• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wireless/ath/ath5k/
1/*
2 * Copyright (C) 2010 Bruno Randolf <br1@einfach.org>
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "ath5k.h"
18#include "base.h"
19#include "reg.h"
20#include "debug.h"
21#include "ani.h"
22
23/**
24 * DOC: Basic ANI Operation
25 *
26 * Adaptive Noise Immunity (ANI) controls five noise immunity parameters
27 * depending on the amount of interference in the environment, increasing
28 * or reducing sensitivity as necessary.
29 *
30 * The parameters are:
31 *   - "noise immunity"
32 *   - "spur immunity"
33 *   - "firstep level"
34 *   - "OFDM weak signal detection"
35 *   - "CCK weak signal detection"
36 *
37 * Basically we look at the amount of ODFM and CCK timing errors we get and then
38 * raise or lower immunity accordingly by setting one or more of these
39 * parameters.
40 * Newer chipsets have PHY error counters in hardware which will generate a MIB
41 * interrupt when they overflow. Older hardware has too enable PHY error frames
42 * by setting a RX flag and then count every single PHY error. When a specified
43 * threshold of errors has been reached we will raise immunity.
44 * Also we regularly check the amount of errors and lower or raise immunity as
45 * necessary.
46 */
47
48
49/*** ANI parameter control ***/
50
51/**
52 * ath5k_ani_set_noise_immunity_level() - Set noise immunity level
53 *
54 * @level: level between 0 and @ATH5K_ANI_MAX_NOISE_IMM_LVL
55 */
56void
57ath5k_ani_set_noise_immunity_level(struct ath5k_hw *ah, int level)
58{
59	/* TODO:
60	 * ANI documents suggest the following five levels to use, but the HAL
61	 * and ath9k use only use the last two levels, making this
62	 * essentially an on/off option. There *may* be a reason for this (???),
63	 * so i stick with the HAL version for now...
64	 */
65	const s8 sz[] = { -55, -62 };
66	const s8 lo[] = { -64, -70 };
67	const s8 hi[] = { -14, -12 };
68	const s8 fr[] = { -78, -80 };
69	if (level < 0 || level >= ARRAY_SIZE(sz)) {
70		ATH5K_ERR(ah->ah_sc, "noise immuniy level %d out of range",
71			  level);
72		return;
73	}
74
75	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
76				AR5K_PHY_DESIRED_SIZE_TOT, sz[level]);
77	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_AGCCOARSE,
78				AR5K_PHY_AGCCOARSE_LO, lo[level]);
79	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_AGCCOARSE,
80				AR5K_PHY_AGCCOARSE_HI, hi[level]);
81	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SIG,
82				AR5K_PHY_SIG_FIRPWR, fr[level]);
83
84	ah->ah_sc->ani_state.noise_imm_level = level;
85	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "new level %d", level);
86}
87
88
89/**
90 * ath5k_ani_set_spur_immunity_level() - Set spur immunity level
91 *
92 * @level: level between 0 and @max_spur_level (the maximum level is dependent
93 *	on the chip revision).
94 */
95void
96ath5k_ani_set_spur_immunity_level(struct ath5k_hw *ah, int level)
97{
98	const int val[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
99
100	if (level < 0 || level >= ARRAY_SIZE(val) ||
101	    level > ah->ah_sc->ani_state.max_spur_level) {
102		ATH5K_ERR(ah->ah_sc, "spur immunity level %d out of range",
103			  level);
104		return;
105	}
106
107	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
108		AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, val[level]);
109
110	ah->ah_sc->ani_state.spur_level = level;
111	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "new level %d", level);
112}
113
114
115/**
116 * ath5k_ani_set_firstep_level() - Set "firstep" level
117 *
118 * @level: level between 0 and @ATH5K_ANI_MAX_FIRSTEP_LVL
119 */
120void
121ath5k_ani_set_firstep_level(struct ath5k_hw *ah, int level)
122{
123	const int val[] = { 0, 4, 8 };
124
125	if (level < 0 || level >= ARRAY_SIZE(val)) {
126		ATH5K_ERR(ah->ah_sc, "firstep level %d out of range", level);
127		return;
128	}
129
130	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SIG,
131				AR5K_PHY_SIG_FIRSTEP, val[level]);
132
133	ah->ah_sc->ani_state.firstep_level = level;
134	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "new level %d", level);
135}
136
137
138/**
139 * ath5k_ani_set_ofdm_weak_signal_detection() - Control OFDM weak signal
140 *						detection
141 *
142 * @on: turn on or off
143 */
144void
145ath5k_ani_set_ofdm_weak_signal_detection(struct ath5k_hw *ah, bool on)
146{
147	const int m1l[] = { 127, 50 };
148	const int m2l[] = { 127, 40 };
149	const int m1[] = { 127, 0x4d };
150	const int m2[] = { 127, 0x40 };
151	const int m2cnt[] = { 31, 16 };
152	const int m2lcnt[] = { 63, 48 };
153
154	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
155				AR5K_PHY_WEAK_OFDM_LOW_THR_M1, m1l[on]);
156	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
157				AR5K_PHY_WEAK_OFDM_LOW_THR_M2, m2l[on]);
158	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR,
159				AR5K_PHY_WEAK_OFDM_HIGH_THR_M1, m1[on]);
160	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR,
161				AR5K_PHY_WEAK_OFDM_HIGH_THR_M2, m2[on]);
162	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR,
163			AR5K_PHY_WEAK_OFDM_HIGH_THR_M2_COUNT, m2cnt[on]);
164	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
165			AR5K_PHY_WEAK_OFDM_LOW_THR_M2_COUNT, m2lcnt[on]);
166
167	if (on)
168		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
169				AR5K_PHY_WEAK_OFDM_LOW_THR_SELFCOR_EN);
170	else
171		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
172				AR5K_PHY_WEAK_OFDM_LOW_THR_SELFCOR_EN);
173
174	ah->ah_sc->ani_state.ofdm_weak_sig = on;
175	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "turned %s",
176			  on ? "on" : "off");
177}
178
179
180/**
181 * ath5k_ani_set_cck_weak_signal_detection() - control CCK weak signal detection
182 *
183 * @on: turn on or off
184 */
185void
186ath5k_ani_set_cck_weak_signal_detection(struct ath5k_hw *ah, bool on)
187{
188	const int val[] = { 8, 6 };
189	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_CCK_CROSSCORR,
190				AR5K_PHY_CCK_CROSSCORR_WEAK_SIG_THR, val[on]);
191	ah->ah_sc->ani_state.cck_weak_sig = on;
192	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "turned %s",
193			  on ? "on" : "off");
194}
195
196
197/*** ANI algorithm ***/
198
199/**
200 * ath5k_ani_raise_immunity() - Increase noise immunity
201 *
202 * @ofdm_trigger: If this is true we are called because of too many OFDM errors,
203 *	the algorithm will tune more parameters then.
204 *
205 * Try to raise noise immunity (=decrease sensitivity) in several steps
206 * depending on the average RSSI of the beacons we received.
207 */
208static void
209ath5k_ani_raise_immunity(struct ath5k_hw *ah, struct ath5k_ani_state *as,
210			 bool ofdm_trigger)
211{
212	int rssi = ah->ah_beacon_rssi_avg.avg;
213
214	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "raise immunity (%s)",
215		ofdm_trigger ? "ODFM" : "CCK");
216
217	/* first: raise noise immunity */
218	if (as->noise_imm_level < ATH5K_ANI_MAX_NOISE_IMM_LVL) {
219		ath5k_ani_set_noise_immunity_level(ah, as->noise_imm_level + 1);
220		return;
221	}
222
223	/* only OFDM: raise spur immunity level */
224	if (ofdm_trigger &&
225	    as->spur_level < ah->ah_sc->ani_state.max_spur_level) {
226		ath5k_ani_set_spur_immunity_level(ah, as->spur_level + 1);
227		return;
228	}
229
230	/* AP mode */
231	if (ah->ah_sc->opmode == NL80211_IFTYPE_AP) {
232		if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL)
233			ath5k_ani_set_firstep_level(ah, as->firstep_level + 1);
234		return;
235	}
236
237	/* STA and IBSS mode */
238
239	/* TODO: for IBSS mode it would be better to keep a beacon RSSI average
240	 * per each neighbour node and use the minimum of these, to make sure we
241	 * don't shut out a remote node by raising immunity too high. */
242
243	if (rssi > ATH5K_ANI_RSSI_THR_HIGH) {
244		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
245				  "beacon RSSI high");
246		/* only OFDM: beacon RSSI is high, we can disable ODFM weak
247		 * signal detection */
248		if (ofdm_trigger && as->ofdm_weak_sig == true) {
249			ath5k_ani_set_ofdm_weak_signal_detection(ah, false);
250			ath5k_ani_set_spur_immunity_level(ah, 0);
251			return;
252		}
253		/* as a last resort or CCK: raise firstep level */
254		if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL) {
255			ath5k_ani_set_firstep_level(ah, as->firstep_level + 1);
256			return;
257		}
258	} else if (rssi > ATH5K_ANI_RSSI_THR_LOW) {
259		/* beacon RSSI in mid range, we need OFDM weak signal detect,
260		 * but can raise firstep level */
261		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
262				  "beacon RSSI mid");
263		if (ofdm_trigger && as->ofdm_weak_sig == false)
264			ath5k_ani_set_ofdm_weak_signal_detection(ah, true);
265		if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL)
266			ath5k_ani_set_firstep_level(ah, as->firstep_level + 1);
267		return;
268	} else if (ah->ah_current_channel->band == IEEE80211_BAND_2GHZ) {
269		/* beacon RSSI is low. in B/G mode turn of OFDM weak signal
270		 * detect and zero firstep level to maximize CCK sensitivity */
271		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
272				  "beacon RSSI low, 2GHz");
273		if (ofdm_trigger && as->ofdm_weak_sig == true)
274			ath5k_ani_set_ofdm_weak_signal_detection(ah, false);
275		if (as->firstep_level > 0)
276			ath5k_ani_set_firstep_level(ah, 0);
277		return;
278	}
279
280	/* TODO: why not?:
281	if (as->cck_weak_sig == true) {
282		ath5k_ani_set_cck_weak_signal_detection(ah, false);
283	}
284	*/
285}
286
287
288/**
289 * ath5k_ani_lower_immunity() - Decrease noise immunity
290 *
291 * Try to lower noise immunity (=increase sensitivity) in several steps
292 * depending on the average RSSI of the beacons we received.
293 */
294static void
295ath5k_ani_lower_immunity(struct ath5k_hw *ah, struct ath5k_ani_state *as)
296{
297	int rssi = ah->ah_beacon_rssi_avg.avg;
298
299	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "lower immunity");
300
301	if (ah->ah_sc->opmode == NL80211_IFTYPE_AP) {
302		/* AP mode */
303		if (as->firstep_level > 0) {
304			ath5k_ani_set_firstep_level(ah, as->firstep_level - 1);
305			return;
306		}
307	} else {
308		/* STA and IBSS mode (see TODO above) */
309		if (rssi > ATH5K_ANI_RSSI_THR_HIGH) {
310			/* beacon signal is high, leave OFDM weak signal
311			 * detection off or it may oscillate
312			 * TODO: who said it's off??? */
313		} else if (rssi > ATH5K_ANI_RSSI_THR_LOW) {
314			/* beacon RSSI is mid-range: turn on ODFM weak signal
315			 * detection and next, lower firstep level */
316			if (as->ofdm_weak_sig == false) {
317				ath5k_ani_set_ofdm_weak_signal_detection(ah,
318									 true);
319				return;
320			}
321			if (as->firstep_level > 0) {
322				ath5k_ani_set_firstep_level(ah,
323							as->firstep_level - 1);
324				return;
325			}
326		} else {
327			/* beacon signal is low: only reduce firstep level */
328			if (as->firstep_level > 0) {
329				ath5k_ani_set_firstep_level(ah,
330							as->firstep_level - 1);
331				return;
332			}
333		}
334	}
335
336	/* all modes */
337	if (as->spur_level > 0) {
338		ath5k_ani_set_spur_immunity_level(ah, as->spur_level - 1);
339		return;
340	}
341
342	/* finally, reduce noise immunity */
343	if (as->noise_imm_level > 0) {
344		ath5k_ani_set_noise_immunity_level(ah, as->noise_imm_level - 1);
345		return;
346	}
347}
348
349
350/**
351 * ath5k_hw_ani_get_listen_time() - Calculate time spent listening
352 *
353 * Return an approximation of the time spent "listening" in milliseconds (ms)
354 * since the last call of this function by deducting the cycles spent
355 * transmitting and receiving from the total cycle count.
356 * Save profile count values for debugging/statistics and because we might want
357 * to use them later.
358 *
359 * We assume no one else clears these registers!
360 */
361static int
362ath5k_hw_ani_get_listen_time(struct ath5k_hw *ah, struct ath5k_ani_state *as)
363{
364	int listen;
365
366	/* freeze */
367	ath5k_hw_reg_write(ah, AR5K_MIBC_FMC, AR5K_MIBC);
368	/* read */
369	as->pfc_cycles = ath5k_hw_reg_read(ah, AR5K_PROFCNT_CYCLE);
370	as->pfc_busy = ath5k_hw_reg_read(ah, AR5K_PROFCNT_RXCLR);
371	as->pfc_tx = ath5k_hw_reg_read(ah, AR5K_PROFCNT_TX);
372	as->pfc_rx = ath5k_hw_reg_read(ah, AR5K_PROFCNT_RX);
373	/* clear */
374	ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
375	ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
376	ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
377	ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
378	/* un-freeze */
379	ath5k_hw_reg_write(ah, 0, AR5K_MIBC);
380
381	/* TODO: where does 44000 come from? (11g clock rate?) */
382	listen = (as->pfc_cycles - as->pfc_rx - as->pfc_tx) / 44000;
383
384	if (as->pfc_cycles == 0 || listen < 0)
385		return 0;
386	return listen;
387}
388
389
390/**
391 * ath5k_ani_save_and_clear_phy_errors() - Clear and save PHY error counters
392 *
393 * Clear the PHY error counters as soon as possible, since this might be called
394 * from a MIB interrupt and we want to make sure we don't get interrupted again.
395 * Add the count of CCK and OFDM errors to our internal state, so it can be used
396 * by the algorithm later.
397 *
398 * Will be called from interrupt and tasklet context.
399 * Returns 0 if both counters are zero.
400 */
401static int
402ath5k_ani_save_and_clear_phy_errors(struct ath5k_hw *ah,
403				    struct ath5k_ani_state *as)
404{
405	unsigned int ofdm_err, cck_err;
406
407	if (!ah->ah_capabilities.cap_has_phyerr_counters)
408		return 0;
409
410	ofdm_err = ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT1);
411	cck_err = ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT2);
412
413	/* reset counters first, we might be in a hurry (interrupt) */
414	ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_OFDM_TRIG_HIGH,
415			   AR5K_PHYERR_CNT1);
416	ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_CCK_TRIG_HIGH,
417			   AR5K_PHYERR_CNT2);
418
419	ofdm_err = ATH5K_ANI_OFDM_TRIG_HIGH - (ATH5K_PHYERR_CNT_MAX - ofdm_err);
420	cck_err = ATH5K_ANI_CCK_TRIG_HIGH - (ATH5K_PHYERR_CNT_MAX - cck_err);
421
422	/* sometimes both can be zero, especially when there is a superfluous
423	 * second interrupt. detect that here and return an error. */
424	if (ofdm_err <= 0 && cck_err <= 0)
425		return 0;
426
427	/* avoid negative values should one of the registers overflow */
428	if (ofdm_err > 0) {
429		as->ofdm_errors += ofdm_err;
430		as->sum_ofdm_errors += ofdm_err;
431	}
432	if (cck_err > 0) {
433		as->cck_errors += cck_err;
434		as->sum_cck_errors += cck_err;
435	}
436	return 1;
437}
438
439
440/**
441 * ath5k_ani_period_restart() - Restart ANI period
442 *
443 * Just reset counters, so they are clear for the next "ani period".
444 */
445static void
446ath5k_ani_period_restart(struct ath5k_hw *ah, struct ath5k_ani_state *as)
447{
448	/* keep last values for debugging */
449	as->last_ofdm_errors = as->ofdm_errors;
450	as->last_cck_errors = as->cck_errors;
451	as->last_listen = as->listen_time;
452
453	as->ofdm_errors = 0;
454	as->cck_errors = 0;
455	as->listen_time = 0;
456}
457
458
459/**
460 * ath5k_ani_calibration() - The main ANI calibration function
461 *
462 * We count OFDM and CCK errors relative to the time where we did not send or
463 * receive ("listen" time) and raise or lower immunity accordingly.
464 * This is called regularly (every second) from the calibration timer, but also
465 * when an error threshold has been reached.
466 *
467 * In order to synchronize access from different contexts, this should be
468 * called only indirectly by scheduling the ANI tasklet!
469 */
470void
471ath5k_ani_calibration(struct ath5k_hw *ah)
472{
473	struct ath5k_ani_state *as = &ah->ah_sc->ani_state;
474	int listen, ofdm_high, ofdm_low, cck_high, cck_low;
475
476	/* get listen time since last call and add it to the counter because we
477	 * might not have restarted the "ani period" last time.
478	 * always do this to calculate the busy time also in manual mode */
479	listen = ath5k_hw_ani_get_listen_time(ah, as);
480	as->listen_time += listen;
481
482	if (as->ani_mode != ATH5K_ANI_MODE_AUTO)
483		return;
484
485	ath5k_ani_save_and_clear_phy_errors(ah, as);
486
487	ofdm_high = as->listen_time * ATH5K_ANI_OFDM_TRIG_HIGH / 1000;
488	cck_high = as->listen_time * ATH5K_ANI_CCK_TRIG_HIGH / 1000;
489	ofdm_low = as->listen_time * ATH5K_ANI_OFDM_TRIG_LOW / 1000;
490	cck_low = as->listen_time * ATH5K_ANI_CCK_TRIG_LOW / 1000;
491
492	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
493		"listen %d (now %d)", as->listen_time, listen);
494	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
495		"check high ofdm %d/%d cck %d/%d",
496		as->ofdm_errors, ofdm_high, as->cck_errors, cck_high);
497
498	if (as->ofdm_errors > ofdm_high || as->cck_errors > cck_high) {
499		/* too many PHY errors - we have to raise immunity */
500		bool ofdm_flag = as->ofdm_errors > ofdm_high ? true : false;
501		ath5k_ani_raise_immunity(ah, as, ofdm_flag);
502		ath5k_ani_period_restart(ah, as);
503
504	} else if (as->listen_time > 5 * ATH5K_ANI_LISTEN_PERIOD) {
505		/* If more than 5 (TODO: why 5?) periods have passed and we got
506		 * relatively little errors we can try to lower immunity */
507		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
508			"check low ofdm %d/%d cck %d/%d",
509			as->ofdm_errors, ofdm_low, as->cck_errors, cck_low);
510
511		if (as->ofdm_errors <= ofdm_low && as->cck_errors <= cck_low)
512			ath5k_ani_lower_immunity(ah, as);
513
514		ath5k_ani_period_restart(ah, as);
515	}
516}
517
518
519/*** INTERRUPT HANDLER ***/
520
521/**
522 * ath5k_ani_mib_intr() - Interrupt handler for ANI MIB counters
523 *
524 * Just read & reset the registers quickly, so they don't generate more
525 * interrupts, save the counters and schedule the tasklet to decide whether
526 * to raise immunity or not.
527 *
528 * We just need to handle PHY error counters, ath5k_hw_update_mib_counters()
529 * should take care of all "normal" MIB interrupts.
530 */
531void
532ath5k_ani_mib_intr(struct ath5k_hw *ah)
533{
534	struct ath5k_ani_state *as = &ah->ah_sc->ani_state;
535
536	/* nothing to do here if HW does not have PHY error counters - they
537	 * can't be the reason for the MIB interrupt then */
538	if (!ah->ah_capabilities.cap_has_phyerr_counters)
539		return;
540
541	/* not in use but clear anyways */
542	ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT);
543	ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT);
544
545	if (ah->ah_sc->ani_state.ani_mode != ATH5K_ANI_MODE_AUTO)
546		return;
547
548	/* if one of the errors triggered, we can get a superfluous second
549	 * interrupt, even though we have already reset the register. the
550	 * function detects that so we can return early */
551	if (ath5k_ani_save_and_clear_phy_errors(ah, as) == 0)
552		return;
553
554	if (as->ofdm_errors > ATH5K_ANI_OFDM_TRIG_HIGH ||
555	    as->cck_errors > ATH5K_ANI_CCK_TRIG_HIGH)
556		tasklet_schedule(&ah->ah_sc->ani_tasklet);
557}
558
559
560/**
561 * ath5k_ani_phy_error_report() - Used by older HW to report PHY errors
562 *
563 * This is used by hardware without PHY error counters to report PHY errors
564 * on a frame-by-frame basis, instead of the interrupt.
565 */
566void
567ath5k_ani_phy_error_report(struct ath5k_hw *ah,
568			   enum ath5k_phy_error_code phyerr)
569{
570	struct ath5k_ani_state *as = &ah->ah_sc->ani_state;
571
572	if (phyerr == AR5K_RX_PHY_ERROR_OFDM_TIMING) {
573		as->ofdm_errors++;
574		if (as->ofdm_errors > ATH5K_ANI_OFDM_TRIG_HIGH)
575			tasklet_schedule(&ah->ah_sc->ani_tasklet);
576	} else if (phyerr == AR5K_RX_PHY_ERROR_CCK_TIMING) {
577		as->cck_errors++;
578		if (as->cck_errors > ATH5K_ANI_CCK_TRIG_HIGH)
579			tasklet_schedule(&ah->ah_sc->ani_tasklet);
580	}
581}
582
583
584/*** INIT ***/
585
586/**
587 * ath5k_enable_phy_err_counters() - Enable PHY error counters
588 *
589 * Enable PHY error counters for OFDM and CCK timing errors.
590 */
591static void
592ath5k_enable_phy_err_counters(struct ath5k_hw *ah)
593{
594	ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_OFDM_TRIG_HIGH,
595			   AR5K_PHYERR_CNT1);
596	ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_CCK_TRIG_HIGH,
597			   AR5K_PHYERR_CNT2);
598	ath5k_hw_reg_write(ah, AR5K_PHY_ERR_FIL_OFDM, AR5K_PHYERR_CNT1_MASK);
599	ath5k_hw_reg_write(ah, AR5K_PHY_ERR_FIL_CCK, AR5K_PHYERR_CNT2_MASK);
600
601	/* not in use */
602	ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT);
603	ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT);
604}
605
606
607/**
608 * ath5k_disable_phy_err_counters() - Disable PHY error counters
609 *
610 * Disable PHY error counters for OFDM and CCK timing errors.
611 */
612static void
613ath5k_disable_phy_err_counters(struct ath5k_hw *ah)
614{
615	ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT1);
616	ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT2);
617	ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT1_MASK);
618	ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT2_MASK);
619
620	/* not in use */
621	ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT);
622	ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT);
623}
624
625
626/**
627 * ath5k_ani_init() - Initialize ANI
628 * @mode: Which mode to use (auto, manual high, manual low, off)
629 *
630 * Initialize ANI according to mode.
631 */
632void
633ath5k_ani_init(struct ath5k_hw *ah, enum ath5k_ani_mode mode)
634{
635	/* ANI is only possible on 5212 and newer */
636	if (ah->ah_version < AR5K_AR5212)
637		return;
638
639	/* clear old state information */
640	memset(&ah->ah_sc->ani_state, 0, sizeof(ah->ah_sc->ani_state));
641
642	/* older hardware has more spur levels than newer */
643	if (ah->ah_mac_srev < AR5K_SREV_AR2414)
644		ah->ah_sc->ani_state.max_spur_level = 7;
645	else
646		ah->ah_sc->ani_state.max_spur_level = 2;
647
648	/* initial values for our ani parameters */
649	if (mode == ATH5K_ANI_MODE_OFF) {
650		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "ANI off\n");
651	} else if  (mode == ATH5K_ANI_MODE_MANUAL_LOW) {
652		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
653			"ANI manual low -> high sensitivity\n");
654		ath5k_ani_set_noise_immunity_level(ah, 0);
655		ath5k_ani_set_spur_immunity_level(ah, 0);
656		ath5k_ani_set_firstep_level(ah, 0);
657		ath5k_ani_set_ofdm_weak_signal_detection(ah, true);
658		ath5k_ani_set_cck_weak_signal_detection(ah, true);
659	} else if (mode == ATH5K_ANI_MODE_MANUAL_HIGH) {
660		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI,
661			"ANI manual high -> low sensitivity\n");
662		ath5k_ani_set_noise_immunity_level(ah,
663					ATH5K_ANI_MAX_NOISE_IMM_LVL);
664		ath5k_ani_set_spur_immunity_level(ah,
665					ah->ah_sc->ani_state.max_spur_level);
666		ath5k_ani_set_firstep_level(ah, ATH5K_ANI_MAX_FIRSTEP_LVL);
667		ath5k_ani_set_ofdm_weak_signal_detection(ah, false);
668		ath5k_ani_set_cck_weak_signal_detection(ah, false);
669	} else if (mode == ATH5K_ANI_MODE_AUTO) {
670		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_ANI, "ANI auto\n");
671		ath5k_ani_set_noise_immunity_level(ah, 0);
672		ath5k_ani_set_spur_immunity_level(ah, 0);
673		ath5k_ani_set_firstep_level(ah, 0);
674		ath5k_ani_set_ofdm_weak_signal_detection(ah, true);
675		ath5k_ani_set_cck_weak_signal_detection(ah, false);
676	}
677
678	/* newer hardware has PHY error counter registers which we can use to
679	 * get OFDM and CCK error counts. older hardware has to set rxfilter and
680	 * report every single PHY error by calling ath5k_ani_phy_error_report()
681	 */
682	if (mode == ATH5K_ANI_MODE_AUTO) {
683		if (ah->ah_capabilities.cap_has_phyerr_counters)
684			ath5k_enable_phy_err_counters(ah);
685		else
686			ath5k_hw_set_rx_filter(ah, ath5k_hw_get_rx_filter(ah) |
687						   AR5K_RX_FILTER_PHYERR);
688	} else {
689		if (ah->ah_capabilities.cap_has_phyerr_counters)
690			ath5k_disable_phy_err_counters(ah);
691		else
692			ath5k_hw_set_rx_filter(ah, ath5k_hw_get_rx_filter(ah) &
693						   ~AR5K_RX_FILTER_PHYERR);
694	}
695
696	ah->ah_sc->ani_state.ani_mode = mode;
697}
698
699
700/*** DEBUG ***/
701
702#ifdef CONFIG_ATH5K_DEBUG
703
704void
705ath5k_ani_print_counters(struct ath5k_hw *ah)
706{
707	/* clears too */
708	printk(KERN_NOTICE "ACK fail\t%d\n",
709		ath5k_hw_reg_read(ah, AR5K_ACK_FAIL));
710	printk(KERN_NOTICE "RTS fail\t%d\n",
711		ath5k_hw_reg_read(ah, AR5K_RTS_FAIL));
712	printk(KERN_NOTICE "RTS success\t%d\n",
713		ath5k_hw_reg_read(ah, AR5K_RTS_OK));
714	printk(KERN_NOTICE "FCS error\t%d\n",
715		ath5k_hw_reg_read(ah, AR5K_FCS_FAIL));
716
717	/* no clear */
718	printk(KERN_NOTICE "tx\t%d\n",
719		ath5k_hw_reg_read(ah, AR5K_PROFCNT_TX));
720	printk(KERN_NOTICE "rx\t%d\n",
721		ath5k_hw_reg_read(ah, AR5K_PROFCNT_RX));
722	printk(KERN_NOTICE "busy\t%d\n",
723		ath5k_hw_reg_read(ah, AR5K_PROFCNT_RXCLR));
724	printk(KERN_NOTICE "cycles\t%d\n",
725		ath5k_hw_reg_read(ah, AR5K_PROFCNT_CYCLE));
726
727	printk(KERN_NOTICE "AR5K_PHYERR_CNT1\t%d\n",
728		ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT1));
729	printk(KERN_NOTICE "AR5K_PHYERR_CNT2\t%d\n",
730		ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT2));
731	printk(KERN_NOTICE "AR5K_OFDM_FIL_CNT\t%d\n",
732		ath5k_hw_reg_read(ah, AR5K_OFDM_FIL_CNT));
733	printk(KERN_NOTICE "AR5K_CCK_FIL_CNT\t%d\n",
734		ath5k_hw_reg_read(ah, AR5K_CCK_FIL_CNT));
735}
736
737#endif
738