the dynamic tuning range.
692	 */
693	if (qual->vgc_level_reg >= 0x41) {
694		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
695		return;
696	}
697
698dynamic_cca_tune:
699
700	/*
701	 * R17 is inside the dynamic tuning range,
702	 * start tuning the link based on the false cca counter.
703	 */
704	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
705		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
706	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
707		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
708}
709
710/*
711 * Initialization functions.
712 */
713static bool rt2500pci_get_entry_state(struct queue_entry *entry)
714{
715	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
716	u32 word;
717
718	if (entry->queue->qid == QID_RX) {
719		rt2x00_desc_read(entry_priv->desc, 0, &word);
720
721		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
722	} else {
723		rt2x00_desc_read(entry_priv->desc, 0, &word);
724
725		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
726		        rt2x00_get_field32(word, TXD_W0_VALID));
727	}
728}
729
730static void rt2500pci_clear_entry(struct queue_entry *entry)
731{
732	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
733	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
734	u32 word;
735
736	if (entry->queue->qid == QID_RX) {
737		rt2x00_desc_read(entry_priv->desc, 1, &word);
738		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
739		rt2x00_desc_write(entry_priv->desc, 1, word);
740
741		rt2x00_desc_read(entry_priv->desc, 0, &word);
742		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
743		rt2x00_desc_write(entry_priv->desc, 0, word);
744	} else {
745		rt2x00_desc_read(entry_priv->desc, 0, &word);
746		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
747		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
748		rt2x00_desc_write(entry_priv->desc, 0, word);
749	}
750}
751
752static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
753{
754	struct queue_entry_priv_pci *entry_priv;
755	u32 reg;
756
757	/*
758	 * Initialize registers.
759	 */
760	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
761	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
762	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
763	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
764	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
765	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
766
767	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
768	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
769	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
770			   entry_priv->desc_dma);
771	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
772
773	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
774	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
775	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
776			   entry_priv->desc_dma);
777	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
778
779	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
780	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
781	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
782			   entry_priv->desc_dma);
783	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
784
785	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
786	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
787	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
788			   entry_priv->desc_dma);
789	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
790
791	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
792	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
793	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
794	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
795
796	entry_priv = rt2x00dev->rx->entries[0].priv_data;
797	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
798	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
799			   entry_priv->desc_dma);
800	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
801
802	return 0;
803}
804
805static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
806{
807	u32 reg;
808
809	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
810	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
811	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
812	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
813
814	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
815	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
816	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
817	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
818	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
819
820	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
821	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
822			   rt2x00dev->rx->data_size / 128);
823	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
824
825	/*
826	 * Always use CWmin and CWmax set in descriptor.
827	 */
828	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
829	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
830	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
831
832	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
833	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
834	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
835	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
836	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
837	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
838	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
839	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
840	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
841	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
842
843	rt2x00pci_register_write(rt2x00dev, CNT3, 0);
844
845	rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
846	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
847	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
848	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
849	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
850	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
851	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
852	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
853	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
854	rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
855
856	rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
857	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
858	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
859	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
860	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
861	rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
862
863	rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
864	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
865	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
866	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
867	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
868	rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
869
870	rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
871	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
872	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
873	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
874	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
875	rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
876
877	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
878	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
879	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
880	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
881	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
882	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
883	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
884	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
885	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
886	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
887
888	rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
889	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
890	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
891	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
892	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
893	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
894	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
895	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
896	rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
897
898	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
899
900	rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
901	rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
902
903	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
904		return -EBUSY;
905
906	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
907	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
908
909	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
910	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
911	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
912
913	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
914	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
915	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
916	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
917	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
918	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
919	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
920	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
921
922	rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
923
924	rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
925
926	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
927	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
928	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
929	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
930	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
931
932	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
933	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
934	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
935	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
936
937	/*
938	 * We must clear the FCS and FIFO error count.
939	 * These registers are cleared on read,
940	 * so we may pass a useless variable to store the value.
941	 */
942	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
943	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
944
945	return 0;
946}
947
948static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
949{
950	unsigned int i;
951	u8 value;
952
953	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
954		rt2500pci_bbp_read(rt2x00dev, 0, &value);
955		if ((value != 0xff) && (value != 0x00))
956			return 0;
957		udelay(REGISTER_BUSY_DELAY);
958	}
959
960	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
961	return -EACCES;
962}
963
964static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
965{
966	unsigned int i;
967	u16 eeprom;
968	u8 reg_id;
969	u8 value;
970
971	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
972		return -EACCES;
973
974	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
975	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
976	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
977	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
978	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
979	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
980	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
981	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
982	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
983	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
984	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
985	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
986	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
987	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
988	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
989	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
990	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
991	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
992	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
993	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
994	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
995	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
996	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
997	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
998	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
999	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1000	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1001	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1002	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1003	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1004
1005	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1006		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1007
1008		if (eeprom != 0xffff && eeprom != 0x0000) {
1009			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1010			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1011			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1012		}
1013	}
1014
1015	return 0;
1016}
1017
1018/*
1019 * Device state switch handlers.
1020 */
1021static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1022				enum dev_state state)
1023{
1024	u32 reg;
1025
1026	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1027	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1028			   (state == STATE_RADIO_RX_OFF) ||
1029			   (state == STATE_RADIO_RX_OFF_LINK));
1030	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1031}
1032
1033static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1034				 enum dev_state state)
1035{
1036	int mask = (state == STATE_RADIO_IRQ_OFF) ||
1037		   (state == STATE_RADIO_IRQ_OFF_ISR);
1038	u32 reg;
1039
1040	/*
1041	 * When interrupts are being enabled, the interrupt registers
1042	 * should clear the register to assure a clean state.
1043	 */
1044	if (state == STATE_RADIO_IRQ_ON) {
1045		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1046		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1047	}
1048
1049	/*
1050	 * Only toggle the interrupts bits we are going to use.
1051	 * Non-checked interrupt bits are disabled by default.
1052	 */
1053	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1054	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1055	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1056	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1057	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1058	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1059	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1060}
1061
1062static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1063{
1064	/*
1065	 * Initialize all registers.
1066	 */
1067	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1068		     rt2500pci_init_registers(rt2x00dev) ||
1069		     rt2500pci_init_bbp(rt2x00dev)))
1070		return -EIO;
1071
1072	return 0;
1073}
1074
1075static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1076{
1077	/*
1078	 * Disable power
1079	 */
1080	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1081}
1082
1083static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1084			       enum dev_state state)
1085{
1086	u32 reg, reg2;
1087	unsigned int i;
1088	char put_to_sleep;
1089	char bbp_state;
1090	char rf_state;
1091
1092	put_to_sleep = (state != STATE_AWAKE);
1093
1094	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1095	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1096	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1097	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1098	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1099	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1100
1101	/*
1102	 * Device is not guaranteed to be in the requested state yet.
1103	 * We must wait until the register indicates that the
1104	 * device has entered the correct state.
1105	 */
1106	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1107		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1108		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1109		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1110		if (bbp_state == state && rf_state == state)
1111			return 0;
1112		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1113		msleep(10);
1114	}
1115
1116	return -EBUSY;
1117}
1118
1119static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1120				      enum dev_state state)
1121{
1122	int retval = 0;
1123
1124	switch (state) {
1125	case STATE_RADIO_ON:
1126		retval = rt2500pci_enable_radio(rt2x00dev);
1127		break;
1128	case STATE_RADIO_OFF:
1129		rt2500pci_disable_radio(rt2x00dev);
1130		break;
1131	case STATE_RADIO_RX_ON:
1132	case STATE_RADIO_RX_ON_LINK:
1133	case STATE_RADIO_RX_OFF:
1134	case STATE_RADIO_RX_OFF_LINK:
1135		rt2500pci_toggle_rx(rt2x00dev, state);
1136		break;
1137	case STATE_RADIO_IRQ_ON:
1138	case STATE_RADIO_IRQ_ON_ISR:
1139	case STATE_RADIO_IRQ_OFF:
1140	case STATE_RADIO_IRQ_OFF_ISR:
1141		rt2500pci_toggle_irq(rt2x00dev, state);
1142		break;
1143	case STATE_DEEP_SLEEP:
1144	case STATE_SLEEP:
1145	case STATE_STANDBY:
1146	case STATE_AWAKE:
1147		retval = rt2500pci_set_state(rt2x00dev, state);
1148		break;
1149	default:
1150		retval = -ENOTSUPP;
1151		break;
1152	}
1153
1154	if (unlikely(retval))
1155		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1156		      state, retval);
1157
1158	return retval;
1159}
1160
1161/*
1162 * TX descriptor initialization
1163 */
1164static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1165				    struct sk_buff *skb,
1166				    struct txentry_desc *txdesc)
1167{
1168	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1169	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1170	__le32 *txd = entry_priv->desc;
1171	u32 word;
1172
1173	/*
1174	 * Start writing the descriptor words.
1175	 */
1176	rt2x00_desc_read(txd, 1, &word);
1177	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1178	rt2x00_desc_write(txd, 1, word);
1179
1180	rt2x00_desc_read(txd, 2, &word);
1181	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1182	rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1183	rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1184	rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1185	rt2x00_desc_write(txd, 2, word);
1186
1187	rt2x00_desc_read(txd, 3, &word);
1188	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1189	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1190	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1191	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1192	rt2x00_desc_write(txd, 3, word);
1193
1194	rt2x00_desc_read(txd, 10, &word);
1195	rt2x00_set_field32(&word, TXD_W10_RTS,
1196			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1197	rt2x00_desc_write(txd, 10, word);
1198
1199	/*
1200	 * Writing TXD word 0 must the last to prevent a race condition with
1201	 * the device, whereby the device may take hold of the TXD before we
1202	 * finished updating it.
1203	 */
1204	rt2x00_desc_read(txd, 0, &word);
1205	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1206	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1207	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1208			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1209	rt2x00_set_field32(&word, TXD_W0_ACK,
1210			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1211	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1212			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1213	rt2x00_set_field32(&word, TXD_W0_OFDM,
1214			   (txdesc->rate_mode == RATE_MODE_OFDM));
1215	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1216	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1217	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1218			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1219	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1220	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1221	rt2x00_desc_write(txd, 0, word);
1222
1223	/*
1224	 * Register descriptor details in skb frame descriptor.
1225	 */
1226	skbdesc->desc = txd;
1227	skbdesc->desc_len = TXD_DESC_SIZE;
1228}
1229
1230/*
1231 * TX data initialization
1232 */
1233static void rt2500pci_write_beacon(struct queue_entry *entry,
1234				   struct txentry_desc *txdesc)
1235{
1236	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1237	u32 reg;
1238
1239	/*
1240	 * Disable beaconing while we are reloading the beacon data,
1241	 * otherwise we might be sending out invalid data.
1242	 */
1243	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1244	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1245	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1246
1247	rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1248
1249	/*
1250	 * Write the TX descriptor for the beacon.
1251	 */
1252	rt2500pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1253
1254	/*
1255	 * Dump beacon to userspace through debugfs.
1256	 */
1257	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1258
1259	/*
1260	 * Enable beaconing again.
1261	 */
1262	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1263	rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1264	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1265	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1266}
1267
1268static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1269				    const enum data_queue_qid queue)
1270{
1271	u32 reg;
1272
1273	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1274	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1275	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1276	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1277	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1278}
1279
1280static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1281				    const enum data_queue_qid qid)
1282{
1283	u32 reg;
1284
1285	if (qid == QID_BEACON) {
1286		rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1287	} else {
1288		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1289		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1290		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1291	}
1292}
1293
1294/*
1295 * RX control handlers
1296 */
1297static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1298				  struct rxdone_entry_desc *rxdesc)
1299{
1300	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1301	u32 word0;
1302	u32 word2;
1303
1304	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1305	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1306
1307	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1308		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1309	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1310		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1311
1312	/*
1313	 * Obtain the status about this packet.
1314	 * When frame was received with an OFDM bitrate,
1315	 * the signal is the PLCP value. If it was received with
1316	 * a CCK bitrate the signal is the rate in 100kbit/s.
1317	 */
1318	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1319	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1320	    entry->queue->rt2x00dev->rssi_offset;
1321	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1322
1323	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1324		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1325	else
1326		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1327	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1328		rxdesc->dev_flags |= RXDONE_MY_BSS;
1329}
1330
1331/*
1332 * Interrupt functions.
1333 */
1334static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1335			     const enum data_queue_qid queue_idx)
1336{
1337	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1338	struct queue_entry_priv_pci *entry_priv;
1339	struct queue_entry *entry;
1340	struct txdone_entry_desc txdesc;
1341	u32 word;
1342
1343	while (!rt2x00queue_empty(queue)) {
1344		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1345		entry_priv = entry->priv_data;
1346		rt2x00_desc_read(entry_priv->desc, 0, &word);
1347
1348		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1349		    !rt2x00_get_field32(word, TXD_W0_VALID))
1350			break;
1351
1352		/*
1353		 * Obtain the status about this packet.
1354		 */
1355		txdesc.flags = 0;
1356		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1357		case 0: /* Success */
1358		case 1: /* Success with retry */
1359			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1360			break;
1361		case 2: /* Failure, excessive retries */
1362			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1363			/* Don't break, this is a failed frame! */
1364		default: /* Failure */
1365			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1366		}
1367		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1368
1369		rt2x00lib_txdone(entry, &txdesc);
1370	}
1371}
1372
1373static irqreturn_t rt2500pci_interrupt_thread(int irq, void *dev_instance)
1374{
1375	struct rt2x00_dev *rt2x00dev = dev_instance;
1376	u32 reg = rt2x00dev->irqvalue[0];
1377
1378	/*
1379	 * Handle interrupts, walk through all bits
1380	 * and run the tasks, the bits are checked in order of
1381	 * priority.
1382	 */
1383
1384	/*
1385	 * 1 - Beacon timer expired interrupt.
1386	 */
1387	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1388		rt2x00lib_beacondone(rt2x00dev);
1389
1390	/*
1391	 * 2 - Rx ring done interrupt.
1392	 */
1393	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1394		rt2x00pci_rxdone(rt2x00dev);
1395
1396	/*
1397	 * 3 - Atim ring transmit done interrupt.
1398	 */
1399	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1400		rt2500pci_txdone(rt2x00dev, QID_ATIM);
1401
1402	/*
1403	 * 4 - Priority ring transmit done interrupt.
1404	 */
1405	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1406		rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1407
1408	/*
1409	 * 5 - Tx ring transmit done interrupt.
1410	 */
1411	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1412		rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1413
1414	/* Enable interrupts again. */
1415	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1416					      STATE_RADIO_IRQ_ON_ISR);
1417
1418	return IRQ_HANDLED;
1419}
1420
1421static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1422{
1423	struct rt2x00_dev *rt2x00dev = dev_instance;
1424	u32 reg;
1425
1426	/*
1427	 * Get the interrupt sources & saved to local variable.
1428	 * Write register value back to clear pending interrupts.
1429	 */
1430	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1431	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1432
1433	if (!reg)
1434		return IRQ_NONE;
1435
1436	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1437		return IRQ_HANDLED;
1438
1439	/* Store irqvalues for use in the interrupt thread. */
1440	rt2x00dev->irqvalue[0] = reg;
1441
1442	/* Disable interrupts, will be enabled again in the interrupt thread. */
1443	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1444					      STATE_RADIO_IRQ_OFF_ISR);
1445
1446	return IRQ_WAKE_THREAD;
1447}
1448
1449/*
1450 * Device probe functions.
1451 */
1452static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1453{
1454	struct eeprom_93cx6 eeprom;
1455	u32 reg;
1456	u16 word;
1457	u8 *mac;
1458
1459	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1460
1461	eeprom.data = rt2x00dev;
1462	eeprom.register_read = rt2500pci_eepromregister_read;
1463	eeprom.register_write = rt2500pci_eepromregister_write;
1464	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1465	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1466	eeprom.reg_data_in = 0;
1467	eeprom.reg_data_out = 0;
1468	eeprom.reg_data_clock = 0;
1469	eeprom.reg_chip_select = 0;
1470
1471	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1472			       EEPROM_SIZE / sizeof(u16));
1473
1474	/*
1475	 * Start validation of the data that has been read.
1476	 */
1477	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1478	if (!is_valid_ether_addr(mac)) {
1479		random_ether_addr(mac);
1480		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1481	}
1482
1483	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1484	if (word == 0xffff) {
1485		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1486		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1487				   ANTENNA_SW_DIVERSITY);
1488		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1489				   ANTENNA_SW_DIVERSITY);
1490		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1491				   LED_MODE_DEFAULT);
1492		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1493		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1494		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1495		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1496		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1497	}
1498
1499	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1500	if (word == 0xffff) {
1501		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1502		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1503		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1504		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1505		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1506	}
1507
1508	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1509	if (word == 0xffff) {
1510		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1511				   DEFAULT_RSSI_OFFSET);
1512		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1513		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1514	}
1515
1516	return 0;
1517}
1518
1519static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1520{
1521	u32 reg;
1522	u16 value;
1523	u16 eeprom;
1524
1525	/*
1526	 * Read EEPROM word for configuration.
1527	 */
1528	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1529
1530	/*
1531	 * Identify RF chipset.
1532	 */
1533	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1534	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1535	rt2x00_set_chip(rt2x00dev, RT2560, value,
1536			rt2x00_get_field32(reg, CSR0_REVISION));
1537
1538	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1539	    !rt2x00_rf(rt2x00dev, RF2523) &&
1540	    !rt2x00_rf(rt2x00dev, RF2524) &&
1541	    !rt2x00_rf(rt2x00dev, RF2525) &&
1542	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1543	    !rt2x00_rf(rt2x00dev, RF5222)) {
1544		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1545		return -ENODEV;
1546	}
1547
1548	/*
1549	 * Identify default antenna configuration.
1550	 */
1551	rt2x00dev->default_ant.tx =
1552	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1553	rt2x00dev->default_ant.rx =
1554	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1555
1556	/*
1557	 * Store led mode, for correct led behaviour.
1558	 */
1559#ifdef CONFIG_RT2X00_LIB_LEDS
1560	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1561
1562	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1563	if (value == LED_MODE_TXRX_ACTIVITY ||
1564	    value == LED_MODE_DEFAULT ||
1565	    value == LED_MODE_ASUS)
1566		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1567				   LED_TYPE_ACTIVITY);
1568#endif /* CONFIG_RT2X00_LIB_LEDS */
1569
1570	/*
1571	 * Detect if this device has an hardware controlled radio.
1572	 */
1573	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1574		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1575
1576	/*
1577	 * Check if the BBP tuning should be enabled.
1578	 */
1579	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1580	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1581		__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1582
1583	/*
1584	 * Read the RSSI <-> dBm offset information.
1585	 */
1586	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1587	rt2x00dev->rssi_offset =
1588	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1589
1590	return 0;
1591}
1592
1593/*
1594 * RF value list for RF2522
1595 * Supports: 2.4 GHz
1596 */
1597static const struct rf_channel rf_vals_bg_2522[] = {
1598	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1599	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1600	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1601	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1602	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1603	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1604	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1605	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1606	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1607	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1608	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1609	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1610	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1611	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1612};
1613
1614/*
1615 * RF value list for RF2523
1616 * Supports: 2.4 GHz
1617 */
1618static const struct rf_channel rf_vals_bg_2523[] = {
1619	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1620	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1621	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1622	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1623	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1624	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1625	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1626	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1627	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1628	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1629	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1630	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1631	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1632	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1633};
1634
1635/*
1636 * RF value list for RF2524
1637 * Supports: 2.4 GHz
1638 */
1639static const struct rf_channel rf_vals_bg_2524[] = {
1640	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1641	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1642	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1643	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1644	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1645	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1646	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1647	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1648	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1649	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1650	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1651	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1652	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1653	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1654};
1655
1656/*
1657 * RF value list for RF2525
1658 * Supports: 2.4 GHz
1659 */
1660static const struct rf_channel rf_vals_bg_2525[] = {
1661	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1662	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1663	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1664	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1665	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1666	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1667	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1668	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1669	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1670	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1671	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1672	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1673	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1674	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1675};
1676
1677/*
1678 * RF value list for RF2525e
1679 * Supports: 2.4 GHz
1680 */
1681static const struct rf_channel rf_vals_bg_2525e[] = {
1682	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1683	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1684	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1685	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1686	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1687	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1688	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1689	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1690	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1691	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1692	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1693	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1694	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1695	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1696};
1697
1698/*
1699 * RF value list for RF5222
1700 * Supports: 2.4 GHz & 5.2 GHz
1701 */
1702static const struct rf_channel rf_vals_5222[] = {
1703	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1704	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1705	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1706	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1707	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1708	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1709	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1710	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1711	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1712	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1713	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1714	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1715	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1716	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1717
1718	/* 802.11 UNI / HyperLan 2 */
1719	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1720	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1721	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1722	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1723	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1724	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1725	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1726	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1727
1728	/* 802.11 HyperLan 2 */
1729	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1730	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1731	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1732	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1733	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1734	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1735	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1736	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1737	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1738	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1739
1740	/* 802.11 UNII */
1741	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1742	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1743	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1744	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1745	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1746};
1747
1748static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1749{
1750	struct hw_mode_spec *spec = &rt2x00dev->spec;
1751	struct channel_info *info;
1752	char *tx_power;
1753	unsigned int i;
1754
1755	/*
1756	 * Initialize all hw fields.
1757	 */
1758	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1759			       IEEE80211_HW_SIGNAL_DBM |
1760			       IEEE80211_HW_SUPPORTS_PS |
1761			       IEEE80211_HW_PS_NULLFUNC_STACK;
1762
1763	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1764	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1765				rt2x00_eeprom_addr(rt2x00dev,
1766						   EEPROM_MAC_ADDR_0));
1767
1768	/*
1769	 * Initialize hw_mode information.
1770	 */
1771	spec->supported_bands = SUPPORT_BAND_2GHZ;
1772	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1773
1774	if (rt2x00_rf(rt2x00dev, RF2522)) {
1775		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1776		spec->channels = rf_vals_bg_2522;
1777	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1778		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1779		spec->channels = rf_vals_bg_2523;
1780	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1781		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1782		spec->channels = rf_vals_bg_2524;
1783	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1784		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1785		spec->channels = rf_vals_bg_2525;
1786	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1787		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1788		spec->channels = rf_vals_bg_2525e;
1789	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1790		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1791		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1792		spec->channels = rf_vals_5222;
1793	}
1794
1795	/*
1796	 * Create channel information array
1797	 */
1798	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1799	if (!info)
1800		return -ENOMEM;
1801
1802	spec->channels_info = info;
1803
1804	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1805	for (i = 0; i < 14; i++) {
1806		info[i].max_power = MAX_TXPOWER;
1807		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1808	}
1809
1810	if (spec->num_channels > 14) {
1811		for (i = 14; i < spec->num_channels; i++) {
1812			info[i].max_power = MAX_TXPOWER;
1813			info[i].default_power1 = DEFAULT_TXPOWER;
1814		}
1815	}
1816
1817	return 0;
1818}
1819
1820static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1821{
1822	int retval;
1823
1824	/*
1825	 * Allocate eeprom data.
1826	 */
1827	retval = rt2500pci_validate_eeprom(rt2x00dev);
1828	if (retval)
1829		return retval;
1830
1831	retval = rt2500pci_init_eeprom(rt2x00dev);
1832	if (retval)
1833		return retval;
1834
1835	/*
1836	 * Initialize hw specifications.
1837	 */
1838	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1839	if (retval)
1840		return retval;
1841
1842	/*
1843	 * This device requires the atim queue and DMA-mapped skbs.
1844	 */
1845	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1846	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1847
1848	/*
1849	 * Set the rssi offset.
1850	 */
1851	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1852
1853	return 0;
1854}
1855
1856/*
1857 * IEEE80211 stack callback functions.
1858 */
1859static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1860{
1861	struct rt2x00_dev *rt2x00dev = hw->priv;
1862	u64 tsf;
1863	u32 reg;
1864
1865	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1866	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1867	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1868	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1869
1870	return tsf;
1871}
1872
1873static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1874{
1875	struct rt2x00_dev *rt2x00dev = hw->priv;
1876	u32 reg;
1877
1878	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1879	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1880}
1881
1882static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1883	.tx			= rt2x00mac_tx,
1884	.start			= rt2x00mac_start,
1885	.stop			= rt2x00mac_stop,
1886	.add_interface		= rt2x00mac_add_interface,
1887	.remove_interface	= rt2x00mac_remove_interface,
1888	.config			= rt2x00mac_config,
1889	.configure_filter	= rt2x00mac_configure_filter,
1890	.sw_scan_start		= rt2x00mac_sw_scan_start,
1891	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1892	.get_stats		= rt2x00mac_get_stats,
1893	.bss_info_changed	= rt2x00mac_bss_info_changed,
1894	.conf_tx		= rt2x00mac_conf_tx,
1895	.get_tsf		= rt2500pci_get_tsf,
1896	.tx_last_beacon		= rt2500pci_tx_last_beacon,
1897	.rfkill_poll		= rt2x00mac_rfkill_poll,
1898};
1899
1900static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1901	.irq_handler		= rt2500pci_interrupt,
1902	.irq_handler_thread	= rt2500pci_interrupt_thread,
1903	.probe_hw		= rt2500pci_probe_hw,
1904	.initialize		= rt2x00pci_initialize,
1905	.uninitialize		= rt2x00pci_uninitialize,
1906	.get_entry_state	= rt2500pci_get_entry_state,
1907	.clear_entry		= rt2500pci_clear_entry,
1908	.set_device_state	= rt2500pci_set_device_state,
1909	.rfkill_poll		= rt2500pci_rfkill_poll,
1910	.link_stats		= rt2500pci_link_stats,
1911	.reset_tuner		= rt2500pci_reset_tuner,
1912	.link_tuner		= rt2500pci_link_tuner,
1913	.write_tx_desc		= rt2500pci_write_tx_desc,
1914	.write_beacon		= rt2500pci_write_beacon,
1915	.kick_tx_queue		= rt2500pci_kick_tx_queue,
1916	.kill_tx_queue		= rt2500pci_kill_tx_queue,
1917	.fill_rxdone		= rt2500pci_fill_rxdone,
1918	.config_filter		= rt2500pci_config_filter,
1919	.config_intf		= rt2500pci_config_intf,
1920	.config_erp		= rt2500pci_config_erp,
1921	.config_ant		= rt2500pci_config_ant,
1922	.config			= rt2500pci_config,
1923};
1924
1925static const struct data_queue_desc rt2500pci_queue_rx = {
1926	.entry_num		= RX_ENTRIES,
1927	.data_size		= DATA_FRAME_SIZE,
1928	.desc_size		= RXD_DESC_SIZE,
1929	.priv_size		= sizeof(struct queue_entry_priv_pci),
1930};
1931
1932static const struct data_queue_desc rt2500pci_queue_tx = {
1933	.entry_num		= TX_ENTRIES,
1934	.data_size		= DATA_FRAME_SIZE,
1935	.desc_size		= TXD_DESC_SIZE,
1936	.priv_size		= sizeof(struct queue_entry_priv_pci),
1937};
1938
1939static const struct data_queue_desc rt2500pci_queue_bcn = {
1940	.entry_num		= BEACON_ENTRIES,
1941	.data_size		= MGMT_FRAME_SIZE,
1942	.desc_size		= TXD_DESC_SIZE,
1943	.priv_size		= sizeof(struct queue_entry_priv_pci),
1944};
1945
1946static const struct data_queue_desc rt2500pci_queue_atim = {
1947	.entry_num		= ATIM_ENTRIES,
1948	.data_size		= DATA_FRAME_SIZE,
1949	.desc_size		= TXD_DESC_SIZE,
1950	.priv_size		= sizeof(struct queue_entry_priv_pci),
1951};
1952
1953static const struct rt2x00_ops rt2500pci_ops = {
1954	.name			= KBUILD_MODNAME,
1955	.max_sta_intf		= 1,
1956	.max_ap_intf		= 1,
1957	.eeprom_size		= EEPROM_SIZE,
1958	.rf_size		= RF_SIZE,
1959	.tx_queues		= NUM_TX_QUEUES,
1960	.extra_tx_headroom	= 0,
1961	.rx			= &rt2500pci_queue_rx,
1962	.tx			= &rt2500pci_queue_tx,
1963	.bcn			= &rt2500pci_queue_bcn,
1964	.atim			= &rt2500pci_queue_atim,
1965	.lib			= &rt2500pci_rt2x00_ops,
1966	.hw			= &rt2500pci_mac80211_ops,
1967#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1968	.debugfs		= &rt2500pci_rt2x00debug,
1969#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1970};
1971
1972/*
1973 * RT2500pci module information.
1974 */
1975static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
1976	{ PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1977	{ 0, }
1978};
1979
1980MODULE_AUTHOR(DRV_PROJECT);
1981MODULE_VERSION(DRV_VERSION);
1982MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1983MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1984MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1985MODULE_LICENSE("GPL");
1986
1987static struct pci_driver rt2500pci_driver = {
1988	.name		= KBUILD_MODNAME,
1989	.id_table	= rt2500pci_device_table,
1990	.probe		= rt2x00pci_probe,
1991	.remove		= __devexit_p(rt2x00pci_remove),
1992	.suspend	= rt2x00pci_suspend,
1993	.resume		= rt2x00pci_resume,
1994};
1995
1996static int __init rt2500pci_init(void)
1997{
1998	return pci_register_driver(&rt2500pci_driver);
1999}
2000
2001static void __exit rt2500pci_exit(void)
2002{
2003	pci_unregister_driver(&rt2500pci_driver);
2004}
2005
2006module_init(rt2500pci_init);
2007module_exit(rt2500pci_exit);
2008