• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, write to the
17	Free Software Foundation, Inc.,
18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22	Module: rt2400pci
23	Abstract: rt2400pci device specific routines.
24	Supported chipsets: RT2460.
25 */
26
27#include <linux/delay.h>
28#include <linux/etherdevice.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/pci.h>
33#include <linux/eeprom_93cx6.h>
34#include <linux/slab.h>
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt2400pci.h"
39
40/*
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
52 */
53#define WAIT_FOR_BBP(__dev, __reg) \
54	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55#define WAIT_FOR_RF(__dev, __reg) \
56	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59				const unsigned int word, const u8 value)
60{
61	u32 reg;
62
63	mutex_lock(&rt2x00dev->csr_mutex);
64
65	/*
66	 * Wait until the BBP becomes available, afterwards we
67	 * can safely write the new data into the register.
68	 */
69	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70		reg = 0;
71		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77	}
78
79	mutex_unlock(&rt2x00dev->csr_mutex);
80}
81
82static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83			       const unsigned int word, u8 *value)
84{
85	u32 reg;
86
87	mutex_lock(&rt2x00dev->csr_mutex);
88
89	/*
90	 * Wait until the BBP becomes available, afterwards we
91	 * can safely write the read request into the register.
92	 * After the data has been written, we wait until hardware
93	 * returns the correct value, if at any time the register
94	 * doesn't become available in time, reg will be 0xffffffff
95	 * which means we return 0xff to the caller.
96	 */
97	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98		reg = 0;
99		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105		WAIT_FOR_BBP(rt2x00dev, &reg);
106	}
107
108	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110	mutex_unlock(&rt2x00dev->csr_mutex);
111}
112
113static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114			       const unsigned int word, const u32 value)
115{
116	u32 reg;
117
118	mutex_lock(&rt2x00dev->csr_mutex);
119
120	/*
121	 * Wait until the RF becomes available, afterwards we
122	 * can safely write the new data into the register.
123	 */
124	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125		reg = 0;
126		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132		rt2x00_rf_write(rt2x00dev, word, value);
133	}
134
135	mutex_unlock(&rt2x00dev->csr_mutex);
136}
137
138static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139{
140	struct rt2x00_dev *rt2x00dev = eeprom->data;
141	u32 reg;
142
143	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147	eeprom->reg_data_clock =
148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149	eeprom->reg_chip_select =
150	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151}
152
153static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154{
155	struct rt2x00_dev *rt2x00dev = eeprom->data;
156	u32 reg = 0;
157
158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161			   !!eeprom->reg_data_clock);
162	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163			   !!eeprom->reg_chip_select);
164
165	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166}
167
168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
169static const struct rt2x00debug rt2400pci_rt2x00debug = {
170	.owner	= THIS_MODULE,
171	.csr	= {
172		.read		= rt2x00pci_register_read,
173		.write		= rt2x00pci_register_write,
174		.flags		= RT2X00DEBUGFS_OFFSET,
175		.word_base	= CSR_REG_BASE,
176		.word_size	= sizeof(u32),
177		.word_count	= CSR_REG_SIZE / sizeof(u32),
178	},
179	.eeprom	= {
180		.read		= rt2x00_eeprom_read,
181		.write		= rt2x00_eeprom_write,
182		.word_base	= EEPROM_BASE,
183		.word_size	= sizeof(u16),
184		.word_count	= EEPROM_SIZE / sizeof(u16),
185	},
186	.bbp	= {
187		.read		= rt2400pci_bbp_read,
188		.write		= rt2400pci_bbp_write,
189		.word_base	= BBP_BASE,
190		.word_size	= sizeof(u8),
191		.word_count	= BBP_SIZE / sizeof(u8),
192	},
193	.rf	= {
194		.read		= rt2x00_rf_read,
195		.write		= rt2400pci_rf_write,
196		.word_base	= RF_BASE,
197		.word_size	= sizeof(u32),
198		.word_count	= RF_SIZE / sizeof(u32),
199	},
200};
201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204{
205	u32 reg;
206
207	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209}
210
211#ifdef CONFIG_RT2X00_LIB_LEDS
212static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213				     enum led_brightness brightness)
214{
215	struct rt2x00_led *led =
216	    container_of(led_cdev, struct rt2x00_led, led_dev);
217	unsigned int enabled = brightness != LED_OFF;
218	u32 reg;
219
220	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224	else if (led->type == LED_TYPE_ACTIVITY)
225		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228}
229
230static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231			       unsigned long *delay_on,
232			       unsigned long *delay_off)
233{
234	struct rt2x00_led *led =
235	    container_of(led_cdev, struct rt2x00_led, led_dev);
236	u32 reg;
237
238	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243	return 0;
244}
245
246static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247			       struct rt2x00_led *led,
248			       enum led_type type)
249{
250	led->rt2x00dev = rt2x00dev;
251	led->type = type;
252	led->led_dev.brightness_set = rt2400pci_brightness_set;
253	led->led_dev.blink_set = rt2400pci_blink_set;
254	led->flags = LED_INITIALIZED;
255}
256#endif /* CONFIG_RT2X00_LIB_LEDS */
257
258/*
259 * Configuration handlers.
260 */
261static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262				    const unsigned int filter_flags)
263{
264	u32 reg;
265
266	/*
267	 * Start configuration steps.
268	 * Note that the version error will always be dropped
269	 * since there is no filter for it at this time.
270	 */
271	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273			   !(filter_flags & FIF_FCSFAIL));
274	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275			   !(filter_flags & FIF_PLCPFAIL));
276	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277			   !(filter_flags & FIF_CONTROL));
278	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279			   !(filter_flags & FIF_PROMISC_IN_BSS));
280	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
282			   !rt2x00dev->intf_ap_count);
283	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285}
286
287static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288				  struct rt2x00_intf *intf,
289				  struct rt2x00intf_conf *conf,
290				  const unsigned int flags)
291{
292	unsigned int bcn_preload;
293	u32 reg;
294
295	if (flags & CONFIG_UPDATE_TYPE) {
296		/*
297		 * Enable beacon config
298		 */
299		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303
304		/*
305		 * Enable synchronisation.
306		 */
307		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
312	}
313
314	if (flags & CONFIG_UPDATE_MAC)
315		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
316					      conf->mac, sizeof(conf->mac));
317
318	if (flags & CONFIG_UPDATE_BSSID)
319		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
320					      conf->bssid, sizeof(conf->bssid));
321}
322
323static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324				 struct rt2x00lib_erp *erp)
325{
326	int preamble_mask;
327	u32 reg;
328
329	/*
330	 * When short preamble is enabled, we should set bit 0x08
331	 */
332	preamble_mask = erp->short_preamble << 3;
333
334	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340
341	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
345	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
346
347	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
348	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
351	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
352
353	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
354	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
355	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
356	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
357	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
358
359	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
360	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
363	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364
365	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
366
367	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
368	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
369	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
370
371	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
372	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
373	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
374	rt2x00pci_register_write(rt2x00dev, CSR12, reg);
375
376	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
377	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
378	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
379	rt2x00pci_register_write(rt2x00dev, CSR18, reg);
380
381	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
382	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
383	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
384	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
385}
386
387static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
388				 struct antenna_setup *ant)
389{
390	u8 r1;
391	u8 r4;
392
393	/*
394	 * We should never come here because rt2x00lib is supposed
395	 * to catch this and send us the correct antenna explicitely.
396	 */
397	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
398	       ant->tx == ANTENNA_SW_DIVERSITY);
399
400	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
401	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
402
403	/*
404	 * Configure the TX antenna.
405	 */
406	switch (ant->tx) {
407	case ANTENNA_HW_DIVERSITY:
408		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
409		break;
410	case ANTENNA_A:
411		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
412		break;
413	case ANTENNA_B:
414	default:
415		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
416		break;
417	}
418
419	/*
420	 * Configure the RX antenna.
421	 */
422	switch (ant->rx) {
423	case ANTENNA_HW_DIVERSITY:
424		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
425		break;
426	case ANTENNA_A:
427		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
428		break;
429	case ANTENNA_B:
430	default:
431		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
432		break;
433	}
434
435	rt2400pci_bbp_write(rt2x00dev, 4, r4);
436	rt2400pci_bbp_write(rt2x00dev, 1, r1);
437}
438
439static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
440				     struct rf_channel *rf)
441{
442	/*
443	 * Switch on tuning bits.
444	 */
445	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
446	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447
448	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
449	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
450	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451
452	/*
453	 * RF2420 chipset don't need any additional actions.
454	 */
455	if (rt2x00_rf(rt2x00dev, RF2420))
456		return;
457
458	/*
459	 * For the RT2421 chipsets we need to write an invalid
460	 * reference clock rate to activate auto_tune.
461	 * After that we set the value back to the correct channel.
462	 */
463	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
464	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
465	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466
467	msleep(1);
468
469	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
470	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
471	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472
473	msleep(1);
474
475	/*
476	 * Switch off tuning bits.
477	 */
478	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
479	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480
481	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483
484	/*
485	 * Clear false CRC during channel switch.
486	 */
487	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
488}
489
490static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
491{
492	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
493}
494
495static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
496					 struct rt2x00lib_conf *libconf)
497{
498	u32 reg;
499
500	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
501	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
502			   libconf->conf->long_frame_max_tx_count);
503	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
504			   libconf->conf->short_frame_max_tx_count);
505	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
506}
507
508static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
509				struct rt2x00lib_conf *libconf)
510{
511	enum dev_state state =
512	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
513		STATE_SLEEP : STATE_AWAKE;
514	u32 reg;
515
516	if (state == STATE_SLEEP) {
517		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
518		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
519				   (rt2x00dev->beacon_int - 20) * 16);
520		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
521				   libconf->conf->listen_interval - 1);
522
523		/* We must first disable autowake before it can be enabled */
524		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
525		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
526
527		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
528		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
529	} else {
530		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
531		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
532		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
533	}
534
535	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
536}
537
538static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
539			     struct rt2x00lib_conf *libconf,
540			     const unsigned int flags)
541{
542	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
543		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544	if (flags & IEEE80211_CONF_CHANGE_POWER)
545		rt2400pci_config_txpower(rt2x00dev,
546					 libconf->conf->power_level);
547	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
548		rt2400pci_config_retry_limit(rt2x00dev, libconf);
549	if (flags & IEEE80211_CONF_CHANGE_PS)
550		rt2400pci_config_ps(rt2x00dev, libconf);
551}
552
553static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554				const int cw_min, const int cw_max)
555{
556	u32 reg;
557
558	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
560	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562}
563
564/*
565 * Link tuning
566 */
567static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
568				 struct link_qual *qual)
569{
570	u32 reg;
571	u8 bbp;
572
573	/*
574	 * Update FCS error count from register.
575	 */
576	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578
579	/*
580	 * Update False CCA count from register.
581	 */
582	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583	qual->false_cca = bbp;
584}
585
586static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
587				     struct link_qual *qual, u8 vgc_level)
588{
589	if (qual->vgc_level_reg != vgc_level) {
590		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
591		qual->vgc_level = vgc_level;
592		qual->vgc_level_reg = vgc_level;
593	}
594}
595
596static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
597				  struct link_qual *qual)
598{
599	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
600}
601
602static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
603				 struct link_qual *qual, const u32 count)
604{
605	/*
606	 * The link tuner should not run longer then 60 seconds,
607	 * and should run once every 2 seconds.
608	 */
609	if (count > 60 || !(count & 1))
610		return;
611
612	/*
613	 * Base r13 link tuning on the false cca count.
614	 */
615	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
616		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
617	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
618		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
619}
620
621/*
622 * Initialization functions.
623 */
624static bool rt2400pci_get_entry_state(struct queue_entry *entry)
625{
626	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
627	u32 word;
628
629	if (entry->queue->qid == QID_RX) {
630		rt2x00_desc_read(entry_priv->desc, 0, &word);
631
632		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
633	} else {
634		rt2x00_desc_read(entry_priv->desc, 0, &word);
635
636		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
637		        rt2x00_get_field32(word, TXD_W0_VALID));
638	}
639}
640
641static void rt2400pci_clear_entry(struct queue_entry *entry)
642{
643	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
644	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
645	u32 word;
646
647	if (entry->queue->qid == QID_RX) {
648		rt2x00_desc_read(entry_priv->desc, 2, &word);
649		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
650		rt2x00_desc_write(entry_priv->desc, 2, word);
651
652		rt2x00_desc_read(entry_priv->desc, 1, &word);
653		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
654		rt2x00_desc_write(entry_priv->desc, 1, word);
655
656		rt2x00_desc_read(entry_priv->desc, 0, &word);
657		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
658		rt2x00_desc_write(entry_priv->desc, 0, word);
659	} else {
660		rt2x00_desc_read(entry_priv->desc, 0, &word);
661		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
662		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
663		rt2x00_desc_write(entry_priv->desc, 0, word);
664	}
665}
666
667static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
668{
669	struct queue_entry_priv_pci *entry_priv;
670	u32 reg;
671
672	/*
673	 * Initialize registers.
674	 */
675	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
676	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
677	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
678	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
679	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
680	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
681
682	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
683	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
684	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
685			   entry_priv->desc_dma);
686	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
687
688	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
689	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
690	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
691			   entry_priv->desc_dma);
692	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
693
694	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
695	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
696	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
697			   entry_priv->desc_dma);
698	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
699
700	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
701	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
702	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
703			   entry_priv->desc_dma);
704	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
705
706	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
707	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
708	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
709	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
710
711	entry_priv = rt2x00dev->rx->entries[0].priv_data;
712	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
713	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
714			   entry_priv->desc_dma);
715	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
716
717	return 0;
718}
719
720static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
721{
722	u32 reg;
723
724	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
725	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
726	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
727	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
728
729	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
730	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
731	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
732	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
733	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
734
735	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
736	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
737			   (rt2x00dev->rx->data_size / 128));
738	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
739
740	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
741	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
742	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
743	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
744	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
745	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
746	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
747	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
748	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
749	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
750
751	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
752
753	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
754	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
755	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
756	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
757	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
758	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
759
760	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
761	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
762	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
763	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
764	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
765	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
766	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
767	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
768
769	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
770
771	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
772		return -EBUSY;
773
774	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
775	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
776
777	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
778	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
779	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
780
781	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
782	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
783	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
784	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
785	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
786	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
787
788	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
789	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
790	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
791	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
792	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
793
794	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
795	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
796	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
797	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
798
799	/*
800	 * We must clear the FCS and FIFO error count.
801	 * These registers are cleared on read,
802	 * so we may pass a useless variable to store the value.
803	 */
804	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
805	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
806
807	return 0;
808}
809
810static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
811{
812	unsigned int i;
813	u8 value;
814
815	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
816		rt2400pci_bbp_read(rt2x00dev, 0, &value);
817		if ((value != 0xff) && (value != 0x00))
818			return 0;
819		udelay(REGISTER_BUSY_DELAY);
820	}
821
822	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
823	return -EACCES;
824}
825
826static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
827{
828	unsigned int i;
829	u16 eeprom;
830	u8 reg_id;
831	u8 value;
832
833	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
834		return -EACCES;
835
836	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
837	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
838	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
839	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
840	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
841	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
842	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
843	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
844	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
845	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
846	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
847	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
848	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
849	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
850
851	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
852		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
853
854		if (eeprom != 0xffff && eeprom != 0x0000) {
855			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
856			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
857			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
858		}
859	}
860
861	return 0;
862}
863
864/*
865 * Device state switch handlers.
866 */
867static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
868				enum dev_state state)
869{
870	u32 reg;
871
872	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
873	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
874			   (state == STATE_RADIO_RX_OFF) ||
875			   (state == STATE_RADIO_RX_OFF_LINK));
876	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
877}
878
879static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
880				 enum dev_state state)
881{
882	int mask = (state == STATE_RADIO_IRQ_OFF) ||
883		   (state == STATE_RADIO_IRQ_OFF_ISR);
884	u32 reg;
885
886	/*
887	 * When interrupts are being enabled, the interrupt registers
888	 * should clear the register to assure a clean state.
889	 */
890	if (state == STATE_RADIO_IRQ_ON) {
891		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
892		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
893	}
894
895	/*
896	 * Only toggle the interrupts bits we are going to use.
897	 * Non-checked interrupt bits are disabled by default.
898	 */
899	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
900	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
901	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
902	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
903	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
904	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
905	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
906}
907
908static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
909{
910	/*
911	 * Initialize all registers.
912	 */
913	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
914		     rt2400pci_init_registers(rt2x00dev) ||
915		     rt2400pci_init_bbp(rt2x00dev)))
916		return -EIO;
917
918	return 0;
919}
920
921static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
922{
923	/*
924	 * Disable power
925	 */
926	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
927}
928
929static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
930			       enum dev_state state)
931{
932	u32 reg, reg2;
933	unsigned int i;
934	char put_to_sleep;
935	char bbp_state;
936	char rf_state;
937
938	put_to_sleep = (state != STATE_AWAKE);
939
940	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
941	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
942	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
943	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
944	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
945	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
946
947	/*
948	 * Device is not guaranteed to be in the requested state yet.
949	 * We must wait until the register indicates that the
950	 * device has entered the correct state.
951	 */
952	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
953		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
954		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
955		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
956		if (bbp_state == state && rf_state == state)
957			return 0;
958		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
959		msleep(10);
960	}
961
962	return -EBUSY;
963}
964
965static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
966				      enum dev_state state)
967{
968	int retval = 0;
969
970	switch (state) {
971	case STATE_RADIO_ON:
972		retval = rt2400pci_enable_radio(rt2x00dev);
973		break;
974	case STATE_RADIO_OFF:
975		rt2400pci_disable_radio(rt2x00dev);
976		break;
977	case STATE_RADIO_RX_ON:
978	case STATE_RADIO_RX_ON_LINK:
979	case STATE_RADIO_RX_OFF:
980	case STATE_RADIO_RX_OFF_LINK:
981		rt2400pci_toggle_rx(rt2x00dev, state);
982		break;
983	case STATE_RADIO_IRQ_ON:
984	case STATE_RADIO_IRQ_ON_ISR:
985	case STATE_RADIO_IRQ_OFF:
986	case STATE_RADIO_IRQ_OFF_ISR:
987		rt2400pci_toggle_irq(rt2x00dev, state);
988		break;
989	case STATE_DEEP_SLEEP:
990	case STATE_SLEEP:
991	case STATE_STANDBY:
992	case STATE_AWAKE:
993		retval = rt2400pci_set_state(rt2x00dev, state);
994		break;
995	default:
996		retval = -ENOTSUPP;
997		break;
998	}
999
1000	if (unlikely(retval))
1001		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1002		      state, retval);
1003
1004	return retval;
1005}
1006
1007/*
1008 * TX descriptor initialization
1009 */
1010static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1011				    struct sk_buff *skb,
1012				    struct txentry_desc *txdesc)
1013{
1014	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1015	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1016	__le32 *txd = entry_priv->desc;
1017	u32 word;
1018
1019	/*
1020	 * Start writing the descriptor words.
1021	 */
1022	rt2x00_desc_read(txd, 1, &word);
1023	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1024	rt2x00_desc_write(txd, 1, word);
1025
1026	rt2x00_desc_read(txd, 2, &word);
1027	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1028	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1029	rt2x00_desc_write(txd, 2, word);
1030
1031	rt2x00_desc_read(txd, 3, &word);
1032	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1033	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1034	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1035	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1036	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1037	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1038	rt2x00_desc_write(txd, 3, word);
1039
1040	rt2x00_desc_read(txd, 4, &word);
1041	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1042	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1043	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1044	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1045	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1046	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1047	rt2x00_desc_write(txd, 4, word);
1048
1049	/*
1050	 * Writing TXD word 0 must the last to prevent a race condition with
1051	 * the device, whereby the device may take hold of the TXD before we
1052	 * finished updating it.
1053	 */
1054	rt2x00_desc_read(txd, 0, &word);
1055	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1056	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1057	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1058			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1059	rt2x00_set_field32(&word, TXD_W0_ACK,
1060			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1061	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1062			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1063	rt2x00_set_field32(&word, TXD_W0_RTS,
1064			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1065	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1066	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1067			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1068	rt2x00_desc_write(txd, 0, word);
1069
1070	/*
1071	 * Register descriptor details in skb frame descriptor.
1072	 */
1073	skbdesc->desc = txd;
1074	skbdesc->desc_len = TXD_DESC_SIZE;
1075}
1076
1077/*
1078 * TX data initialization
1079 */
1080static void rt2400pci_write_beacon(struct queue_entry *entry,
1081				   struct txentry_desc *txdesc)
1082{
1083	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1084	u32 reg;
1085
1086	/*
1087	 * Disable beaconing while we are reloading the beacon data,
1088	 * otherwise we might be sending out invalid data.
1089	 */
1090	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1091	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1092	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1093
1094	rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1095
1096	/*
1097	 * Write the TX descriptor for the beacon.
1098	 */
1099	rt2400pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1100
1101	/*
1102	 * Dump beacon to userspace through debugfs.
1103	 */
1104	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1105
1106	/*
1107	 * Enable beaconing again.
1108	 */
1109	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1110	rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1111	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1112	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1113}
1114
1115static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1116				    const enum data_queue_qid queue)
1117{
1118	u32 reg;
1119
1120	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1121	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1122	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1123	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1124	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1125}
1126
1127static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1128				    const enum data_queue_qid qid)
1129{
1130	u32 reg;
1131
1132	if (qid == QID_BEACON) {
1133		rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1134	} else {
1135		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1136		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1137		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1138	}
1139}
1140
1141/*
1142 * RX control handlers
1143 */
1144static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1145				  struct rxdone_entry_desc *rxdesc)
1146{
1147	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1148	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1149	u32 word0;
1150	u32 word2;
1151	u32 word3;
1152	u32 word4;
1153	u64 tsf;
1154	u32 rx_low;
1155	u32 rx_high;
1156
1157	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1158	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1159	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1160	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1161
1162	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1163		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1164	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1165		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1166
1167	/*
1168	 * We only get the lower 32bits from the timestamp,
1169	 * to get the full 64bits we must complement it with
1170	 * the timestamp from get_tsf().
1171	 * Note that when a wraparound of the lower 32bits
1172	 * has occurred between the frame arrival and the get_tsf()
1173	 * call, we must decrease the higher 32bits with 1 to get
1174	 * to correct value.
1175	 */
1176	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1177	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1178	rx_high = upper_32_bits(tsf);
1179
1180	if ((u32)tsf <= rx_low)
1181		rx_high--;
1182
1183	/*
1184	 * Obtain the status about this packet.
1185	 * The signal is the PLCP value, and needs to be stripped
1186	 * of the preamble bit (0x08).
1187	 */
1188	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1189	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1190	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1191	    entry->queue->rt2x00dev->rssi_offset;
1192	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1193
1194	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1195	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1196		rxdesc->dev_flags |= RXDONE_MY_BSS;
1197}
1198
1199/*
1200 * Interrupt functions.
1201 */
1202static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1203			     const enum data_queue_qid queue_idx)
1204{
1205	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1206	struct queue_entry_priv_pci *entry_priv;
1207	struct queue_entry *entry;
1208	struct txdone_entry_desc txdesc;
1209	u32 word;
1210
1211	while (!rt2x00queue_empty(queue)) {
1212		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1213		entry_priv = entry->priv_data;
1214		rt2x00_desc_read(entry_priv->desc, 0, &word);
1215
1216		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1217		    !rt2x00_get_field32(word, TXD_W0_VALID))
1218			break;
1219
1220		/*
1221		 * Obtain the status about this packet.
1222		 */
1223		txdesc.flags = 0;
1224		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1225		case 0: /* Success */
1226		case 1: /* Success with retry */
1227			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1228			break;
1229		case 2: /* Failure, excessive retries */
1230			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1231			/* Don't break, this is a failed frame! */
1232		default: /* Failure */
1233			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1234		}
1235		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1236
1237		rt2x00lib_txdone(entry, &txdesc);
1238	}
1239}
1240
1241static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1242{
1243	struct rt2x00_dev *rt2x00dev = dev_instance;
1244	u32 reg = rt2x00dev->irqvalue[0];
1245
1246	/*
1247	 * Handle interrupts, walk through all bits
1248	 * and run the tasks, the bits are checked in order of
1249	 * priority.
1250	 */
1251
1252	/*
1253	 * 1 - Beacon timer expired interrupt.
1254	 */
1255	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1256		rt2x00lib_beacondone(rt2x00dev);
1257
1258	/*
1259	 * 2 - Rx ring done interrupt.
1260	 */
1261	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1262		rt2x00pci_rxdone(rt2x00dev);
1263
1264	/*
1265	 * 3 - Atim ring transmit done interrupt.
1266	 */
1267	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1268		rt2400pci_txdone(rt2x00dev, QID_ATIM);
1269
1270	/*
1271	 * 4 - Priority ring transmit done interrupt.
1272	 */
1273	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1274		rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1275
1276	/*
1277	 * 5 - Tx ring transmit done interrupt.
1278	 */
1279	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1280		rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1281
1282	/* Enable interrupts again. */
1283	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1284					      STATE_RADIO_IRQ_ON_ISR);
1285	return IRQ_HANDLED;
1286}
1287
1288static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1289{
1290	struct rt2x00_dev *rt2x00dev = dev_instance;
1291	u32 reg;
1292
1293	/*
1294	 * Get the interrupt sources & saved to local variable.
1295	 * Write register value back to clear pending interrupts.
1296	 */
1297	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1298	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1299
1300	if (!reg)
1301		return IRQ_NONE;
1302
1303	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1304		return IRQ_HANDLED;
1305
1306	/* Store irqvalues for use in the interrupt thread. */
1307	rt2x00dev->irqvalue[0] = reg;
1308
1309	/* Disable interrupts, will be enabled again in the interrupt thread. */
1310	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1311					      STATE_RADIO_IRQ_OFF_ISR);
1312
1313	return IRQ_WAKE_THREAD;
1314}
1315
1316/*
1317 * Device probe functions.
1318 */
1319static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1320{
1321	struct eeprom_93cx6 eeprom;
1322	u32 reg;
1323	u16 word;
1324	u8 *mac;
1325
1326	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1327
1328	eeprom.data = rt2x00dev;
1329	eeprom.register_read = rt2400pci_eepromregister_read;
1330	eeprom.register_write = rt2400pci_eepromregister_write;
1331	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1332	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1333	eeprom.reg_data_in = 0;
1334	eeprom.reg_data_out = 0;
1335	eeprom.reg_data_clock = 0;
1336	eeprom.reg_chip_select = 0;
1337
1338	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1339			       EEPROM_SIZE / sizeof(u16));
1340
1341	/*
1342	 * Start validation of the data that has been read.
1343	 */
1344	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1345	if (!is_valid_ether_addr(mac)) {
1346		random_ether_addr(mac);
1347		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1348	}
1349
1350	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1351	if (word == 0xffff) {
1352		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1353		return -EINVAL;
1354	}
1355
1356	return 0;
1357}
1358
1359static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1360{
1361	u32 reg;
1362	u16 value;
1363	u16 eeprom;
1364
1365	/*
1366	 * Read EEPROM word for configuration.
1367	 */
1368	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1369
1370	/*
1371	 * Identify RF chipset.
1372	 */
1373	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1374	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1375	rt2x00_set_chip(rt2x00dev, RT2460, value,
1376			rt2x00_get_field32(reg, CSR0_REVISION));
1377
1378	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1379		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1380		return -ENODEV;
1381	}
1382
1383	/*
1384	 * Identify default antenna configuration.
1385	 */
1386	rt2x00dev->default_ant.tx =
1387	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1388	rt2x00dev->default_ant.rx =
1389	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1390
1391	/*
1392	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1393	 * I am not 100% sure about this, but the legacy drivers do not
1394	 * indicate antenna swapping in software is required when
1395	 * diversity is enabled.
1396	 */
1397	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1398		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1399	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1400		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1401
1402	/*
1403	 * Store led mode, for correct led behaviour.
1404	 */
1405#ifdef CONFIG_RT2X00_LIB_LEDS
1406	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1407
1408	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1409	if (value == LED_MODE_TXRX_ACTIVITY ||
1410	    value == LED_MODE_DEFAULT ||
1411	    value == LED_MODE_ASUS)
1412		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1413				   LED_TYPE_ACTIVITY);
1414#endif /* CONFIG_RT2X00_LIB_LEDS */
1415
1416	/*
1417	 * Detect if this device has an hardware controlled radio.
1418	 */
1419	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1420		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1421
1422	/*
1423	 * Check if the BBP tuning should be enabled.
1424	 */
1425	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1426		__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1427
1428	return 0;
1429}
1430
1431/*
1432 * RF value list for RF2420 & RF2421
1433 * Supports: 2.4 GHz
1434 */
1435static const struct rf_channel rf_vals_b[] = {
1436	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1437	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1438	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1439	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1440	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1441	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1442	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1443	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1444	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1445	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1446	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1447	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1448	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1449	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1450};
1451
1452static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1453{
1454	struct hw_mode_spec *spec = &rt2x00dev->spec;
1455	struct channel_info *info;
1456	char *tx_power;
1457	unsigned int i;
1458
1459	/*
1460	 * Initialize all hw fields.
1461	 */
1462	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1463			       IEEE80211_HW_SIGNAL_DBM |
1464			       IEEE80211_HW_SUPPORTS_PS |
1465			       IEEE80211_HW_PS_NULLFUNC_STACK;
1466
1467	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1468	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1469				rt2x00_eeprom_addr(rt2x00dev,
1470						   EEPROM_MAC_ADDR_0));
1471
1472	/*
1473	 * Initialize hw_mode information.
1474	 */
1475	spec->supported_bands = SUPPORT_BAND_2GHZ;
1476	spec->supported_rates = SUPPORT_RATE_CCK;
1477
1478	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1479	spec->channels = rf_vals_b;
1480
1481	/*
1482	 * Create channel information array
1483	 */
1484	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1485	if (!info)
1486		return -ENOMEM;
1487
1488	spec->channels_info = info;
1489
1490	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1491	for (i = 0; i < 14; i++) {
1492		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1493		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1494	}
1495
1496	return 0;
1497}
1498
1499static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1500{
1501	int retval;
1502
1503	/*
1504	 * Allocate eeprom data.
1505	 */
1506	retval = rt2400pci_validate_eeprom(rt2x00dev);
1507	if (retval)
1508		return retval;
1509
1510	retval = rt2400pci_init_eeprom(rt2x00dev);
1511	if (retval)
1512		return retval;
1513
1514	/*
1515	 * Initialize hw specifications.
1516	 */
1517	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1518	if (retval)
1519		return retval;
1520
1521	/*
1522	 * This device requires the atim queue and DMA-mapped skbs.
1523	 */
1524	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1525	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1526
1527	/*
1528	 * Set the rssi offset.
1529	 */
1530	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1531
1532	return 0;
1533}
1534
1535/*
1536 * IEEE80211 stack callback functions.
1537 */
1538static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1539			     const struct ieee80211_tx_queue_params *params)
1540{
1541	struct rt2x00_dev *rt2x00dev = hw->priv;
1542
1543	/*
1544	 * We don't support variating cw_min and cw_max variables
1545	 * per queue. So by default we only configure the TX queue,
1546	 * and ignore all other configurations.
1547	 */
1548	if (queue != 0)
1549		return -EINVAL;
1550
1551	if (rt2x00mac_conf_tx(hw, queue, params))
1552		return -EINVAL;
1553
1554	/*
1555	 * Write configuration to register.
1556	 */
1557	rt2400pci_config_cw(rt2x00dev,
1558			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1559
1560	return 0;
1561}
1562
1563static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1564{
1565	struct rt2x00_dev *rt2x00dev = hw->priv;
1566	u64 tsf;
1567	u32 reg;
1568
1569	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1570	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1571	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1572	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1573
1574	return tsf;
1575}
1576
1577static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1578{
1579	struct rt2x00_dev *rt2x00dev = hw->priv;
1580	u32 reg;
1581
1582	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1583	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1584}
1585
1586static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1587	.tx			= rt2x00mac_tx,
1588	.start			= rt2x00mac_start,
1589	.stop			= rt2x00mac_stop,
1590	.add_interface		= rt2x00mac_add_interface,
1591	.remove_interface	= rt2x00mac_remove_interface,
1592	.config			= rt2x00mac_config,
1593	.configure_filter	= rt2x00mac_configure_filter,
1594	.sw_scan_start		= rt2x00mac_sw_scan_start,
1595	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1596	.get_stats		= rt2x00mac_get_stats,
1597	.bss_info_changed	= rt2x00mac_bss_info_changed,
1598	.conf_tx		= rt2400pci_conf_tx,
1599	.get_tsf		= rt2400pci_get_tsf,
1600	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1601	.rfkill_poll		= rt2x00mac_rfkill_poll,
1602};
1603
1604static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1605	.irq_handler		= rt2400pci_interrupt,
1606	.irq_handler_thread	= rt2400pci_interrupt_thread,
1607	.probe_hw		= rt2400pci_probe_hw,
1608	.initialize		= rt2x00pci_initialize,
1609	.uninitialize		= rt2x00pci_uninitialize,
1610	.get_entry_state	= rt2400pci_get_entry_state,
1611	.clear_entry		= rt2400pci_clear_entry,
1612	.set_device_state	= rt2400pci_set_device_state,
1613	.rfkill_poll		= rt2400pci_rfkill_poll,
1614	.link_stats		= rt2400pci_link_stats,
1615	.reset_tuner		= rt2400pci_reset_tuner,
1616	.link_tuner		= rt2400pci_link_tuner,
1617	.write_tx_desc		= rt2400pci_write_tx_desc,
1618	.write_beacon		= rt2400pci_write_beacon,
1619	.kick_tx_queue		= rt2400pci_kick_tx_queue,
1620	.kill_tx_queue		= rt2400pci_kill_tx_queue,
1621	.fill_rxdone		= rt2400pci_fill_rxdone,
1622	.config_filter		= rt2400pci_config_filter,
1623	.config_intf		= rt2400pci_config_intf,
1624	.config_erp		= rt2400pci_config_erp,
1625	.config_ant		= rt2400pci_config_ant,
1626	.config			= rt2400pci_config,
1627};
1628
1629static const struct data_queue_desc rt2400pci_queue_rx = {
1630	.entry_num		= RX_ENTRIES,
1631	.data_size		= DATA_FRAME_SIZE,
1632	.desc_size		= RXD_DESC_SIZE,
1633	.priv_size		= sizeof(struct queue_entry_priv_pci),
1634};
1635
1636static const struct data_queue_desc rt2400pci_queue_tx = {
1637	.entry_num		= TX_ENTRIES,
1638	.data_size		= DATA_FRAME_SIZE,
1639	.desc_size		= TXD_DESC_SIZE,
1640	.priv_size		= sizeof(struct queue_entry_priv_pci),
1641};
1642
1643static const struct data_queue_desc rt2400pci_queue_bcn = {
1644	.entry_num		= BEACON_ENTRIES,
1645	.data_size		= MGMT_FRAME_SIZE,
1646	.desc_size		= TXD_DESC_SIZE,
1647	.priv_size		= sizeof(struct queue_entry_priv_pci),
1648};
1649
1650static const struct data_queue_desc rt2400pci_queue_atim = {
1651	.entry_num		= ATIM_ENTRIES,
1652	.data_size		= DATA_FRAME_SIZE,
1653	.desc_size		= TXD_DESC_SIZE,
1654	.priv_size		= sizeof(struct queue_entry_priv_pci),
1655};
1656
1657static const struct rt2x00_ops rt2400pci_ops = {
1658	.name			= KBUILD_MODNAME,
1659	.max_sta_intf		= 1,
1660	.max_ap_intf		= 1,
1661	.eeprom_size		= EEPROM_SIZE,
1662	.rf_size		= RF_SIZE,
1663	.tx_queues		= NUM_TX_QUEUES,
1664	.extra_tx_headroom	= 0,
1665	.rx			= &rt2400pci_queue_rx,
1666	.tx			= &rt2400pci_queue_tx,
1667	.bcn			= &rt2400pci_queue_bcn,
1668	.atim			= &rt2400pci_queue_atim,
1669	.lib			= &rt2400pci_rt2x00_ops,
1670	.hw			= &rt2400pci_mac80211_ops,
1671#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1672	.debugfs		= &rt2400pci_rt2x00debug,
1673#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1674};
1675
1676/*
1677 * RT2400pci module information.
1678 */
1679static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1680	{ PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1681	{ 0, }
1682};
1683
1684MODULE_AUTHOR(DRV_PROJECT);
1685MODULE_VERSION(DRV_VERSION);
1686MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1687MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1688MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1689MODULE_LICENSE("GPL");
1690
1691static struct pci_driver rt2400pci_driver = {
1692	.name		= KBUILD_MODNAME,
1693	.id_table	= rt2400pci_device_table,
1694	.probe		= rt2x00pci_probe,
1695	.remove		= __devexit_p(rt2x00pci_remove),
1696	.suspend	= rt2x00pci_suspend,
1697	.resume		= rt2x00pci_resume,
1698};
1699
1700static int __init rt2400pci_init(void)
1701{
1702	return pci_register_driver(&rt2400pci_driver);
1703}
1704
1705static void __exit rt2400pci_exit(void)
1706{
1707	pci_unregister_driver(&rt2400pci_driver);
1708}
1709
1710module_init(rt2400pci_init);
1711module_exit(rt2400pci_exit);
1712