• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wan/
1/*
2 *      FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7 *      www.farsite.co.uk
8 *
9 *      This program is free software; you can redistribute it and/or
10 *      modify it under the terms of the GNU General Public License
11 *      as published by the Free Software Foundation; either version
12 *      2 of the License, or (at your option) any later version.
13 *
14 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/version.h>
23#include <linux/pci.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/ioport.h>
27#include <linux/init.h>
28#include <linux/if.h>
29#include <linux/hdlc.h>
30#include <asm/io.h>
31#include <asm/uaccess.h>
32
33#include "farsync.h"
34
35/*
36 *      Module info
37 */
38MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
39MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
40MODULE_LICENSE("GPL");
41
42/*      Driver configuration and global parameters
43 *      ==========================================
44 */
45
46/*      Number of ports (per card) and cards supported
47 */
48#define FST_MAX_PORTS           4
49#define FST_MAX_CARDS           32
50
51/*      Default parameters for the link
52 */
53#define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
54					 * useful */
55#define FST_TXQ_DEPTH           16	/* This one is for the buffering
56					 * of frames on the way down to the card
57					 * so that we can keep the card busy
58					 * and maximise throughput
59					 */
60#define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
61					 * network layer */
62#define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
63					 * control from network layer */
64#define FST_MAX_MTU             8000	/* Huge but possible */
65#define FST_DEF_MTU             1500	/* Common sane value */
66
67#define FST_TX_TIMEOUT          (2*HZ)
68
69#ifdef ARPHRD_RAWHDLC
70#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
71#else
72#define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
73#endif
74
75/*
76 * Modules parameters and associated variables
77 */
78static int fst_txq_low = FST_LOW_WATER_MARK;
79static int fst_txq_high = FST_HIGH_WATER_MARK;
80static int fst_max_reads = 7;
81static int fst_excluded_cards = 0;
82static int fst_excluded_list[FST_MAX_CARDS];
83
84module_param(fst_txq_low, int, 0);
85module_param(fst_txq_high, int, 0);
86module_param(fst_max_reads, int, 0);
87module_param(fst_excluded_cards, int, 0);
88module_param_array(fst_excluded_list, int, NULL, 0);
89
90/*      Card shared memory layout
91 *      =========================
92 */
93#pragma pack(1)
94
95/*      This information is derived in part from the FarSite FarSync Smc.h
96 *      file. Unfortunately various name clashes and the non-portability of the
97 *      bit field declarations in that file have meant that I have chosen to
98 *      recreate the information here.
99 *
100 *      The SMC (Shared Memory Configuration) has a version number that is
101 *      incremented every time there is a significant change. This number can
102 *      be used to check that we have not got out of step with the firmware
103 *      contained in the .CDE files.
104 */
105#define SMC_VERSION 24
106
107#define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
108
109#define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
110				 * configuration structure */
111#define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
112				 * buffers */
113
114#define LEN_TX_BUFFER 8192	/* Size of packet buffers */
115#define LEN_RX_BUFFER 8192
116
117#define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
118#define LEN_SMALL_RX_BUFFER 256
119
120#define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
121#define NUM_RX_BUFFER 8
122
123/* Interrupt retry time in milliseconds */
124#define INT_RETRY_TIME 2
125
126/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
127 *      of buffer descriptors. The structure is almost identical to that used
128 *      in the LANCE Ethernet controllers. Details available as PDF from the
129 *      AMD web site: http://www.amd.com/products/epd/processors/\
130 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
131 */
132struct txdesc {			/* Transmit descriptor */
133	volatile u16 ladr;	/* Low order address of packet. This is a
134				 * linear address in the Am186 memory space
135				 */
136	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
137				 * bits must be zero
138				 */
139	volatile u8 bits;	/* Status and config */
140	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
141				 * Transmit terminal count interrupt enable in
142				 * top bit.
143				 */
144	u16 unused;		/* Not used in Tx */
145};
146
147struct rxdesc {			/* Receive descriptor */
148	volatile u16 ladr;	/* Low order address of packet */
149	volatile u8 hadr;	/* High order address */
150	volatile u8 bits;	/* Status and config */
151	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
152				 * Receive terminal count interrupt enable in
153				 * top bit.
154				 */
155	volatile u16 mcnt;	/* Message byte count (15 bits) */
156};
157
158/* Convert a length into the 15 bit 2's complement */
159/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
160/* Since we need to set the high bit to enable the completion interrupt this
161 * can be made a lot simpler
162 */
163#define cnv_bcnt(len)   (-(len))
164
165/* Status and config bits for the above */
166#define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
167#define TX_STP          0x02	/* Tx: start of packet */
168#define TX_ENP          0x01	/* Tx: end of packet */
169#define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
170#define RX_FRAM         0x20	/* Rx: framing error */
171#define RX_OFLO         0x10	/* Rx: overflow error */
172#define RX_CRC          0x08	/* Rx: CRC error */
173#define RX_HBUF         0x04	/* Rx: buffer error */
174#define RX_STP          0x02	/* Rx: start of packet */
175#define RX_ENP          0x01	/* Rx: end of packet */
176
177/* Interrupts from the card are caused by various events which are presented
178 * in a circular buffer as several events may be processed on one physical int
179 */
180#define MAX_CIRBUFF     32
181
182struct cirbuff {
183	u8 rdindex;		/* read, then increment and wrap */
184	u8 wrindex;		/* write, then increment and wrap */
185	u8 evntbuff[MAX_CIRBUFF];
186};
187
188/* Interrupt event codes.
189 * Where appropriate the two low order bits indicate the port number
190 */
191#define CTLA_CHG        0x18	/* Control signal changed */
192#define CTLB_CHG        0x19
193#define CTLC_CHG        0x1A
194#define CTLD_CHG        0x1B
195
196#define INIT_CPLT       0x20	/* Initialisation complete */
197#define INIT_FAIL       0x21	/* Initialisation failed */
198
199#define ABTA_SENT       0x24	/* Abort sent */
200#define ABTB_SENT       0x25
201#define ABTC_SENT       0x26
202#define ABTD_SENT       0x27
203
204#define TXA_UNDF        0x28	/* Transmission underflow */
205#define TXB_UNDF        0x29
206#define TXC_UNDF        0x2A
207#define TXD_UNDF        0x2B
208
209#define F56_INT         0x2C
210#define M32_INT         0x2D
211
212#define TE1_ALMA        0x30
213
214/* Port physical configuration. See farsync.h for field values */
215struct port_cfg {
216	u16 lineInterface;	/* Physical interface type */
217	u8 x25op;		/* Unused at present */
218	u8 internalClock;	/* 1 => internal clock, 0 => external */
219	u8 transparentMode;	/* 1 => on, 0 => off */
220	u8 invertClock;		/* 0 => normal, 1 => inverted */
221	u8 padBytes[6];		/* Padding */
222	u32 lineSpeed;		/* Speed in bps */
223};
224
225/* TE1 port physical configuration */
226struct su_config {
227	u32 dataRate;
228	u8 clocking;
229	u8 framing;
230	u8 structure;
231	u8 interface;
232	u8 coding;
233	u8 lineBuildOut;
234	u8 equalizer;
235	u8 transparentMode;
236	u8 loopMode;
237	u8 range;
238	u8 txBufferMode;
239	u8 rxBufferMode;
240	u8 startingSlot;
241	u8 losThreshold;
242	u8 enableIdleCode;
243	u8 idleCode;
244	u8 spare[44];
245};
246
247/* TE1 Status */
248struct su_status {
249	u32 receiveBufferDelay;
250	u32 framingErrorCount;
251	u32 codeViolationCount;
252	u32 crcErrorCount;
253	u32 lineAttenuation;
254	u8 portStarted;
255	u8 lossOfSignal;
256	u8 receiveRemoteAlarm;
257	u8 alarmIndicationSignal;
258	u8 spare[40];
259};
260
261/* Finally sling all the above together into the shared memory structure.
262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
263 * evolving under NT for some time so I guess we're stuck with it.
264 * The structure starts at offset SMC_BASE.
265 * See farsync.h for some field values.
266 */
267struct fst_shared {
268	/* DMA descriptor rings */
269	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
270	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271
272	/* Obsolete small buffers */
273	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
274	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275
276	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
277				 * 0xFF => halted
278				 */
279
280	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
281				 * set to 0xEE by host to acknowledge interrupt
282				 */
283
284	u16 smcVersion;		/* Must match SMC_VERSION */
285
286	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
287				 * version, RR = revision and BB = build
288				 */
289
290	u16 txa_done;		/* Obsolete completion flags */
291	u16 rxa_done;
292	u16 txb_done;
293	u16 rxb_done;
294	u16 txc_done;
295	u16 rxc_done;
296	u16 txd_done;
297	u16 rxd_done;
298
299	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
300
301	struct cirbuff interruptEvent;	/* interrupt causes */
302
303	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
304	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
305
306	struct port_cfg portConfig[FST_MAX_PORTS];
307
308	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
309
310	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
311
312	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
313	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
314
315	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
316	u16 cardMailbox[4];	/* Not used */
317
318	/* Number of times the card thinks the host has
319	 * missed an interrupt by not acknowledging
320	 * within 2mS (I guess NT has problems)
321	 */
322	u32 interruptRetryCount;
323
324	/* Driver private data used as an ID. We'll not
325	 * use this as I'd rather keep such things
326	 * in main memory rather than on the PCI bus
327	 */
328	u32 portHandle[FST_MAX_PORTS];
329
330	/* Count of Tx underflows for stats */
331	u32 transmitBufferUnderflow[FST_MAX_PORTS];
332
333	/* Debounced V.24 control input status */
334	u32 v24DebouncedSts[FST_MAX_PORTS];
335
336	/* Adapter debounce timers. Don't touch */
337	u32 ctsTimer[FST_MAX_PORTS];
338	u32 ctsTimerRun[FST_MAX_PORTS];
339	u32 dcdTimer[FST_MAX_PORTS];
340	u32 dcdTimerRun[FST_MAX_PORTS];
341
342	u32 numberOfPorts;	/* Number of ports detected at startup */
343
344	u16 _reserved[64];
345
346	u16 cardMode;		/* Bit-mask to enable features:
347				 * Bit 0: 1 enables LED identify mode
348				 */
349
350	u16 portScheduleOffset;
351
352	struct su_config suConfig;	/* TE1 Bits */
353	struct su_status suStatus;
354
355	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
356				 * the structure and marks the end of shared
357				 * memory. Adapter code initializes it as
358				 * END_SIG.
359				 */
360};
361
362/* endOfSmcSignature value */
363#define END_SIG                 0x12345678
364
365/* Mailbox values. (portMailbox) */
366#define NOP             0	/* No operation */
367#define ACK             1	/* Positive acknowledgement to PC driver */
368#define NAK             2	/* Negative acknowledgement to PC driver */
369#define STARTPORT       3	/* Start an HDLC port */
370#define STOPPORT        4	/* Stop an HDLC port */
371#define ABORTTX         5	/* Abort the transmitter for a port */
372#define SETV24O         6	/* Set V24 outputs */
373
374/* PLX Chip Register Offsets */
375#define CNTRL_9052      0x50	/* Control Register */
376#define CNTRL_9054      0x6c	/* Control Register */
377
378#define INTCSR_9052     0x4c	/* Interrupt control/status register */
379#define INTCSR_9054     0x68	/* Interrupt control/status register */
380
381/* 9054 DMA Registers */
382/*
383 * Note that we will be using DMA Channel 0 for copying rx data
384 * and Channel 1 for copying tx data
385 */
386#define DMAMODE0        0x80
387#define DMAPADR0        0x84
388#define DMALADR0        0x88
389#define DMASIZ0         0x8c
390#define DMADPR0         0x90
391#define DMAMODE1        0x94
392#define DMAPADR1        0x98
393#define DMALADR1        0x9c
394#define DMASIZ1         0xa0
395#define DMADPR1         0xa4
396#define DMACSR0         0xa8
397#define DMACSR1         0xa9
398#define DMAARB          0xac
399#define DMATHR          0xb0
400#define DMADAC0         0xb4
401#define DMADAC1         0xb8
402#define DMAMARBR        0xac
403
404#define FST_MIN_DMA_LEN 64
405#define FST_RX_DMA_INT  0x01
406#define FST_TX_DMA_INT  0x02
407#define FST_CARD_INT    0x04
408
409/* Larger buffers are positioned in memory at offset BFM_BASE */
410struct buf_window {
411	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
412	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
413};
414
415/* Calculate offset of a buffer object within the shared memory window */
416#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
417
418#pragma pack()
419
420/*      Device driver private information
421 *      =================================
422 */
423/*      Per port (line or channel) information
424 */
425struct fst_port_info {
426        struct net_device *dev; /* Device struct - must be first */
427	struct fst_card_info *card;	/* Card we're associated with */
428	int index;		/* Port index on the card */
429	int hwif;		/* Line hardware (lineInterface copy) */
430	int run;		/* Port is running */
431	int mode;		/* Normal or FarSync raw */
432	int rxpos;		/* Next Rx buffer to use */
433	int txpos;		/* Next Tx buffer to use */
434	int txipos;		/* Next Tx buffer to check for free */
435	int start;		/* Indication of start/stop to network */
436	/*
437	 * A sixteen entry transmit queue
438	 */
439	int txqs;		/* index to get next buffer to tx */
440	int txqe;		/* index to queue next packet */
441	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
442	int rxqdepth;
443};
444
445/*      Per card information
446 */
447struct fst_card_info {
448	char __iomem *mem;	/* Card memory mapped to kernel space */
449	char __iomem *ctlmem;	/* Control memory for PCI cards */
450	unsigned int phys_mem;	/* Physical memory window address */
451	unsigned int phys_ctlmem;	/* Physical control memory address */
452	unsigned int irq;	/* Interrupt request line number */
453	unsigned int nports;	/* Number of serial ports */
454	unsigned int type;	/* Type index of card */
455	unsigned int state;	/* State of card */
456	spinlock_t card_lock;	/* Lock for SMP access */
457	unsigned short pci_conf;	/* PCI card config in I/O space */
458	/* Per port info */
459	struct fst_port_info ports[FST_MAX_PORTS];
460	struct pci_dev *device;	/* Information about the pci device */
461	int card_no;		/* Inst of the card on the system */
462	int family;		/* TxP or TxU */
463	int dmarx_in_progress;
464	int dmatx_in_progress;
465	unsigned long int_count;
466	unsigned long int_time_ave;
467	void *rx_dma_handle_host;
468	dma_addr_t rx_dma_handle_card;
469	void *tx_dma_handle_host;
470	dma_addr_t tx_dma_handle_card;
471	struct sk_buff *dma_skb_rx;
472	struct fst_port_info *dma_port_rx;
473	struct fst_port_info *dma_port_tx;
474	int dma_len_rx;
475	int dma_len_tx;
476	int dma_txpos;
477	int dma_rxpos;
478};
479
480/* Convert an HDLC device pointer into a port info pointer and similar */
481#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
482#define port_to_dev(P)  ((P)->dev)
483
484
485/*
486 *      Shared memory window access macros
487 *
488 *      We have a nice memory based structure above, which could be directly
489 *      mapped on i386 but might not work on other architectures unless we use
490 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
491 *      physical offsets so we have to convert. The only saving grace is that
492 *      this should all collapse back to a simple indirection eventually.
493 */
494#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
495
496#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
497#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
498#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
499
500#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
501#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
502#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
503
504/*
505 *      Debug support
506 */
507#if FST_DEBUG
508
509static int fst_debug_mask = { FST_DEBUG };
510
511/* Most common debug activity is to print something if the corresponding bit
512 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
513 * support variable numbers of macro parameters. The inverted if prevents us
514 * eating someone else's else clause.
515 */
516#define dbg(F, fmt, args...)					\
517do {								\
518	if (fst_debug_mask & (F))				\
519		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
520} while (0)
521#else
522#define dbg(F, fmt, args...)					\
523do {								\
524	if (0)							\
525		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
526} while (0)
527#endif
528
529/*
530 *      PCI ID lookup table
531 */
532static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
533	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
534	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
535
536	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
537	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
538
539	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
540	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
541
542	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
543	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
544
545	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
546	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
547
548	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
549	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
550
551	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
552	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
553	{0,}			/* End */
554};
555
556MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
557
558/*
559 *      Device Driver Work Queues
560 *
561 *      So that we don't spend too much time processing events in the
562 *      Interrupt Service routine, we will declare a work queue per Card
563 *      and make the ISR schedule a task in the queue for later execution.
564 *      In the 2.4 Kernel we used to use the immediate queue for BH's
565 *      Now that they are gone, tasklets seem to be much better than work
566 *      queues.
567 */
568
569static void do_bottom_half_tx(struct fst_card_info *card);
570static void do_bottom_half_rx(struct fst_card_info *card);
571static void fst_process_tx_work_q(unsigned long work_q);
572static void fst_process_int_work_q(unsigned long work_q);
573
574static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
575static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
576
577static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
578static spinlock_t fst_work_q_lock;
579static u64 fst_work_txq;
580static u64 fst_work_intq;
581
582static void
583fst_q_work_item(u64 * queue, int card_index)
584{
585	unsigned long flags;
586	u64 mask;
587
588	/*
589	 * Grab the queue exclusively
590	 */
591	spin_lock_irqsave(&fst_work_q_lock, flags);
592
593	/*
594	 * Making an entry in the queue is simply a matter of setting
595	 * a bit for the card indicating that there is work to do in the
596	 * bottom half for the card.  Note the limitation of 64 cards.
597	 * That ought to be enough
598	 */
599	mask = 1 << card_index;
600	*queue |= mask;
601	spin_unlock_irqrestore(&fst_work_q_lock, flags);
602}
603
604static void
605fst_process_tx_work_q(unsigned long /*void **/work_q)
606{
607	unsigned long flags;
608	u64 work_txq;
609	int i;
610
611	/*
612	 * Grab the queue exclusively
613	 */
614	dbg(DBG_TX, "fst_process_tx_work_q\n");
615	spin_lock_irqsave(&fst_work_q_lock, flags);
616	work_txq = fst_work_txq;
617	fst_work_txq = 0;
618	spin_unlock_irqrestore(&fst_work_q_lock, flags);
619
620	/*
621	 * Call the bottom half for each card with work waiting
622	 */
623	for (i = 0; i < FST_MAX_CARDS; i++) {
624		if (work_txq & 0x01) {
625			if (fst_card_array[i] != NULL) {
626				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
627				do_bottom_half_tx(fst_card_array[i]);
628			}
629		}
630		work_txq = work_txq >> 1;
631	}
632}
633
634static void
635fst_process_int_work_q(unsigned long /*void **/work_q)
636{
637	unsigned long flags;
638	u64 work_intq;
639	int i;
640
641	/*
642	 * Grab the queue exclusively
643	 */
644	dbg(DBG_INTR, "fst_process_int_work_q\n");
645	spin_lock_irqsave(&fst_work_q_lock, flags);
646	work_intq = fst_work_intq;
647	fst_work_intq = 0;
648	spin_unlock_irqrestore(&fst_work_q_lock, flags);
649
650	/*
651	 * Call the bottom half for each card with work waiting
652	 */
653	for (i = 0; i < FST_MAX_CARDS; i++) {
654		if (work_intq & 0x01) {
655			if (fst_card_array[i] != NULL) {
656				dbg(DBG_INTR,
657				    "Calling rx & tx bh for card %d\n", i);
658				do_bottom_half_rx(fst_card_array[i]);
659				do_bottom_half_tx(fst_card_array[i]);
660			}
661		}
662		work_intq = work_intq >> 1;
663	}
664}
665
666/*      Card control functions
667 *      ======================
668 */
669/*      Place the processor in reset state
670 *
671 * Used to be a simple write to card control space but a glitch in the latest
672 * AMD Am186CH processor means that we now have to do it by asserting and de-
673 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
674 * at offset 9052_CNTRL.  Note the updates for the TXU.
675 */
676static inline void
677fst_cpureset(struct fst_card_info *card)
678{
679	unsigned char interrupt_line_register;
680	unsigned long j = jiffies + 1;
681	unsigned int regval;
682
683	if (card->family == FST_FAMILY_TXU) {
684		if (pci_read_config_byte
685		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
686			dbg(DBG_ASS,
687			    "Error in reading interrupt line register\n");
688		}
689		/*
690		 * Assert PLX software reset and Am186 hardware reset
691		 * and then deassert the PLX software reset but 186 still in reset
692		 */
693		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
694		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
695		/*
696		 * We are delaying here to allow the 9054 to reset itself
697		 */
698		j = jiffies + 1;
699		while (jiffies < j)
700			/* Do nothing */ ;
701		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
702		/*
703		 * We are delaying here to allow the 9054 to reload its eeprom
704		 */
705		j = jiffies + 1;
706		while (jiffies < j)
707			/* Do nothing */ ;
708		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
709
710		if (pci_write_config_byte
711		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
712			dbg(DBG_ASS,
713			    "Error in writing interrupt line register\n");
714		}
715
716	} else {
717		regval = inl(card->pci_conf + CNTRL_9052);
718
719		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
720		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
721	}
722}
723
724/*      Release the processor from reset
725 */
726static inline void
727fst_cpurelease(struct fst_card_info *card)
728{
729	if (card->family == FST_FAMILY_TXU) {
730		/*
731		 * Force posted writes to complete
732		 */
733		(void) readb(card->mem);
734
735		/*
736		 * Release LRESET DO = 1
737		 * Then release Local Hold, DO = 1
738		 */
739		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
740		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
741	} else {
742		(void) readb(card->ctlmem);
743	}
744}
745
746/*      Clear the cards interrupt flag
747 */
748static inline void
749fst_clear_intr(struct fst_card_info *card)
750{
751	if (card->family == FST_FAMILY_TXU) {
752		(void) readb(card->ctlmem);
753	} else {
754		/* Poke the appropriate PLX chip register (same as enabling interrupts)
755		 */
756		outw(0x0543, card->pci_conf + INTCSR_9052);
757	}
758}
759
760/*      Enable card interrupts
761 */
762static inline void
763fst_enable_intr(struct fst_card_info *card)
764{
765	if (card->family == FST_FAMILY_TXU) {
766		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
767	} else {
768		outw(0x0543, card->pci_conf + INTCSR_9052);
769	}
770}
771
772/*      Disable card interrupts
773 */
774static inline void
775fst_disable_intr(struct fst_card_info *card)
776{
777	if (card->family == FST_FAMILY_TXU) {
778		outl(0x00000000, card->pci_conf + INTCSR_9054);
779	} else {
780		outw(0x0000, card->pci_conf + INTCSR_9052);
781	}
782}
783
784/*      Process the result of trying to pass a received frame up the stack
785 */
786static void
787fst_process_rx_status(int rx_status, char *name)
788{
789	switch (rx_status) {
790	case NET_RX_SUCCESS:
791		{
792			/*
793			 * Nothing to do here
794			 */
795			break;
796		}
797	case NET_RX_DROP:
798		{
799			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
800			break;
801		}
802	}
803}
804
805/*      Initilaise DMA for PLX 9054
806 */
807static inline void
808fst_init_dma(struct fst_card_info *card)
809{
810	/*
811	 * This is only required for the PLX 9054
812	 */
813	if (card->family == FST_FAMILY_TXU) {
814	        pci_set_master(card->device);
815		outl(0x00020441, card->pci_conf + DMAMODE0);
816		outl(0x00020441, card->pci_conf + DMAMODE1);
817		outl(0x0, card->pci_conf + DMATHR);
818	}
819}
820
821/*      Tx dma complete interrupt
822 */
823static void
824fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
825		    int len, int txpos)
826{
827	struct net_device *dev = port_to_dev(port);
828
829	/*
830	 * Everything is now set, just tell the card to go
831	 */
832	dbg(DBG_TX, "fst_tx_dma_complete\n");
833	FST_WRB(card, txDescrRing[port->index][txpos].bits,
834		DMA_OWN | TX_STP | TX_ENP);
835	dev->stats.tx_packets++;
836	dev->stats.tx_bytes += len;
837	dev->trans_start = jiffies;
838}
839
840/*
841 * Mark it for our own raw sockets interface
842 */
843static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
844{
845	skb->dev = dev;
846	skb_reset_mac_header(skb);
847	skb->pkt_type = PACKET_HOST;
848	return htons(ETH_P_CUST);
849}
850
851/*      Rx dma complete interrupt
852 */
853static void
854fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
855		    int len, struct sk_buff *skb, int rxp)
856{
857	struct net_device *dev = port_to_dev(port);
858	int pi;
859	int rx_status;
860
861	dbg(DBG_TX, "fst_rx_dma_complete\n");
862	pi = port->index;
863	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
864
865	/* Reset buffer descriptor */
866	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
867
868	/* Update stats */
869	dev->stats.rx_packets++;
870	dev->stats.rx_bytes += len;
871
872	/* Push upstream */
873	dbg(DBG_RX, "Pushing the frame up the stack\n");
874	if (port->mode == FST_RAW)
875		skb->protocol = farsync_type_trans(skb, dev);
876	else
877		skb->protocol = hdlc_type_trans(skb, dev);
878	rx_status = netif_rx(skb);
879	fst_process_rx_status(rx_status, port_to_dev(port)->name);
880	if (rx_status == NET_RX_DROP)
881		dev->stats.rx_dropped++;
882}
883
884/*
885 *      Receive a frame through the DMA
886 */
887static inline void
888fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
889	   dma_addr_t mem, int len)
890{
891	/*
892	 * This routine will setup the DMA and start it
893	 */
894
895	dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
896	    (unsigned long) skb, (unsigned long) mem, len);
897	if (card->dmarx_in_progress) {
898		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
899	}
900
901	outl(skb, card->pci_conf + DMAPADR0);	/* Copy to here */
902	outl(mem, card->pci_conf + DMALADR0);	/* from here */
903	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
904	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
905
906	/*
907	 * We use the dmarx_in_progress flag to flag the channel as busy
908	 */
909	card->dmarx_in_progress = 1;
910	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
911}
912
913/*
914 *      Send a frame through the DMA
915 */
916static inline void
917fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
918	   unsigned char *mem, int len)
919{
920	/*
921	 * This routine will setup the DMA and start it.
922	 */
923
924	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
925	if (card->dmatx_in_progress) {
926		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
927	}
928
929	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
930	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
931	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
932	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
933
934	/*
935	 * We use the dmatx_in_progress to flag the channel as busy
936	 */
937	card->dmatx_in_progress = 1;
938	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
939}
940
941/*      Issue a Mailbox command for a port.
942 *      Note we issue them on a fire and forget basis, not expecting to see an
943 *      error and not waiting for completion.
944 */
945static void
946fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
947{
948	struct fst_card_info *card;
949	unsigned short mbval;
950	unsigned long flags;
951	int safety;
952
953	card = port->card;
954	spin_lock_irqsave(&card->card_lock, flags);
955	mbval = FST_RDW(card, portMailbox[port->index][0]);
956
957	safety = 0;
958	/* Wait for any previous command to complete */
959	while (mbval > NAK) {
960		spin_unlock_irqrestore(&card->card_lock, flags);
961		schedule_timeout_uninterruptible(1);
962		spin_lock_irqsave(&card->card_lock, flags);
963
964		if (++safety > 2000) {
965			pr_err("Mailbox safety timeout\n");
966			break;
967		}
968
969		mbval = FST_RDW(card, portMailbox[port->index][0]);
970	}
971	if (safety > 0) {
972		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
973	}
974	if (mbval == NAK) {
975		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
976	}
977
978	FST_WRW(card, portMailbox[port->index][0], cmd);
979
980	if (cmd == ABORTTX || cmd == STARTPORT) {
981		port->txpos = 0;
982		port->txipos = 0;
983		port->start = 0;
984	}
985
986	spin_unlock_irqrestore(&card->card_lock, flags);
987}
988
989/*      Port output signals control
990 */
991static inline void
992fst_op_raise(struct fst_port_info *port, unsigned int outputs)
993{
994	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
995	FST_WRL(port->card, v24OpSts[port->index], outputs);
996
997	if (port->run)
998		fst_issue_cmd(port, SETV24O);
999}
1000
1001static inline void
1002fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1003{
1004	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1005	FST_WRL(port->card, v24OpSts[port->index], outputs);
1006
1007	if (port->run)
1008		fst_issue_cmd(port, SETV24O);
1009}
1010
1011/*
1012 *      Setup port Rx buffers
1013 */
1014static void
1015fst_rx_config(struct fst_port_info *port)
1016{
1017	int i;
1018	int pi;
1019	unsigned int offset;
1020	unsigned long flags;
1021	struct fst_card_info *card;
1022
1023	pi = port->index;
1024	card = port->card;
1025	spin_lock_irqsave(&card->card_lock, flags);
1026	for (i = 0; i < NUM_RX_BUFFER; i++) {
1027		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1028
1029		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1030		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1031		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1032		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1033		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1034	}
1035	port->rxpos = 0;
1036	spin_unlock_irqrestore(&card->card_lock, flags);
1037}
1038
1039/*
1040 *      Setup port Tx buffers
1041 */
1042static void
1043fst_tx_config(struct fst_port_info *port)
1044{
1045	int i;
1046	int pi;
1047	unsigned int offset;
1048	unsigned long flags;
1049	struct fst_card_info *card;
1050
1051	pi = port->index;
1052	card = port->card;
1053	spin_lock_irqsave(&card->card_lock, flags);
1054	for (i = 0; i < NUM_TX_BUFFER; i++) {
1055		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1056
1057		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1058		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1059		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1060		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1061	}
1062	port->txpos = 0;
1063	port->txipos = 0;
1064	port->start = 0;
1065	spin_unlock_irqrestore(&card->card_lock, flags);
1066}
1067
1068/*      TE1 Alarm change interrupt event
1069 */
1070static void
1071fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1072{
1073	u8 los;
1074	u8 rra;
1075	u8 ais;
1076
1077	los = FST_RDB(card, suStatus.lossOfSignal);
1078	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1079	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1080
1081	if (los) {
1082		/*
1083		 * Lost the link
1084		 */
1085		if (netif_carrier_ok(port_to_dev(port))) {
1086			dbg(DBG_INTR, "Net carrier off\n");
1087			netif_carrier_off(port_to_dev(port));
1088		}
1089	} else {
1090		/*
1091		 * Link available
1092		 */
1093		if (!netif_carrier_ok(port_to_dev(port))) {
1094			dbg(DBG_INTR, "Net carrier on\n");
1095			netif_carrier_on(port_to_dev(port));
1096		}
1097	}
1098
1099	if (los)
1100		dbg(DBG_INTR, "Assert LOS Alarm\n");
1101	else
1102		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1103	if (rra)
1104		dbg(DBG_INTR, "Assert RRA Alarm\n");
1105	else
1106		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1107
1108	if (ais)
1109		dbg(DBG_INTR, "Assert AIS Alarm\n");
1110	else
1111		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1112}
1113
1114/*      Control signal change interrupt event
1115 */
1116static void
1117fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1118{
1119	int signals;
1120
1121	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1122
1123	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1124		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1125		if (!netif_carrier_ok(port_to_dev(port))) {
1126			dbg(DBG_INTR, "DCD active\n");
1127			netif_carrier_on(port_to_dev(port));
1128		}
1129	} else {
1130		if (netif_carrier_ok(port_to_dev(port))) {
1131			dbg(DBG_INTR, "DCD lost\n");
1132			netif_carrier_off(port_to_dev(port));
1133		}
1134	}
1135}
1136
1137/*      Log Rx Errors
1138 */
1139static void
1140fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1141		 unsigned char dmabits, int rxp, unsigned short len)
1142{
1143	struct net_device *dev = port_to_dev(port);
1144
1145	/*
1146	 * Increment the appropriate error counter
1147	 */
1148	dev->stats.rx_errors++;
1149	if (dmabits & RX_OFLO) {
1150		dev->stats.rx_fifo_errors++;
1151		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1152		    card->card_no, port->index, rxp);
1153	}
1154	if (dmabits & RX_CRC) {
1155		dev->stats.rx_crc_errors++;
1156		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1157		    card->card_no, port->index);
1158	}
1159	if (dmabits & RX_FRAM) {
1160		dev->stats.rx_frame_errors++;
1161		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1162		    card->card_no, port->index);
1163	}
1164	if (dmabits == (RX_STP | RX_ENP)) {
1165		dev->stats.rx_length_errors++;
1166		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1167		    len, card->card_no, port->index);
1168	}
1169}
1170
1171/*      Rx Error Recovery
1172 */
1173static void
1174fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1175		     unsigned char dmabits, int rxp, unsigned short len)
1176{
1177	int i;
1178	int pi;
1179
1180	pi = port->index;
1181	/*
1182	 * Discard buffer descriptors until we see the start of the
1183	 * next frame.  Note that for long frames this could be in
1184	 * a subsequent interrupt.
1185	 */
1186	i = 0;
1187	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1188		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1189		rxp = (rxp+1) % NUM_RX_BUFFER;
1190		if (++i > NUM_RX_BUFFER) {
1191			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1192			    " than we have\n");
1193			break;
1194		}
1195		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1196		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1197	}
1198	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1199
1200	/* Discard the terminal buffer */
1201	if (!(dmabits & DMA_OWN)) {
1202		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1203		rxp = (rxp+1) % NUM_RX_BUFFER;
1204	}
1205	port->rxpos = rxp;
1206	return;
1207
1208}
1209
1210/*      Rx complete interrupt
1211 */
1212static void
1213fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1214{
1215	unsigned char dmabits;
1216	int pi;
1217	int rxp;
1218	int rx_status;
1219	unsigned short len;
1220	struct sk_buff *skb;
1221	struct net_device *dev = port_to_dev(port);
1222
1223	/* Check we have a buffer to process */
1224	pi = port->index;
1225	rxp = port->rxpos;
1226	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1227	if (dmabits & DMA_OWN) {
1228		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1229		    pi, rxp);
1230		return;
1231	}
1232	if (card->dmarx_in_progress) {
1233		return;
1234	}
1235
1236	/* Get buffer length */
1237	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1238	/* Discard the CRC */
1239	len -= 2;
1240	if (len == 0) {
1241		/*
1242		 * This seems to happen on the TE1 interface sometimes
1243		 * so throw the frame away and log the event.
1244		 */
1245		pr_err("Frame received with 0 length. Card %d Port %d\n",
1246		       card->card_no, port->index);
1247		/* Return descriptor to card */
1248		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1249
1250		rxp = (rxp+1) % NUM_RX_BUFFER;
1251		port->rxpos = rxp;
1252		return;
1253	}
1254
1255	/* Check buffer length and for other errors. We insist on one packet
1256	 * in one buffer. This simplifies things greatly and since we've
1257	 * allocated 8K it shouldn't be a real world limitation
1258	 */
1259	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1260	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1261		fst_log_rx_error(card, port, dmabits, rxp, len);
1262		fst_recover_rx_error(card, port, dmabits, rxp, len);
1263		return;
1264	}
1265
1266	/* Allocate SKB */
1267	if ((skb = dev_alloc_skb(len)) == NULL) {
1268		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1269
1270		dev->stats.rx_dropped++;
1271
1272		/* Return descriptor to card */
1273		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1274
1275		rxp = (rxp+1) % NUM_RX_BUFFER;
1276		port->rxpos = rxp;
1277		return;
1278	}
1279
1280	/*
1281	 * We know the length we need to receive, len.
1282	 * It's not worth using the DMA for reads of less than
1283	 * FST_MIN_DMA_LEN
1284	 */
1285
1286	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1287		memcpy_fromio(skb_put(skb, len),
1288			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1289			      len);
1290
1291		/* Reset buffer descriptor */
1292		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1293
1294		/* Update stats */
1295		dev->stats.rx_packets++;
1296		dev->stats.rx_bytes += len;
1297
1298		/* Push upstream */
1299		dbg(DBG_RX, "Pushing frame up the stack\n");
1300		if (port->mode == FST_RAW)
1301			skb->protocol = farsync_type_trans(skb, dev);
1302		else
1303			skb->protocol = hdlc_type_trans(skb, dev);
1304		rx_status = netif_rx(skb);
1305		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1306		if (rx_status == NET_RX_DROP)
1307			dev->stats.rx_dropped++;
1308	} else {
1309		card->dma_skb_rx = skb;
1310		card->dma_port_rx = port;
1311		card->dma_len_rx = len;
1312		card->dma_rxpos = rxp;
1313		fst_rx_dma(card, card->rx_dma_handle_card,
1314			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1315	}
1316	if (rxp != port->rxpos) {
1317		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1318		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1319	}
1320	rxp = (rxp+1) % NUM_RX_BUFFER;
1321	port->rxpos = rxp;
1322}
1323
1324/*
1325 *      The bottom halfs to the ISR
1326 *
1327 */
1328
1329static void
1330do_bottom_half_tx(struct fst_card_info *card)
1331{
1332	struct fst_port_info *port;
1333	int pi;
1334	int txq_length;
1335	struct sk_buff *skb;
1336	unsigned long flags;
1337	struct net_device *dev;
1338
1339	/*
1340	 *  Find a free buffer for the transmit
1341	 *  Step through each port on this card
1342	 */
1343
1344	dbg(DBG_TX, "do_bottom_half_tx\n");
1345	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1346		if (!port->run)
1347			continue;
1348
1349		dev = port_to_dev(port);
1350		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1351			 DMA_OWN) &&
1352		       !(card->dmatx_in_progress)) {
1353			/*
1354			 * There doesn't seem to be a txdone event per-se
1355			 * We seem to have to deduce it, by checking the DMA_OWN
1356			 * bit on the next buffer we think we can use
1357			 */
1358			spin_lock_irqsave(&card->card_lock, flags);
1359			if ((txq_length = port->txqe - port->txqs) < 0) {
1360				/*
1361				 * This is the case where one has wrapped and the
1362				 * maths gives us a negative number
1363				 */
1364				txq_length = txq_length + FST_TXQ_DEPTH;
1365			}
1366			spin_unlock_irqrestore(&card->card_lock, flags);
1367			if (txq_length > 0) {
1368				/*
1369				 * There is something to send
1370				 */
1371				spin_lock_irqsave(&card->card_lock, flags);
1372				skb = port->txq[port->txqs];
1373				port->txqs++;
1374				if (port->txqs == FST_TXQ_DEPTH) {
1375					port->txqs = 0;
1376				}
1377				spin_unlock_irqrestore(&card->card_lock, flags);
1378				/*
1379				 * copy the data and set the required indicators on the
1380				 * card.
1381				 */
1382				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1383					cnv_bcnt(skb->len));
1384				if ((skb->len < FST_MIN_DMA_LEN) ||
1385				    (card->family == FST_FAMILY_TXP)) {
1386					/* Enqueue the packet with normal io */
1387					memcpy_toio(card->mem +
1388						    BUF_OFFSET(txBuffer[pi]
1389							       [port->
1390								txpos][0]),
1391						    skb->data, skb->len);
1392					FST_WRB(card,
1393						txDescrRing[pi][port->txpos].
1394						bits,
1395						DMA_OWN | TX_STP | TX_ENP);
1396					dev->stats.tx_packets++;
1397					dev->stats.tx_bytes += skb->len;
1398					dev->trans_start = jiffies;
1399				} else {
1400					/* Or do it through dma */
1401					memcpy(card->tx_dma_handle_host,
1402					       skb->data, skb->len);
1403					card->dma_port_tx = port;
1404					card->dma_len_tx = skb->len;
1405					card->dma_txpos = port->txpos;
1406					fst_tx_dma(card,
1407						   (char *) card->
1408						   tx_dma_handle_card,
1409						   (char *)
1410						   BUF_OFFSET(txBuffer[pi]
1411							      [port->txpos][0]),
1412						   skb->len);
1413				}
1414				if (++port->txpos >= NUM_TX_BUFFER)
1415					port->txpos = 0;
1416				/*
1417				 * If we have flow control on, can we now release it?
1418				 */
1419				if (port->start) {
1420					if (txq_length < fst_txq_low) {
1421						netif_wake_queue(port_to_dev
1422								 (port));
1423						port->start = 0;
1424					}
1425				}
1426				dev_kfree_skb(skb);
1427			} else {
1428				/*
1429				 * Nothing to send so break out of the while loop
1430				 */
1431				break;
1432			}
1433		}
1434	}
1435}
1436
1437static void
1438do_bottom_half_rx(struct fst_card_info *card)
1439{
1440	struct fst_port_info *port;
1441	int pi;
1442	int rx_count = 0;
1443
1444	/* Check for rx completions on all ports on this card */
1445	dbg(DBG_RX, "do_bottom_half_rx\n");
1446	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1447		if (!port->run)
1448			continue;
1449
1450		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1451			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1452			if (rx_count > fst_max_reads) {
1453				/*
1454				 * Don't spend forever in receive processing
1455				 * Schedule another event
1456				 */
1457				fst_q_work_item(&fst_work_intq, card->card_no);
1458				tasklet_schedule(&fst_int_task);
1459				break;	/* Leave the loop */
1460			}
1461			fst_intr_rx(card, port);
1462			rx_count++;
1463		}
1464	}
1465}
1466
1467/*
1468 *      The interrupt service routine
1469 *      Dev_id is our fst_card_info pointer
1470 */
1471static irqreturn_t
1472fst_intr(int dummy, void *dev_id)
1473{
1474	struct fst_card_info *card = dev_id;
1475	struct fst_port_info *port;
1476	int rdidx;		/* Event buffer indices */
1477	int wridx;
1478	int event;		/* Actual event for processing */
1479	unsigned int dma_intcsr = 0;
1480	unsigned int do_card_interrupt;
1481	unsigned int int_retry_count;
1482
1483	/*
1484	 * Check to see if the interrupt was for this card
1485	 * return if not
1486	 * Note that the call to clear the interrupt is important
1487	 */
1488	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1489	if (card->state != FST_RUNNING) {
1490		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1491		       card->card_no, card->state);
1492
1493		/*
1494		 * It is possible to really be running, i.e. we have re-loaded
1495		 * a running card
1496		 * Clear and reprime the interrupt source
1497		 */
1498		fst_clear_intr(card);
1499		return IRQ_HANDLED;
1500	}
1501
1502	/* Clear and reprime the interrupt source */
1503	fst_clear_intr(card);
1504
1505	/*
1506	 * Is the interrupt for this card (handshake == 1)
1507	 */
1508	do_card_interrupt = 0;
1509	if (FST_RDB(card, interruptHandshake) == 1) {
1510		do_card_interrupt += FST_CARD_INT;
1511		/* Set the software acknowledge */
1512		FST_WRB(card, interruptHandshake, 0xEE);
1513	}
1514	if (card->family == FST_FAMILY_TXU) {
1515		/*
1516		 * Is it a DMA Interrupt
1517		 */
1518		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1519		if (dma_intcsr & 0x00200000) {
1520			/*
1521			 * DMA Channel 0 (Rx transfer complete)
1522			 */
1523			dbg(DBG_RX, "DMA Rx xfer complete\n");
1524			outb(0x8, card->pci_conf + DMACSR0);
1525			fst_rx_dma_complete(card, card->dma_port_rx,
1526					    card->dma_len_rx, card->dma_skb_rx,
1527					    card->dma_rxpos);
1528			card->dmarx_in_progress = 0;
1529			do_card_interrupt += FST_RX_DMA_INT;
1530		}
1531		if (dma_intcsr & 0x00400000) {
1532			/*
1533			 * DMA Channel 1 (Tx transfer complete)
1534			 */
1535			dbg(DBG_TX, "DMA Tx xfer complete\n");
1536			outb(0x8, card->pci_conf + DMACSR1);
1537			fst_tx_dma_complete(card, card->dma_port_tx,
1538					    card->dma_len_tx, card->dma_txpos);
1539			card->dmatx_in_progress = 0;
1540			do_card_interrupt += FST_TX_DMA_INT;
1541		}
1542	}
1543
1544	/*
1545	 * Have we been missing Interrupts
1546	 */
1547	int_retry_count = FST_RDL(card, interruptRetryCount);
1548	if (int_retry_count) {
1549		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1550		    card->card_no, int_retry_count);
1551		FST_WRL(card, interruptRetryCount, 0);
1552	}
1553
1554	if (!do_card_interrupt) {
1555		return IRQ_HANDLED;
1556	}
1557
1558	/* Scehdule the bottom half of the ISR */
1559	fst_q_work_item(&fst_work_intq, card->card_no);
1560	tasklet_schedule(&fst_int_task);
1561
1562	/* Drain the event queue */
1563	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1564	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1565	while (rdidx != wridx) {
1566		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1567		port = &card->ports[event & 0x03];
1568
1569		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1570
1571		switch (event) {
1572		case TE1_ALMA:
1573			dbg(DBG_INTR, "TE1 Alarm intr\n");
1574			if (port->run)
1575				fst_intr_te1_alarm(card, port);
1576			break;
1577
1578		case CTLA_CHG:
1579		case CTLB_CHG:
1580		case CTLC_CHG:
1581		case CTLD_CHG:
1582			if (port->run)
1583				fst_intr_ctlchg(card, port);
1584			break;
1585
1586		case ABTA_SENT:
1587		case ABTB_SENT:
1588		case ABTC_SENT:
1589		case ABTD_SENT:
1590			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1591			break;
1592
1593		case TXA_UNDF:
1594		case TXB_UNDF:
1595		case TXC_UNDF:
1596		case TXD_UNDF:
1597			/* Difficult to see how we'd get this given that we
1598			 * always load up the entire packet for DMA.
1599			 */
1600			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1601			port_to_dev(port)->stats.tx_errors++;
1602			port_to_dev(port)->stats.tx_fifo_errors++;
1603			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1604			    card->card_no, port->index);
1605			break;
1606
1607		case INIT_CPLT:
1608			dbg(DBG_INIT, "Card init OK intr\n");
1609			break;
1610
1611		case INIT_FAIL:
1612			dbg(DBG_INIT, "Card init FAILED intr\n");
1613			card->state = FST_IFAILED;
1614			break;
1615
1616		default:
1617			pr_err("intr: unknown card event %d. ignored\n", event);
1618			break;
1619		}
1620
1621		/* Bump and wrap the index */
1622		if (++rdidx >= MAX_CIRBUFF)
1623			rdidx = 0;
1624	}
1625	FST_WRB(card, interruptEvent.rdindex, rdidx);
1626        return IRQ_HANDLED;
1627}
1628
1629/*      Check that the shared memory configuration is one that we can handle
1630 *      and that some basic parameters are correct
1631 */
1632static void
1633check_started_ok(struct fst_card_info *card)
1634{
1635	int i;
1636
1637	/* Check structure version and end marker */
1638	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1639		pr_err("Bad shared memory version %d expected %d\n",
1640		       FST_RDW(card, smcVersion), SMC_VERSION);
1641		card->state = FST_BADVERSION;
1642		return;
1643	}
1644	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1645		pr_err("Missing shared memory signature\n");
1646		card->state = FST_BADVERSION;
1647		return;
1648	}
1649	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1650	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1651		card->state = FST_RUNNING;
1652	} else if (i == 0xFF) {
1653		pr_err("Firmware initialisation failed. Card halted\n");
1654		card->state = FST_HALTED;
1655		return;
1656	} else if (i != 0x00) {
1657		pr_err("Unknown firmware status 0x%x\n", i);
1658		card->state = FST_HALTED;
1659		return;
1660	}
1661
1662	/* Finally check the number of ports reported by firmware against the
1663	 * number we assumed at card detection. Should never happen with
1664	 * existing firmware etc so we just report it for the moment.
1665	 */
1666	if (FST_RDL(card, numberOfPorts) != card->nports) {
1667		pr_warning("Port count mismatch on card %d. "
1668			   "Firmware thinks %d we say %d\n",
1669			   card->card_no,
1670			   FST_RDL(card, numberOfPorts), card->nports);
1671	}
1672}
1673
1674static int
1675set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676		   struct fstioc_info *info)
1677{
1678	int err;
1679	unsigned char my_framing;
1680
1681	/* Set things according to the user set valid flags
1682	 * Several of the old options have been invalidated/replaced by the
1683	 * generic hdlc package.
1684	 */
1685	err = 0;
1686	if (info->valid & FSTVAL_PROTO) {
1687		if (info->proto == FST_RAW)
1688			port->mode = FST_RAW;
1689		else
1690			port->mode = FST_GEN_HDLC;
1691	}
1692
1693	if (info->valid & FSTVAL_CABLE)
1694		err = -EINVAL;
1695
1696	if (info->valid & FSTVAL_SPEED)
1697		err = -EINVAL;
1698
1699	if (info->valid & FSTVAL_PHASE)
1700		FST_WRB(card, portConfig[port->index].invertClock,
1701			info->invertClock);
1702	if (info->valid & FSTVAL_MODE)
1703		FST_WRW(card, cardMode, info->cardMode);
1704	if (info->valid & FSTVAL_TE1) {
1705		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706		FST_WRB(card, suConfig.clocking, info->clockSource);
1707		my_framing = FRAMING_E1;
1708		if (info->framing == E1)
1709			my_framing = FRAMING_E1;
1710		if (info->framing == T1)
1711			my_framing = FRAMING_T1;
1712		if (info->framing == J1)
1713			my_framing = FRAMING_J1;
1714		FST_WRB(card, suConfig.framing, my_framing);
1715		FST_WRB(card, suConfig.structure, info->structure);
1716		FST_WRB(card, suConfig.interface, info->interface);
1717		FST_WRB(card, suConfig.coding, info->coding);
1718		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719		FST_WRB(card, suConfig.equalizer, info->equalizer);
1720		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721		FST_WRB(card, suConfig.loopMode, info->loopMode);
1722		FST_WRB(card, suConfig.range, info->range);
1723		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727		if (info->idleCode)
1728			FST_WRB(card, suConfig.enableIdleCode, 1);
1729		else
1730			FST_WRB(card, suConfig.enableIdleCode, 0);
1731		FST_WRB(card, suConfig.idleCode, info->idleCode);
1732#if FST_DEBUG
1733		if (info->valid & FSTVAL_TE1) {
1734			printk("Setting TE1 data\n");
1735			printk("Line Speed = %d\n", info->lineSpeed);
1736			printk("Start slot = %d\n", info->startingSlot);
1737			printk("Clock source = %d\n", info->clockSource);
1738			printk("Framing = %d\n", my_framing);
1739			printk("Structure = %d\n", info->structure);
1740			printk("interface = %d\n", info->interface);
1741			printk("Coding = %d\n", info->coding);
1742			printk("Line build out = %d\n", info->lineBuildOut);
1743			printk("Equaliser = %d\n", info->equalizer);
1744			printk("Transparent mode = %d\n",
1745			       info->transparentMode);
1746			printk("Loop mode = %d\n", info->loopMode);
1747			printk("Range = %d\n", info->range);
1748			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750			printk("LOS Threshold = %d\n", info->losThreshold);
1751			printk("Idle Code = %d\n", info->idleCode);
1752		}
1753#endif
1754	}
1755#if FST_DEBUG
1756	if (info->valid & FSTVAL_DEBUG) {
1757		fst_debug_mask = info->debug;
1758	}
1759#endif
1760
1761	return err;
1762}
1763
1764static void
1765gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766		 struct fstioc_info *info)
1767{
1768	int i;
1769
1770	memset(info, 0, sizeof (struct fstioc_info));
1771
1772	i = port->index;
1773	info->kernelVersion = LINUX_VERSION_CODE;
1774	info->nports = card->nports;
1775	info->type = card->type;
1776	info->state = card->state;
1777	info->proto = FST_GEN_HDLC;
1778	info->index = i;
1779#if FST_DEBUG
1780	info->debug = fst_debug_mask;
1781#endif
1782
1783	/* Only mark information as valid if card is running.
1784	 * Copy the data anyway in case it is useful for diagnostics
1785	 */
1786	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787#if FST_DEBUG
1788	    | FSTVAL_DEBUG
1789#endif
1790	    ;
1791
1792	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798	info->clockStatus = FST_RDW(card, clockStatus[i]);
1799	info->cableStatus = FST_RDW(card, cableStatus);
1800	info->cardMode = FST_RDW(card, cardMode);
1801	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803	/*
1804	 * The T2U can report cable presence for both A or B
1805	 * in bits 0 and 1 of cableStatus.  See which port we are and
1806	 * do the mapping.
1807	 */
1808	if (card->family == FST_FAMILY_TXU) {
1809		if (port->index == 0) {
1810			/*
1811			 * Port A
1812			 */
1813			info->cableStatus = info->cableStatus & 1;
1814		} else {
1815			/*
1816			 * Port B
1817			 */
1818			info->cableStatus = info->cableStatus >> 1;
1819			info->cableStatus = info->cableStatus & 1;
1820		}
1821	}
1822	/*
1823	 * Some additional bits if we are TE1
1824	 */
1825	if (card->type == FST_TYPE_TE1) {
1826		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827		info->clockSource = FST_RDB(card, suConfig.clocking);
1828		info->framing = FST_RDB(card, suConfig.framing);
1829		info->structure = FST_RDB(card, suConfig.structure);
1830		info->interface = FST_RDB(card, suConfig.interface);
1831		info->coding = FST_RDB(card, suConfig.coding);
1832		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833		info->equalizer = FST_RDB(card, suConfig.equalizer);
1834		info->loopMode = FST_RDB(card, suConfig.loopMode);
1835		info->range = FST_RDB(card, suConfig.range);
1836		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840		if (FST_RDB(card, suConfig.enableIdleCode))
1841			info->idleCode = FST_RDB(card, suConfig.idleCode);
1842		else
1843			info->idleCode = 0;
1844		info->receiveBufferDelay =
1845		    FST_RDL(card, suStatus.receiveBufferDelay);
1846		info->framingErrorCount =
1847		    FST_RDL(card, suStatus.framingErrorCount);
1848		info->codeViolationCount =
1849		    FST_RDL(card, suStatus.codeViolationCount);
1850		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853		info->receiveRemoteAlarm =
1854		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1855		info->alarmIndicationSignal =
1856		    FST_RDB(card, suStatus.alarmIndicationSignal);
1857	}
1858}
1859
1860static int
1861fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862	      struct ifreq *ifr)
1863{
1864	sync_serial_settings sync;
1865	int i;
1866
1867	if (ifr->ifr_settings.size != sizeof (sync)) {
1868		return -ENOMEM;
1869	}
1870
1871	if (copy_from_user
1872	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873		return -EFAULT;
1874	}
1875
1876	if (sync.loopback)
1877		return -EINVAL;
1878
1879	i = port->index;
1880
1881	switch (ifr->ifr_settings.type) {
1882	case IF_IFACE_V35:
1883		FST_WRW(card, portConfig[i].lineInterface, V35);
1884		port->hwif = V35;
1885		break;
1886
1887	case IF_IFACE_V24:
1888		FST_WRW(card, portConfig[i].lineInterface, V24);
1889		port->hwif = V24;
1890		break;
1891
1892	case IF_IFACE_X21:
1893		FST_WRW(card, portConfig[i].lineInterface, X21);
1894		port->hwif = X21;
1895		break;
1896
1897	case IF_IFACE_X21D:
1898		FST_WRW(card, portConfig[i].lineInterface, X21D);
1899		port->hwif = X21D;
1900		break;
1901
1902	case IF_IFACE_T1:
1903		FST_WRW(card, portConfig[i].lineInterface, T1);
1904		port->hwif = T1;
1905		break;
1906
1907	case IF_IFACE_E1:
1908		FST_WRW(card, portConfig[i].lineInterface, E1);
1909		port->hwif = E1;
1910		break;
1911
1912	case IF_IFACE_SYNC_SERIAL:
1913		break;
1914
1915	default:
1916		return -EINVAL;
1917	}
1918
1919	switch (sync.clock_type) {
1920	case CLOCK_EXT:
1921		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922		break;
1923
1924	case CLOCK_INT:
1925		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926		break;
1927
1928	default:
1929		return -EINVAL;
1930	}
1931	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932	return 0;
1933}
1934
1935static int
1936fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937	      struct ifreq *ifr)
1938{
1939	sync_serial_settings sync;
1940	int i;
1941
1942	/* First check what line type is set, we'll default to reporting X.21
1943	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944	 * changed
1945	 */
1946	switch (port->hwif) {
1947	case E1:
1948		ifr->ifr_settings.type = IF_IFACE_E1;
1949		break;
1950	case T1:
1951		ifr->ifr_settings.type = IF_IFACE_T1;
1952		break;
1953	case V35:
1954		ifr->ifr_settings.type = IF_IFACE_V35;
1955		break;
1956	case V24:
1957		ifr->ifr_settings.type = IF_IFACE_V24;
1958		break;
1959	case X21D:
1960		ifr->ifr_settings.type = IF_IFACE_X21D;
1961		break;
1962	case X21:
1963	default:
1964		ifr->ifr_settings.type = IF_IFACE_X21;
1965		break;
1966	}
1967	if (ifr->ifr_settings.size == 0) {
1968		return 0;	/* only type requested */
1969	}
1970	if (ifr->ifr_settings.size < sizeof (sync)) {
1971		return -ENOMEM;
1972	}
1973
1974	i = port->index;
1975	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976	/* Lucky card and linux use same encoding here */
1977	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1979	sync.loopback = 0;
1980
1981	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982		return -EFAULT;
1983	}
1984
1985	ifr->ifr_settings.size = sizeof (sync);
1986	return 0;
1987}
1988
1989static int
1990fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991{
1992	struct fst_card_info *card;
1993	struct fst_port_info *port;
1994	struct fstioc_write wrthdr;
1995	struct fstioc_info info;
1996	unsigned long flags;
1997	void *buf;
1998
1999	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001	port = dev_to_port(dev);
2002	card = port->card;
2003
2004	if (!capable(CAP_NET_ADMIN))
2005		return -EPERM;
2006
2007	switch (cmd) {
2008	case FSTCPURESET:
2009		fst_cpureset(card);
2010		card->state = FST_RESET;
2011		return 0;
2012
2013	case FSTCPURELEASE:
2014		fst_cpurelease(card);
2015		card->state = FST_STARTING;
2016		return 0;
2017
2018	case FSTWRITE:		/* Code write (download) */
2019
2020		/* First copy in the header with the length and offset of data
2021		 * to write
2022		 */
2023		if (ifr->ifr_data == NULL) {
2024			return -EINVAL;
2025		}
2026		if (copy_from_user(&wrthdr, ifr->ifr_data,
2027				   sizeof (struct fstioc_write))) {
2028			return -EFAULT;
2029		}
2030
2031		/* Sanity check the parameters. We don't support partial writes
2032		 * when going over the top
2033		 */
2034		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036			return -ENXIO;
2037		}
2038
2039		/* Now copy the data to the card. */
2040
2041		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042				  wrthdr.size);
2043		if (IS_ERR(buf))
2044			return PTR_ERR(buf);
2045
2046		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047		kfree(buf);
2048
2049		/* Writes to the memory of a card in the reset state constitute
2050		 * a download
2051		 */
2052		if (card->state == FST_RESET) {
2053			card->state = FST_DOWNLOAD;
2054		}
2055		return 0;
2056
2057	case FSTGETCONF:
2058
2059		/* If card has just been started check the shared memory config
2060		 * version and marker
2061		 */
2062		if (card->state == FST_STARTING) {
2063			check_started_ok(card);
2064
2065			/* If everything checked out enable card interrupts */
2066			if (card->state == FST_RUNNING) {
2067				spin_lock_irqsave(&card->card_lock, flags);
2068				fst_enable_intr(card);
2069				FST_WRB(card, interruptHandshake, 0xEE);
2070				spin_unlock_irqrestore(&card->card_lock, flags);
2071			}
2072		}
2073
2074		if (ifr->ifr_data == NULL) {
2075			return -EINVAL;
2076		}
2077
2078		gather_conf_info(card, port, &info);
2079
2080		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081			return -EFAULT;
2082		}
2083		return 0;
2084
2085	case FSTSETCONF:
2086
2087		/*
2088		 * Most of the settings have been moved to the generic ioctls
2089		 * this just covers debug and board ident now
2090		 */
2091
2092		if (card->state != FST_RUNNING) {
2093			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094			       card->card_no, card->state);
2095			return -EIO;
2096		}
2097		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098			return -EFAULT;
2099		}
2100
2101		return set_conf_from_info(card, port, &info);
2102
2103	case SIOCWANDEV:
2104		switch (ifr->ifr_settings.type) {
2105		case IF_GET_IFACE:
2106			return fst_get_iface(card, port, ifr);
2107
2108		case IF_IFACE_SYNC_SERIAL:
2109		case IF_IFACE_V35:
2110		case IF_IFACE_V24:
2111		case IF_IFACE_X21:
2112		case IF_IFACE_X21D:
2113		case IF_IFACE_T1:
2114		case IF_IFACE_E1:
2115			return fst_set_iface(card, port, ifr);
2116
2117		case IF_PROTO_RAW:
2118			port->mode = FST_RAW;
2119			return 0;
2120
2121		case IF_GET_PROTO:
2122			if (port->mode == FST_RAW) {
2123				ifr->ifr_settings.type = IF_PROTO_RAW;
2124				return 0;
2125			}
2126			return hdlc_ioctl(dev, ifr, cmd);
2127
2128		default:
2129			port->mode = FST_GEN_HDLC;
2130			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131			    ifr->ifr_settings.type);
2132			return hdlc_ioctl(dev, ifr, cmd);
2133		}
2134
2135	default:
2136		/* Not one of ours. Pass through to HDLC package */
2137		return hdlc_ioctl(dev, ifr, cmd);
2138	}
2139}
2140
2141static void
2142fst_openport(struct fst_port_info *port)
2143{
2144	int signals;
2145	int txq_length;
2146
2147	/* Only init things if card is actually running. This allows open to
2148	 * succeed for downloads etc.
2149	 */
2150	if (port->card->state == FST_RUNNING) {
2151		if (port->run) {
2152			dbg(DBG_OPEN, "open: found port already running\n");
2153
2154			fst_issue_cmd(port, STOPPORT);
2155			port->run = 0;
2156		}
2157
2158		fst_rx_config(port);
2159		fst_tx_config(port);
2160		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162		fst_issue_cmd(port, STARTPORT);
2163		port->run = 1;
2164
2165		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167			       ? IPSTS_INDICATE : IPSTS_DCD))
2168			netif_carrier_on(port_to_dev(port));
2169		else
2170			netif_carrier_off(port_to_dev(port));
2171
2172		txq_length = port->txqe - port->txqs;
2173		port->txqe = 0;
2174		port->txqs = 0;
2175	}
2176
2177}
2178
2179static void
2180fst_closeport(struct fst_port_info *port)
2181{
2182	if (port->card->state == FST_RUNNING) {
2183		if (port->run) {
2184			port->run = 0;
2185			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187			fst_issue_cmd(port, STOPPORT);
2188		} else {
2189			dbg(DBG_OPEN, "close: port not running\n");
2190		}
2191	}
2192}
2193
2194static int
2195fst_open(struct net_device *dev)
2196{
2197	int err;
2198	struct fst_port_info *port;
2199
2200	port = dev_to_port(dev);
2201	if (!try_module_get(THIS_MODULE))
2202          return -EBUSY;
2203
2204	if (port->mode != FST_RAW) {
2205		err = hdlc_open(dev);
2206		if (err)
2207			return err;
2208	}
2209
2210	fst_openport(port);
2211	netif_wake_queue(dev);
2212	return 0;
2213}
2214
2215static int
2216fst_close(struct net_device *dev)
2217{
2218	struct fst_port_info *port;
2219	struct fst_card_info *card;
2220	unsigned char tx_dma_done;
2221	unsigned char rx_dma_done;
2222
2223	port = dev_to_port(dev);
2224	card = port->card;
2225
2226	tx_dma_done = inb(card->pci_conf + DMACSR1);
2227	rx_dma_done = inb(card->pci_conf + DMACSR0);
2228	dbg(DBG_OPEN,
2229	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2230	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2231	    rx_dma_done);
2232
2233	netif_stop_queue(dev);
2234	fst_closeport(dev_to_port(dev));
2235	if (port->mode != FST_RAW) {
2236		hdlc_close(dev);
2237	}
2238	module_put(THIS_MODULE);
2239	return 0;
2240}
2241
2242static int
2243fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2244{
2245	/*
2246	 * Setting currently fixed in FarSync card so we check and forget
2247	 */
2248	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2249		return -EINVAL;
2250	return 0;
2251}
2252
2253static void
2254fst_tx_timeout(struct net_device *dev)
2255{
2256	struct fst_port_info *port;
2257	struct fst_card_info *card;
2258
2259	port = dev_to_port(dev);
2260	card = port->card;
2261	dev->stats.tx_errors++;
2262	dev->stats.tx_aborted_errors++;
2263	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2264	    card->card_no, port->index);
2265	fst_issue_cmd(port, ABORTTX);
2266
2267	dev->trans_start = jiffies;
2268	netif_wake_queue(dev);
2269	port->start = 0;
2270}
2271
2272static netdev_tx_t
2273fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2274{
2275	struct fst_card_info *card;
2276	struct fst_port_info *port;
2277	unsigned long flags;
2278	int txq_length;
2279
2280	port = dev_to_port(dev);
2281	card = port->card;
2282	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2283
2284	/* Drop packet with error if we don't have carrier */
2285	if (!netif_carrier_ok(dev)) {
2286		dev_kfree_skb(skb);
2287		dev->stats.tx_errors++;
2288		dev->stats.tx_carrier_errors++;
2289		dbg(DBG_ASS,
2290		    "Tried to transmit but no carrier on card %d port %d\n",
2291		    card->card_no, port->index);
2292		return NETDEV_TX_OK;
2293	}
2294
2295	/* Drop it if it's too big! MTU failure ? */
2296	if (skb->len > LEN_TX_BUFFER) {
2297		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2298		    LEN_TX_BUFFER);
2299		dev_kfree_skb(skb);
2300		dev->stats.tx_errors++;
2301		return NETDEV_TX_OK;
2302	}
2303
2304	/*
2305	 * We are always going to queue the packet
2306	 * so that the bottom half is the only place we tx from
2307	 * Check there is room in the port txq
2308	 */
2309	spin_lock_irqsave(&card->card_lock, flags);
2310	if ((txq_length = port->txqe - port->txqs) < 0) {
2311		/*
2312		 * This is the case where the next free has wrapped but the
2313		 * last used hasn't
2314		 */
2315		txq_length = txq_length + FST_TXQ_DEPTH;
2316	}
2317	spin_unlock_irqrestore(&card->card_lock, flags);
2318	if (txq_length > fst_txq_high) {
2319		/*
2320		 * We have got enough buffers in the pipeline.  Ask the network
2321		 * layer to stop sending frames down
2322		 */
2323		netif_stop_queue(dev);
2324		port->start = 1;	/* I'm using this to signal stop sent up */
2325	}
2326
2327	if (txq_length == FST_TXQ_DEPTH - 1) {
2328		/*
2329		 * This shouldn't have happened but such is life
2330		 */
2331		dev_kfree_skb(skb);
2332		dev->stats.tx_errors++;
2333		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2334		    card->card_no, port->index);
2335		return NETDEV_TX_OK;
2336	}
2337
2338	/*
2339	 * queue the buffer
2340	 */
2341	spin_lock_irqsave(&card->card_lock, flags);
2342	port->txq[port->txqe] = skb;
2343	port->txqe++;
2344	if (port->txqe == FST_TXQ_DEPTH)
2345		port->txqe = 0;
2346	spin_unlock_irqrestore(&card->card_lock, flags);
2347
2348	/* Scehdule the bottom half which now does transmit processing */
2349	fst_q_work_item(&fst_work_txq, card->card_no);
2350	tasklet_schedule(&fst_tx_task);
2351
2352	return NETDEV_TX_OK;
2353}
2354
2355/*
2356 *      Card setup having checked hardware resources.
2357 *      Should be pretty bizarre if we get an error here (kernel memory
2358 *      exhaustion is one possibility). If we do see a problem we report it
2359 *      via a printk and leave the corresponding interface and all that follow
2360 *      disabled.
2361 */
2362static char *type_strings[] __devinitdata = {
2363	"no hardware",		/* Should never be seen */
2364	"FarSync T2P",
2365	"FarSync T4P",
2366	"FarSync T1U",
2367	"FarSync T2U",
2368	"FarSync T4U",
2369	"FarSync TE1"
2370};
2371
2372static void __devinit
2373fst_init_card(struct fst_card_info *card)
2374{
2375	int i;
2376	int err;
2377
2378	/* We're working on a number of ports based on the card ID. If the
2379	 * firmware detects something different later (should never happen)
2380	 * we'll have to revise it in some way then.
2381	 */
2382	for (i = 0; i < card->nports; i++) {
2383                err = register_hdlc_device(card->ports[i].dev);
2384                if (err < 0) {
2385			int j;
2386			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2387			       i, -err);
2388			for (j = i; j < card->nports; j++) {
2389				free_netdev(card->ports[j].dev);
2390				card->ports[j].dev = NULL;
2391			}
2392                        card->nports = i;
2393                        break;
2394                }
2395	}
2396
2397	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2398		port_to_dev(&card->ports[0])->name,
2399		port_to_dev(&card->ports[card->nports - 1])->name,
2400		type_strings[card->type], card->irq, card->nports);
2401}
2402
2403static const struct net_device_ops fst_ops = {
2404	.ndo_open       = fst_open,
2405	.ndo_stop       = fst_close,
2406	.ndo_change_mtu = hdlc_change_mtu,
2407	.ndo_start_xmit = hdlc_start_xmit,
2408	.ndo_do_ioctl   = fst_ioctl,
2409	.ndo_tx_timeout = fst_tx_timeout,
2410};
2411
2412/*
2413 *      Initialise card when detected.
2414 *      Returns 0 to indicate success, or errno otherwise.
2415 */
2416static int __devinit
2417fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2418{
2419	static int no_of_cards_added = 0;
2420	struct fst_card_info *card;
2421	int err = 0;
2422	int i;
2423
2424	printk_once(KERN_INFO
2425		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2426			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2427#if FST_DEBUG
2428	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2429#endif
2430	/*
2431	 * We are going to be clever and allow certain cards not to be
2432	 * configured.  An exclude list can be provided in /etc/modules.conf
2433	 */
2434	if (fst_excluded_cards != 0) {
2435		/*
2436		 * There are cards to exclude
2437		 *
2438		 */
2439		for (i = 0; i < fst_excluded_cards; i++) {
2440			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2441				pr_info("FarSync PCI device %d not assigned\n",
2442					(pdev->devfn) >> 3);
2443				return -EBUSY;
2444			}
2445		}
2446	}
2447
2448	/* Allocate driver private data */
2449	card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2450	if (card == NULL) {
2451		pr_err("FarSync card found but insufficient memory for driver storage\n");
2452		return -ENOMEM;
2453	}
2454
2455	/* Try to enable the device */
2456	if ((err = pci_enable_device(pdev)) != 0) {
2457		pr_err("Failed to enable card. Err %d\n", -err);
2458		kfree(card);
2459		return err;
2460	}
2461
2462	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2463		pr_err("Failed to allocate regions. Err %d\n", -err);
2464		pci_disable_device(pdev);
2465		kfree(card);
2466	        return err;
2467	}
2468
2469	/* Get virtual addresses of memory regions */
2470	card->pci_conf = pci_resource_start(pdev, 1);
2471	card->phys_mem = pci_resource_start(pdev, 2);
2472	card->phys_ctlmem = pci_resource_start(pdev, 3);
2473	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2474		pr_err("Physical memory remap failed\n");
2475		pci_release_regions(pdev);
2476		pci_disable_device(pdev);
2477		kfree(card);
2478		return -ENODEV;
2479	}
2480	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2481		pr_err("Control memory remap failed\n");
2482		pci_release_regions(pdev);
2483		pci_disable_device(pdev);
2484		kfree(card);
2485		return -ENODEV;
2486	}
2487	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2488
2489	/* Register the interrupt handler */
2490	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2491		pr_err("Unable to register interrupt %d\n", card->irq);
2492		pci_release_regions(pdev);
2493		pci_disable_device(pdev);
2494		iounmap(card->ctlmem);
2495		iounmap(card->mem);
2496		kfree(card);
2497		return -ENODEV;
2498	}
2499
2500	/* Record info we need */
2501	card->irq = pdev->irq;
2502	card->type = ent->driver_data;
2503	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2504			(ent->driver_data == FST_TYPE_T4P))
2505	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2506	if ((ent->driver_data == FST_TYPE_T1U) ||
2507	    (ent->driver_data == FST_TYPE_TE1))
2508		card->nports = 1;
2509	else
2510		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2511				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2512
2513	card->state = FST_UNINIT;
2514        spin_lock_init ( &card->card_lock );
2515
2516        for ( i = 0 ; i < card->nports ; i++ ) {
2517		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2518		hdlc_device *hdlc;
2519		if (!dev) {
2520			while (i--)
2521				free_netdev(card->ports[i].dev);
2522			pr_err("FarSync: out of memory\n");
2523                        free_irq(card->irq, card);
2524                        pci_release_regions(pdev);
2525                        pci_disable_device(pdev);
2526                        iounmap(card->ctlmem);
2527                        iounmap(card->mem);
2528                        kfree(card);
2529                        return -ENODEV;
2530		}
2531		card->ports[i].dev    = dev;
2532                card->ports[i].card   = card;
2533                card->ports[i].index  = i;
2534                card->ports[i].run    = 0;
2535
2536		hdlc = dev_to_hdlc(dev);
2537
2538                /* Fill in the net device info */
2539		/* Since this is a PCI setup this is purely
2540		 * informational. Give them the buffer addresses
2541		 * and basic card I/O.
2542		 */
2543                dev->mem_start   = card->phys_mem
2544                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2545                dev->mem_end     = card->phys_mem
2546                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2547                dev->base_addr   = card->pci_conf;
2548                dev->irq         = card->irq;
2549
2550		dev->netdev_ops = &fst_ops;
2551		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2552		dev->watchdog_timeo = FST_TX_TIMEOUT;
2553                hdlc->attach = fst_attach;
2554                hdlc->xmit   = fst_start_xmit;
2555	}
2556
2557	card->device = pdev;
2558
2559	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2560	    card->nports, card->irq);
2561	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2562	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2563
2564	/* Reset the card's processor */
2565	fst_cpureset(card);
2566	card->state = FST_RESET;
2567
2568	/* Initialise DMA (if required) */
2569	fst_init_dma(card);
2570
2571	/* Record driver data for later use */
2572	pci_set_drvdata(pdev, card);
2573
2574	/* Remainder of card setup */
2575	fst_card_array[no_of_cards_added] = card;
2576	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2577	fst_init_card(card);
2578	if (card->family == FST_FAMILY_TXU) {
2579		/*
2580		 * Allocate a dma buffer for transmit and receives
2581		 */
2582		card->rx_dma_handle_host =
2583		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2584					 &card->rx_dma_handle_card);
2585		if (card->rx_dma_handle_host == NULL) {
2586			pr_err("Could not allocate rx dma buffer\n");
2587			fst_disable_intr(card);
2588			pci_release_regions(pdev);
2589			pci_disable_device(pdev);
2590			iounmap(card->ctlmem);
2591			iounmap(card->mem);
2592			kfree(card);
2593			return -ENOMEM;
2594		}
2595		card->tx_dma_handle_host =
2596		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2597					 &card->tx_dma_handle_card);
2598		if (card->tx_dma_handle_host == NULL) {
2599			pr_err("Could not allocate tx dma buffer\n");
2600			fst_disable_intr(card);
2601			pci_release_regions(pdev);
2602			pci_disable_device(pdev);
2603			iounmap(card->ctlmem);
2604			iounmap(card->mem);
2605			kfree(card);
2606			return -ENOMEM;
2607		}
2608	}
2609	return 0;		/* Success */
2610}
2611
2612/*
2613 *      Cleanup and close down a card
2614 */
2615static void __devexit
2616fst_remove_one(struct pci_dev *pdev)
2617{
2618	struct fst_card_info *card;
2619	int i;
2620
2621	card = pci_get_drvdata(pdev);
2622
2623	for (i = 0; i < card->nports; i++) {
2624		struct net_device *dev = port_to_dev(&card->ports[i]);
2625		unregister_hdlc_device(dev);
2626	}
2627
2628	fst_disable_intr(card);
2629	free_irq(card->irq, card);
2630
2631	iounmap(card->ctlmem);
2632	iounmap(card->mem);
2633	pci_release_regions(pdev);
2634	if (card->family == FST_FAMILY_TXU) {
2635		/*
2636		 * Free dma buffers
2637		 */
2638		pci_free_consistent(card->device, FST_MAX_MTU,
2639				    card->rx_dma_handle_host,
2640				    card->rx_dma_handle_card);
2641		pci_free_consistent(card->device, FST_MAX_MTU,
2642				    card->tx_dma_handle_host,
2643				    card->tx_dma_handle_card);
2644	}
2645	fst_card_array[card->card_no] = NULL;
2646}
2647
2648static struct pci_driver fst_driver = {
2649        .name		= FST_NAME,
2650        .id_table	= fst_pci_dev_id,
2651        .probe		= fst_add_one,
2652        .remove	= __devexit_p(fst_remove_one),
2653        .suspend	= NULL,
2654        .resume	= NULL,
2655};
2656
2657static int __init
2658fst_init(void)
2659{
2660	int i;
2661
2662	for (i = 0; i < FST_MAX_CARDS; i++)
2663		fst_card_array[i] = NULL;
2664	spin_lock_init(&fst_work_q_lock);
2665	return pci_register_driver(&fst_driver);
2666}
2667
2668static void __exit
2669fst_cleanup_module(void)
2670{
2671	pr_info("FarSync WAN driver unloading\n");
2672	pci_unregister_driver(&fst_driver);
2673}
2674
2675module_init(fst_init);
2676module_exit(fst_cleanup_module);
2677