• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/wan/
1/*
2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3 *
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
6 *
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
9 *
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
12 *
13 *
14 *                             Theory of Operation
15 *
16 * I. Board Compatibility
17 *
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27 * driver.
28 * Sample code (2 revisions) is available at Infineon.
29 *
30 * II. Board-specific settings
31 *
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
36 *
37 * Sharing of the PCI interrupt line for this board is possible.
38 *
39 * III. Driver operation
40 *
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
46 *
47 * Tx direction
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
51 *
52 * Rx direction
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
55 *
56 * IV. Notes
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mistery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
66 *
67 * TODO:
68 * - test X25.
69 * - use polling at high irq/s,
70 * - performance analysis,
71 * - endianness.
72 *
73 * 2001/12/10	Daniela Squassoni  <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
75 *
76 * 2002/01	Ueimor
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
80 * - misc crapectomy.
81 */
82
83#include <linux/module.h>
84#include <linux/sched.h>
85#include <linux/types.h>
86#include <linux/errno.h>
87#include <linux/list.h>
88#include <linux/ioport.h>
89#include <linux/pci.h>
90#include <linux/kernel.h>
91#include <linux/mm.h>
92#include <linux/slab.h>
93
94#include <asm/system.h>
95#include <asm/cache.h>
96#include <asm/byteorder.h>
97#include <asm/uaccess.h>
98#include <asm/io.h>
99#include <asm/irq.h>
100
101#include <linux/init.h>
102#include <linux/string.h>
103
104#include <linux/if_arp.h>
105#include <linux/netdevice.h>
106#include <linux/skbuff.h>
107#include <linux/delay.h>
108#include <linux/hdlc.h>
109#include <linux/mutex.h>
110
111/* Version */
112static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 Exp $ for Linux\n";
113static int debug;
114static int quartz;
115
116#ifdef CONFIG_DSCC4_PCI_RST
117static DEFINE_MUTEX(dscc4_mutex);
118static u32 dscc4_pci_config_store[16];
119#endif
120
121#define	DRV_NAME	"dscc4"
122
123#undef DSCC4_POLLING
124
125/* Module parameters */
126
127MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
128MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
129MODULE_LICENSE("GPL");
130module_param(debug, int, 0);
131MODULE_PARM_DESC(debug,"Enable/disable extra messages");
132module_param(quartz, int, 0);
133MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
134
135/* Structures */
136
137struct thingie {
138	int define;
139	u32 bits;
140};
141
142struct TxFD {
143	__le32 state;
144	__le32 next;
145	__le32 data;
146	__le32 complete;
147	u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
148		     /* FWIW, datasheet calls that "dummy" and says that card
149		      * never looks at it; neither does the driver */
150};
151
152struct RxFD {
153	__le32 state1;
154	__le32 next;
155	__le32 data;
156	__le32 state2;
157	__le32 end;
158};
159
160#define DUMMY_SKB_SIZE		64
161#define TX_LOW			8
162#define TX_RING_SIZE		32
163#define RX_RING_SIZE		32
164#define TX_TOTAL_SIZE		TX_RING_SIZE*sizeof(struct TxFD)
165#define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct RxFD)
166#define IRQ_RING_SIZE		64		/* Keep it a multiple of 32 */
167#define TX_TIMEOUT		(HZ/10)
168#define DSCC4_HZ_MAX		33000000
169#define BRR_DIVIDER_MAX		64*0x00004000	/* Cf errata DS5 p.10 */
170#define dev_per_card		4
171#define SCC_REGISTERS_MAX	23		/* Cf errata DS5 p.4 */
172
173#define SOURCE_ID(flags)	(((flags) >> 28) & 0x03)
174#define TO_SIZE(state)		(((state) >> 16) & 0x1fff)
175
176/*
177 * Given the operating range of Linux HDLC, the 2 defines below could be
178 * made simpler. However they are a fine reminder for the limitations of
179 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
180 */
181#define TO_STATE_TX(len)	cpu_to_le32(((len) & TxSizeMax) << 16)
182#define TO_STATE_RX(len)	cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
183#define RX_MAX(len)		((((len) >> 5) + 1) << 5)	/* Cf RLCR */
184#define SCC_REG_START(dpriv)	(SCC_START+(dpriv->dev_id)*SCC_OFFSET)
185
186struct dscc4_pci_priv {
187        __le32 *iqcfg;
188        int cfg_cur;
189        spinlock_t lock;
190        struct pci_dev *pdev;
191
192        struct dscc4_dev_priv *root;
193        dma_addr_t iqcfg_dma;
194	u32 xtal_hz;
195};
196
197struct dscc4_dev_priv {
198        struct sk_buff *rx_skbuff[RX_RING_SIZE];
199        struct sk_buff *tx_skbuff[TX_RING_SIZE];
200
201        struct RxFD *rx_fd;
202        struct TxFD *tx_fd;
203        __le32 *iqrx;
204        __le32 *iqtx;
205
206        volatile u32 tx_current;
207        u32 rx_current;
208        u32 iqtx_current;
209        u32 iqrx_current;
210
211        volatile u32 tx_dirty;
212        volatile u32 ltda;
213        u32 rx_dirty;
214        u32 lrda;
215
216        dma_addr_t tx_fd_dma;
217        dma_addr_t rx_fd_dma;
218        dma_addr_t iqtx_dma;
219        dma_addr_t iqrx_dma;
220
221	u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
222
223	struct timer_list timer;
224
225        struct dscc4_pci_priv *pci_priv;
226        spinlock_t lock;
227
228        int dev_id;
229	volatile u32 flags;
230	u32 timer_help;
231
232	unsigned short encoding;
233	unsigned short parity;
234	struct net_device *dev;
235	sync_serial_settings settings;
236	void __iomem *base_addr;
237	u32 __pad __attribute__ ((aligned (4)));
238};
239
240/* GLOBAL registers definitions */
241#define GCMDR   0x00
242#define GSTAR   0x04
243#define GMODE   0x08
244#define IQLENR0 0x0C
245#define IQLENR1 0x10
246#define IQRX0   0x14
247#define IQTX0   0x24
248#define IQCFG   0x3c
249#define FIFOCR1 0x44
250#define FIFOCR2 0x48
251#define FIFOCR3 0x4c
252#define FIFOCR4 0x34
253#define CH0CFG  0x50
254#define CH0BRDA 0x54
255#define CH0BTDA 0x58
256#define CH0FRDA 0x98
257#define CH0FTDA 0xb0
258#define CH0LRDA 0xc8
259#define CH0LTDA 0xe0
260
261/* SCC registers definitions */
262#define SCC_START	0x0100
263#define SCC_OFFSET      0x80
264#define CMDR    0x00
265#define STAR    0x04
266#define CCR0    0x08
267#define CCR1    0x0c
268#define CCR2    0x10
269#define BRR     0x2C
270#define RLCR    0x40
271#define IMR     0x54
272#define ISR     0x58
273
274#define GPDIR	0x0400
275#define GPDATA	0x0404
276#define GPIM	0x0408
277
278/* Bit masks */
279#define EncodingMask	0x00700000
280#define CrcMask		0x00000003
281
282#define IntRxScc0	0x10000000
283#define IntTxScc0	0x01000000
284
285#define TxPollCmd	0x00000400
286#define RxActivate	0x08000000
287#define MTFi		0x04000000
288#define Rdr		0x00400000
289#define Rdt		0x00200000
290#define Idr		0x00100000
291#define Idt		0x00080000
292#define TxSccRes	0x01000000
293#define RxSccRes	0x00010000
294#define TxSizeMax	0x1fff		/* Datasheet DS1 - 11.1.1.1 */
295#define RxSizeMax	0x1ffc		/* Datasheet DS1 - 11.1.2.1 */
296
297#define Ccr0ClockMask	0x0000003f
298#define Ccr1LoopMask	0x00000200
299#define IsrMask		0x000fffff
300#define BrrExpMask	0x00000f00
301#define BrrMultMask	0x0000003f
302#define EncodingMask	0x00700000
303#define Hold		cpu_to_le32(0x40000000)
304#define SccBusy		0x10000000
305#define PowerUp		0x80000000
306#define Vis		0x00001000
307#define FrameOk		(FrameVfr | FrameCrc)
308#define FrameVfr	0x80
309#define FrameRdo	0x40
310#define FrameCrc	0x20
311#define FrameRab	0x10
312#define FrameAborted	cpu_to_le32(0x00000200)
313#define FrameEnd	cpu_to_le32(0x80000000)
314#define DataComplete	cpu_to_le32(0x40000000)
315#define LengthCheck	0x00008000
316#define SccEvt		0x02000000
317#define NoAck		0x00000200
318#define Action		0x00000001
319#define HiDesc		cpu_to_le32(0x20000000)
320
321/* SCC events */
322#define RxEvt		0xf0000000
323#define TxEvt		0x0f000000
324#define Alls		0x00040000
325#define Xdu		0x00010000
326#define Cts		0x00004000
327#define Xmr		0x00002000
328#define Xpr		0x00001000
329#define Rdo		0x00000080
330#define Rfs		0x00000040
331#define Cd		0x00000004
332#define Rfo		0x00000002
333#define Flex		0x00000001
334
335/* DMA core events */
336#define Cfg		0x00200000
337#define Hi		0x00040000
338#define Fi		0x00020000
339#define Err		0x00010000
340#define Arf		0x00000002
341#define ArAck		0x00000001
342
343/* State flags */
344#define Ready		0x00000000
345#define NeedIDR		0x00000001
346#define NeedIDT		0x00000002
347#define RdoSet		0x00000004
348#define FakeReset	0x00000008
349
350/* Don't mask RDO. Ever. */
351#ifdef DSCC4_POLLING
352#define EventsMask	0xfffeef7f
353#else
354#define EventsMask	0xfffa8f7a
355#endif
356
357/* Functions prototypes */
358static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
359static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
360static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
361static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
362static int dscc4_open(struct net_device *);
363static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
364					  struct net_device *);
365static int dscc4_close(struct net_device *);
366static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
367static int dscc4_init_ring(struct net_device *);
368static void dscc4_release_ring(struct dscc4_dev_priv *);
369static void dscc4_timer(unsigned long);
370static void dscc4_tx_timeout(struct net_device *);
371static irqreturn_t dscc4_irq(int irq, void *dev_id);
372static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
373static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
374#ifdef DSCC4_POLLING
375static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
376#endif
377
378static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
379{
380	return dev_to_hdlc(dev)->priv;
381}
382
383static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
384{
385	return p->dev;
386}
387
388static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
389			struct net_device *dev, int offset)
390{
391	u32 state;
392
393	/* Cf scc_writel for concern regarding thread-safety */
394	state = dpriv->scc_regs[offset >> 2];
395	state &= ~mask;
396	state |= value;
397	dpriv->scc_regs[offset >> 2] = state;
398	writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
399}
400
401static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
402		       struct net_device *dev, int offset)
403{
404	/*
405	 * Thread-UNsafe.
406	 * As of 2002/02/16, there are no thread racing for access.
407	 */
408	dpriv->scc_regs[offset >> 2] = bits;
409	writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
410}
411
412static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
413{
414	return dpriv->scc_regs[offset >> 2];
415}
416
417static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
418{
419	/* Cf errata DS5 p.4 */
420	readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
421	return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
422}
423
424static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
425			       struct net_device *dev)
426{
427	dpriv->ltda = dpriv->tx_fd_dma +
428                      ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
429	writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
430	/* Flush posted writes *NOW* */
431	readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
432}
433
434static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
435				   struct net_device *dev)
436{
437	dpriv->lrda = dpriv->rx_fd_dma +
438		      ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
439	writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
440}
441
442static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
443{
444	return dpriv->tx_current == dpriv->tx_dirty;
445}
446
447static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
448					      struct net_device *dev)
449{
450	return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
451}
452
453static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
454		       struct net_device *dev, const char *msg)
455{
456	int ret = 0;
457
458	if (debug > 1) {
459	if (SOURCE_ID(state) != dpriv->dev_id) {
460		printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
461		       dev->name, msg, SOURCE_ID(state), state );
462			ret = -1;
463	}
464	if (state & 0x0df80c00) {
465		printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
466		       dev->name, msg, state);
467			ret = -1;
468	}
469	}
470	return ret;
471}
472
473static void dscc4_tx_print(struct net_device *dev,
474			   struct dscc4_dev_priv *dpriv,
475			   char *msg)
476{
477	printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
478	       dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
479}
480
481static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
482{
483	struct pci_dev *pdev = dpriv->pci_priv->pdev;
484	struct TxFD *tx_fd = dpriv->tx_fd;
485	struct RxFD *rx_fd = dpriv->rx_fd;
486	struct sk_buff **skbuff;
487	int i;
488
489	pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
490	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
491
492	skbuff = dpriv->tx_skbuff;
493	for (i = 0; i < TX_RING_SIZE; i++) {
494		if (*skbuff) {
495			pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
496				(*skbuff)->len, PCI_DMA_TODEVICE);
497			dev_kfree_skb(*skbuff);
498		}
499		skbuff++;
500		tx_fd++;
501	}
502
503	skbuff = dpriv->rx_skbuff;
504	for (i = 0; i < RX_RING_SIZE; i++) {
505		if (*skbuff) {
506			pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
507				RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
508			dev_kfree_skb(*skbuff);
509		}
510		skbuff++;
511		rx_fd++;
512	}
513}
514
515static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
516				 struct net_device *dev)
517{
518	unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
519	struct RxFD *rx_fd = dpriv->rx_fd + dirty;
520	const int len = RX_MAX(HDLC_MAX_MRU);
521	struct sk_buff *skb;
522	int ret = 0;
523
524	skb = dev_alloc_skb(len);
525	dpriv->rx_skbuff[dirty] = skb;
526	if (skb) {
527		skb->protocol = hdlc_type_trans(skb, dev);
528		rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
529					  skb->data, len, PCI_DMA_FROMDEVICE));
530	} else {
531		rx_fd->data = 0;
532		ret = -1;
533	}
534	return ret;
535}
536
537/*
538 * IRQ/thread/whatever safe
539 */
540static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
541			      struct net_device *dev, char *msg)
542{
543	s8 i = 0;
544
545	do {
546		if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
547			printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
548			       msg, i);
549			goto done;
550		}
551		schedule_timeout_uninterruptible(10);
552		rmb();
553	} while (++i > 0);
554	printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
555done:
556	return (i >= 0) ? i : -EAGAIN;
557}
558
559static int dscc4_do_action(struct net_device *dev, char *msg)
560{
561	void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
562	s16 i = 0;
563
564	writel(Action, ioaddr + GCMDR);
565	ioaddr += GSTAR;
566	do {
567		u32 state = readl(ioaddr);
568
569		if (state & ArAck) {
570			printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
571			writel(ArAck, ioaddr);
572			goto done;
573		} else if (state & Arf) {
574			printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
575			writel(Arf, ioaddr);
576			i = -1;
577			goto done;
578	}
579		rmb();
580	} while (++i > 0);
581	printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
582done:
583	return i;
584}
585
586static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
587{
588	int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
589	s8 i = 0;
590
591	do {
592		if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
593		    (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
594			break;
595		smp_rmb();
596		schedule_timeout_uninterruptible(10);
597	} while (++i > 0);
598
599	return (i >= 0 ) ? i : -EAGAIN;
600}
601
602
603
604/* TODO: (ab)use this function to refill a completely depleted RX ring. */
605static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
606				struct net_device *dev)
607{
608	struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
609	struct pci_dev *pdev = dpriv->pci_priv->pdev;
610	struct sk_buff *skb;
611	int pkt_len;
612
613	skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
614	if (!skb) {
615		printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
616		goto refill;
617	}
618	pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
619	pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
620			 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
621	if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
622		dev->stats.rx_packets++;
623		dev->stats.rx_bytes += pkt_len;
624		skb_put(skb, pkt_len);
625		if (netif_running(dev))
626			skb->protocol = hdlc_type_trans(skb, dev);
627		netif_rx(skb);
628	} else {
629		if (skb->data[pkt_len] & FrameRdo)
630			dev->stats.rx_fifo_errors++;
631		else if (!(skb->data[pkt_len] & FrameCrc))
632			dev->stats.rx_crc_errors++;
633		else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
634			 (FrameVfr | FrameRab))
635			dev->stats.rx_length_errors++;
636		dev->stats.rx_errors++;
637		dev_kfree_skb_irq(skb);
638	}
639refill:
640	while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
641		if (try_get_rx_skb(dpriv, dev) < 0)
642			break;
643		dpriv->rx_dirty++;
644	}
645	dscc4_rx_update(dpriv, dev);
646	rx_fd->state2 = 0x00000000;
647	rx_fd->end = cpu_to_le32(0xbabeface);
648}
649
650static void dscc4_free1(struct pci_dev *pdev)
651{
652	struct dscc4_pci_priv *ppriv;
653	struct dscc4_dev_priv *root;
654	int i;
655
656	ppriv = pci_get_drvdata(pdev);
657	root = ppriv->root;
658
659	for (i = 0; i < dev_per_card; i++)
660		unregister_hdlc_device(dscc4_to_dev(root + i));
661
662	pci_set_drvdata(pdev, NULL);
663
664	for (i = 0; i < dev_per_card; i++)
665		free_netdev(root[i].dev);
666	kfree(root);
667	kfree(ppriv);
668}
669
670static int __devinit dscc4_init_one(struct pci_dev *pdev,
671				  const struct pci_device_id *ent)
672{
673	struct dscc4_pci_priv *priv;
674	struct dscc4_dev_priv *dpriv;
675	void __iomem *ioaddr;
676	int i, rc;
677
678	printk(KERN_DEBUG "%s", version);
679
680	rc = pci_enable_device(pdev);
681	if (rc < 0)
682		goto out;
683
684	rc = pci_request_region(pdev, 0, "registers");
685	if (rc < 0) {
686	        printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
687			DRV_NAME);
688	        goto err_disable_0;
689	}
690	rc = pci_request_region(pdev, 1, "LBI interface");
691	if (rc < 0) {
692	        printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
693			DRV_NAME);
694	        goto err_free_mmio_region_1;
695	}
696
697	ioaddr = pci_ioremap_bar(pdev, 0);
698	if (!ioaddr) {
699		printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
700			DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
701			(unsigned long long)pci_resource_start(pdev, 0));
702		rc = -EIO;
703		goto err_free_mmio_regions_2;
704	}
705	printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
706	        (unsigned long long)pci_resource_start(pdev, 0),
707	        (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
708
709	/* Cf errata DS5 p.2 */
710	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
711	pci_set_master(pdev);
712
713	rc = dscc4_found1(pdev, ioaddr);
714	if (rc < 0)
715	        goto err_iounmap_3;
716
717	priv = pci_get_drvdata(pdev);
718
719	rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
720	if (rc < 0) {
721		printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
722		goto err_release_4;
723	}
724
725	/* power up/little endian/dma core controlled via lrda/ltda */
726	writel(0x00000001, ioaddr + GMODE);
727	/* Shared interrupt queue */
728	{
729		u32 bits;
730
731		bits = (IRQ_RING_SIZE >> 5) - 1;
732		bits |= bits << 4;
733		bits |= bits << 8;
734		bits |= bits << 16;
735		writel(bits, ioaddr + IQLENR0);
736	}
737	/* Global interrupt queue */
738	writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
739	priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
740		IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
741	if (!priv->iqcfg)
742		goto err_free_irq_5;
743	writel(priv->iqcfg_dma, ioaddr + IQCFG);
744
745	rc = -ENOMEM;
746
747	/*
748	 * SCC 0-3 private rx/tx irq structures
749	 * IQRX/TXi needs to be set soon. Learned it the hard way...
750	 */
751	for (i = 0; i < dev_per_card; i++) {
752		dpriv = priv->root + i;
753		dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
754			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
755		if (!dpriv->iqtx)
756			goto err_free_iqtx_6;
757		writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
758	}
759	for (i = 0; i < dev_per_card; i++) {
760		dpriv = priv->root + i;
761		dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
762			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
763		if (!dpriv->iqrx)
764			goto err_free_iqrx_7;
765		writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
766	}
767
768	/* Cf application hint. Beware of hard-lock condition on threshold. */
769	writel(0x42104000, ioaddr + FIFOCR1);
770	//writel(0x9ce69800, ioaddr + FIFOCR2);
771	writel(0xdef6d800, ioaddr + FIFOCR2);
772	//writel(0x11111111, ioaddr + FIFOCR4);
773	writel(0x18181818, ioaddr + FIFOCR4);
774	writel(0x0000000e, ioaddr + FIFOCR3);
775
776	writel(0xff200001, ioaddr + GCMDR);
777
778	rc = 0;
779out:
780	return rc;
781
782err_free_iqrx_7:
783	while (--i >= 0) {
784		dpriv = priv->root + i;
785		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
786				    dpriv->iqrx, dpriv->iqrx_dma);
787	}
788	i = dev_per_card;
789err_free_iqtx_6:
790	while (--i >= 0) {
791		dpriv = priv->root + i;
792		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
793				    dpriv->iqtx, dpriv->iqtx_dma);
794	}
795	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
796			    priv->iqcfg_dma);
797err_free_irq_5:
798	free_irq(pdev->irq, priv->root);
799err_release_4:
800	dscc4_free1(pdev);
801err_iounmap_3:
802	iounmap (ioaddr);
803err_free_mmio_regions_2:
804	pci_release_region(pdev, 1);
805err_free_mmio_region_1:
806	pci_release_region(pdev, 0);
807err_disable_0:
808	pci_disable_device(pdev);
809	goto out;
810};
811
812/*
813 * Let's hope the default values are decent enough to protect my
814 * feet from the user's gun - Ueimor
815 */
816static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
817				 struct net_device *dev)
818{
819	/* No interrupts, SCC core disabled. Let's relax */
820	scc_writel(0x00000000, dpriv, dev, CCR0);
821
822	scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
823
824	scc_writel(0x02408000, dpriv, dev, CCR1);
825
826	/* crc not forwarded - Cf errata DS5 p.11 */
827	scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
828	// crc forwarded
829	//scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
830}
831
832static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
833{
834	int ret = 0;
835
836	if ((hz < 0) || (hz > DSCC4_HZ_MAX))
837		ret = -EOPNOTSUPP;
838	else
839		dpriv->pci_priv->xtal_hz = hz;
840
841	return ret;
842}
843
844static const struct net_device_ops dscc4_ops = {
845	.ndo_open       = dscc4_open,
846	.ndo_stop       = dscc4_close,
847	.ndo_change_mtu = hdlc_change_mtu,
848	.ndo_start_xmit = hdlc_start_xmit,
849	.ndo_do_ioctl   = dscc4_ioctl,
850	.ndo_tx_timeout = dscc4_tx_timeout,
851};
852
853static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
854{
855	struct dscc4_pci_priv *ppriv;
856	struct dscc4_dev_priv *root;
857	int i, ret = -ENOMEM;
858
859	root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
860	if (!root) {
861		printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
862		goto err_out;
863	}
864
865	for (i = 0; i < dev_per_card; i++) {
866		root[i].dev = alloc_hdlcdev(root + i);
867		if (!root[i].dev)
868			goto err_free_dev;
869	}
870
871	ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
872	if (!ppriv) {
873		printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
874		goto err_free_dev;
875	}
876
877	ppriv->root = root;
878	spin_lock_init(&ppriv->lock);
879
880	for (i = 0; i < dev_per_card; i++) {
881		struct dscc4_dev_priv *dpriv = root + i;
882		struct net_device *d = dscc4_to_dev(dpriv);
883		hdlc_device *hdlc = dev_to_hdlc(d);
884
885	        d->base_addr = (unsigned long)ioaddr;
886	        d->irq = pdev->irq;
887		d->netdev_ops = &dscc4_ops;
888		d->watchdog_timeo = TX_TIMEOUT;
889		SET_NETDEV_DEV(d, &pdev->dev);
890
891		dpriv->dev_id = i;
892		dpriv->pci_priv = ppriv;
893		dpriv->base_addr = ioaddr;
894		spin_lock_init(&dpriv->lock);
895
896		hdlc->xmit = dscc4_start_xmit;
897		hdlc->attach = dscc4_hdlc_attach;
898
899		dscc4_init_registers(dpriv, d);
900		dpriv->parity = PARITY_CRC16_PR0_CCITT;
901		dpriv->encoding = ENCODING_NRZ;
902
903		ret = dscc4_init_ring(d);
904		if (ret < 0)
905			goto err_unregister;
906
907		ret = register_hdlc_device(d);
908		if (ret < 0) {
909			printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
910			dscc4_release_ring(dpriv);
911			goto err_unregister;
912	        }
913	}
914
915	ret = dscc4_set_quartz(root, quartz);
916	if (ret < 0)
917		goto err_unregister;
918
919	pci_set_drvdata(pdev, ppriv);
920	return ret;
921
922err_unregister:
923	while (i-- > 0) {
924		dscc4_release_ring(root + i);
925		unregister_hdlc_device(dscc4_to_dev(root + i));
926	}
927	kfree(ppriv);
928	i = dev_per_card;
929err_free_dev:
930	while (i-- > 0)
931		free_netdev(root[i].dev);
932	kfree(root);
933err_out:
934	return ret;
935};
936
937static void dscc4_timer(unsigned long data)
938{
939	struct net_device *dev = (struct net_device *)data;
940	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
941//	struct dscc4_pci_priv *ppriv;
942
943	goto done;
944done:
945        dpriv->timer.expires = jiffies + TX_TIMEOUT;
946        add_timer(&dpriv->timer);
947}
948
949static void dscc4_tx_timeout(struct net_device *dev)
950{
951}
952
953static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
954{
955	sync_serial_settings *settings = &dpriv->settings;
956
957	if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
958		struct net_device *dev = dscc4_to_dev(dpriv);
959
960		printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
961		return -1;
962	}
963	return 0;
964}
965
966#ifdef CONFIG_DSCC4_PCI_RST
967/*
968 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
969 * so as to provide a safe way to reset the asic while not the whole machine
970 * rebooting.
971 *
972 * This code doesn't need to be efficient. Keep It Simple
973 */
974static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
975{
976	int i;
977
978	mutex_lock(&dscc4_mutex);
979	for (i = 0; i < 16; i++)
980		pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
981
982	/* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
983	writel(0x001c0000, ioaddr + GMODE);
984	/* Configure GPIO port as output */
985	writel(0x0000ffff, ioaddr + GPDIR);
986	/* Disable interruption */
987	writel(0x0000ffff, ioaddr + GPIM);
988
989	writel(0x0000ffff, ioaddr + GPDATA);
990	writel(0x00000000, ioaddr + GPDATA);
991
992	/* Flush posted writes */
993	readl(ioaddr + GSTAR);
994
995	schedule_timeout_uninterruptible(10);
996
997	for (i = 0; i < 16; i++)
998		pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
999	mutex_unlock(&dscc4_mutex);
1000}
1001#else
1002#define dscc4_pci_reset(pdev,ioaddr)	do {} while (0)
1003#endif /* CONFIG_DSCC4_PCI_RST */
1004
1005static int dscc4_open(struct net_device *dev)
1006{
1007	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1008	struct dscc4_pci_priv *ppriv;
1009	int ret = -EAGAIN;
1010
1011	if ((dscc4_loopback_check(dpriv) < 0))
1012		goto err;
1013
1014	if ((ret = hdlc_open(dev)))
1015		goto err;
1016
1017	ppriv = dpriv->pci_priv;
1018
1019	/*
1020	 * Due to various bugs, there is no way to reliably reset a
1021	 * specific port (manufacturer's dependant special PCI #RST wiring
1022	 * apart: it affects all ports). Thus the device goes in the best
1023	 * silent mode possible at dscc4_close() time and simply claims to
1024	 * be up if it's opened again. It still isn't possible to change
1025	 * the HDLC configuration without rebooting but at least the ports
1026	 * can be up/down ifconfig'ed without killing the host.
1027	 */
1028	if (dpriv->flags & FakeReset) {
1029		dpriv->flags &= ~FakeReset;
1030		scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1031		scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1032		scc_writel(EventsMask, dpriv, dev, IMR);
1033		printk(KERN_INFO "%s: up again.\n", dev->name);
1034		goto done;
1035	}
1036
1037	/* IDT+IDR during XPR */
1038	dpriv->flags = NeedIDR | NeedIDT;
1039
1040	scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1041
1042	/*
1043	 * The following is a bit paranoid...
1044	 *
1045	 * NB: the datasheet "...CEC will stay active if the SCC is in
1046	 * power-down mode or..." and CCR2.RAC = 1 are two different
1047	 * situations.
1048	 */
1049	if (scc_readl_star(dpriv, dev) & SccBusy) {
1050		printk(KERN_ERR "%s busy. Try later\n", dev->name);
1051		ret = -EAGAIN;
1052		goto err_out;
1053	} else
1054		printk(KERN_INFO "%s: available. Good\n", dev->name);
1055
1056	scc_writel(EventsMask, dpriv, dev, IMR);
1057
1058	/* Posted write is flushed in the wait_ack loop */
1059	scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1060
1061	if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1062		goto err_disable_scc_events;
1063
1064	/*
1065	 * I would expect XPR near CE completion (before ? after ?).
1066	 * At worst, this code won't see a late XPR and people
1067	 * will have to re-issue an ifconfig (this is harmless).
1068	 * WARNING, a really missing XPR usually means a hardware
1069	 * reset is needed. Suggestions anyone ?
1070	 */
1071	if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1072		printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1073		goto err_disable_scc_events;
1074	}
1075
1076	if (debug > 2)
1077		dscc4_tx_print(dev, dpriv, "Open");
1078
1079done:
1080	netif_start_queue(dev);
1081
1082        init_timer(&dpriv->timer);
1083        dpriv->timer.expires = jiffies + 10*HZ;
1084        dpriv->timer.data = (unsigned long)dev;
1085	dpriv->timer.function = dscc4_timer;
1086        add_timer(&dpriv->timer);
1087	netif_carrier_on(dev);
1088
1089	return 0;
1090
1091err_disable_scc_events:
1092	scc_writel(0xffffffff, dpriv, dev, IMR);
1093	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1094err_out:
1095	hdlc_close(dev);
1096err:
1097	return ret;
1098}
1099
1100#ifdef DSCC4_POLLING
1101static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1102{
1103}
1104#endif /* DSCC4_POLLING */
1105
1106static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1107					  struct net_device *dev)
1108{
1109	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1110	struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1111	struct TxFD *tx_fd;
1112	int next;
1113
1114	next = dpriv->tx_current%TX_RING_SIZE;
1115	dpriv->tx_skbuff[next] = skb;
1116	tx_fd = dpriv->tx_fd + next;
1117	tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1118	tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1119				     PCI_DMA_TODEVICE));
1120	tx_fd->complete = 0x00000000;
1121	tx_fd->jiffies = jiffies;
1122	mb();
1123
1124#ifdef DSCC4_POLLING
1125	spin_lock(&dpriv->lock);
1126	while (dscc4_tx_poll(dpriv, dev));
1127	spin_unlock(&dpriv->lock);
1128#endif
1129
1130	if (debug > 2)
1131		dscc4_tx_print(dev, dpriv, "Xmit");
1132	/* To be cleaned(unsigned int)/optimized. Later, ok ? */
1133	if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1134		netif_stop_queue(dev);
1135
1136	if (dscc4_tx_quiescent(dpriv, dev))
1137		dscc4_do_tx(dpriv, dev);
1138
1139	return NETDEV_TX_OK;
1140}
1141
1142static int dscc4_close(struct net_device *dev)
1143{
1144	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1145
1146	del_timer_sync(&dpriv->timer);
1147	netif_stop_queue(dev);
1148
1149	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1150	scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1151	scc_writel(0xffffffff, dpriv, dev, IMR);
1152
1153	dpriv->flags |= FakeReset;
1154
1155	hdlc_close(dev);
1156
1157	return 0;
1158}
1159
1160static inline int dscc4_check_clock_ability(int port)
1161{
1162	int ret = 0;
1163
1164#ifdef CONFIG_DSCC4_PCISYNC
1165	if (port >= 2)
1166		ret = -1;
1167#endif
1168	return ret;
1169}
1170
1171static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1172{
1173	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1174	int ret = -1;
1175	u32 brr;
1176
1177	*state &= ~Ccr0ClockMask;
1178	if (*bps) { /* Clock generated - required for DCE */
1179		u32 n = 0, m = 0, divider;
1180		int xtal;
1181
1182		xtal = dpriv->pci_priv->xtal_hz;
1183		if (!xtal)
1184			goto done;
1185		if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1186			goto done;
1187		divider = xtal / *bps;
1188		if (divider > BRR_DIVIDER_MAX) {
1189			divider >>= 4;
1190			*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1191		} else
1192			*state |= 0x00000037; /* Clock mode 7b (BRG) */
1193		if (divider >> 22) {
1194			n = 63;
1195			m = 15;
1196		} else if (divider) {
1197			/* Extraction of the 6 highest weighted bits */
1198			m = 0;
1199			while (0xffffffc0 & divider) {
1200				m++;
1201				divider >>= 1;
1202			}
1203			n = divider;
1204		}
1205		brr = (m << 8) | n;
1206		divider = n << m;
1207		if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1208			divider <<= 4;
1209		*bps = xtal / divider;
1210	} else {
1211		/*
1212		 * External clock - DTE
1213		 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1214		 * Nothing more to be done
1215		 */
1216		brr = 0;
1217	}
1218	scc_writel(brr, dpriv, dev, BRR);
1219	ret = 0;
1220done:
1221	return ret;
1222}
1223
1224static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1225{
1226	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1227	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1228	const size_t size = sizeof(dpriv->settings);
1229	int ret = 0;
1230
1231        if (dev->flags & IFF_UP)
1232                return -EBUSY;
1233
1234	if (cmd != SIOCWANDEV)
1235		return -EOPNOTSUPP;
1236
1237	switch(ifr->ifr_settings.type) {
1238	case IF_GET_IFACE:
1239		ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1240		if (ifr->ifr_settings.size < size) {
1241			ifr->ifr_settings.size = size; /* data size wanted */
1242			return -ENOBUFS;
1243		}
1244		if (copy_to_user(line, &dpriv->settings, size))
1245			return -EFAULT;
1246		break;
1247
1248	case IF_IFACE_SYNC_SERIAL:
1249		if (!capable(CAP_NET_ADMIN))
1250			return -EPERM;
1251
1252		if (dpriv->flags & FakeReset) {
1253			printk(KERN_INFO "%s: please reset the device"
1254			       " before this command\n", dev->name);
1255			return -EPERM;
1256		}
1257		if (copy_from_user(&dpriv->settings, line, size))
1258			return -EFAULT;
1259		ret = dscc4_set_iface(dpriv, dev);
1260		break;
1261
1262	default:
1263		ret = hdlc_ioctl(dev, ifr, cmd);
1264		break;
1265	}
1266
1267	return ret;
1268}
1269
1270static int dscc4_match(struct thingie *p, int value)
1271{
1272	int i;
1273
1274	for (i = 0; p[i].define != -1; i++) {
1275		if (value == p[i].define)
1276			break;
1277	}
1278	if (p[i].define == -1)
1279		return -1;
1280	else
1281		return i;
1282}
1283
1284static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1285			       struct net_device *dev)
1286{
1287	sync_serial_settings *settings = &dpriv->settings;
1288	int ret = -EOPNOTSUPP;
1289	u32 bps, state;
1290
1291	bps = settings->clock_rate;
1292	state = scc_readl(dpriv, CCR0);
1293	if (dscc4_set_clock(dev, &bps, &state) < 0)
1294		goto done;
1295	if (bps) { /* DCE */
1296		printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1297		if (settings->clock_rate != bps) {
1298			printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1299				dev->name, settings->clock_rate, bps);
1300			settings->clock_rate = bps;
1301		}
1302	} else { /* DTE */
1303		state |= PowerUp | Vis;
1304		printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1305	}
1306	scc_writel(state, dpriv, dev, CCR0);
1307	ret = 0;
1308done:
1309	return ret;
1310}
1311
1312static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1313				  struct net_device *dev)
1314{
1315	struct thingie encoding[] = {
1316		{ ENCODING_NRZ,		0x00000000 },
1317		{ ENCODING_NRZI,	0x00200000 },
1318		{ ENCODING_FM_MARK,	0x00400000 },
1319		{ ENCODING_FM_SPACE,	0x00500000 },
1320		{ ENCODING_MANCHESTER,	0x00600000 },
1321		{ -1,			0}
1322	};
1323	int i, ret = 0;
1324
1325	i = dscc4_match(encoding, dpriv->encoding);
1326	if (i >= 0)
1327		scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1328	else
1329		ret = -EOPNOTSUPP;
1330	return ret;
1331}
1332
1333static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1334				  struct net_device *dev)
1335{
1336	sync_serial_settings *settings = &dpriv->settings;
1337	u32 state;
1338
1339	state = scc_readl(dpriv, CCR1);
1340	if (settings->loopback) {
1341		printk(KERN_DEBUG "%s: loopback\n", dev->name);
1342		state |= 0x00000100;
1343	} else {
1344		printk(KERN_DEBUG "%s: normal\n", dev->name);
1345		state &= ~0x00000100;
1346	}
1347	scc_writel(state, dpriv, dev, CCR1);
1348	return 0;
1349}
1350
1351static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1352			     struct net_device *dev)
1353{
1354	struct thingie crc[] = {
1355		{ PARITY_CRC16_PR0_CCITT,	0x00000010 },
1356		{ PARITY_CRC16_PR1_CCITT,	0x00000000 },
1357		{ PARITY_CRC32_PR0_CCITT,	0x00000011 },
1358		{ PARITY_CRC32_PR1_CCITT,	0x00000001 }
1359	};
1360	int i, ret = 0;
1361
1362	i = dscc4_match(crc, dpriv->parity);
1363	if (i >= 0)
1364		scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1365	else
1366		ret = -EOPNOTSUPP;
1367	return ret;
1368}
1369
1370static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1371{
1372	struct {
1373		int (*action)(struct dscc4_dev_priv *, struct net_device *);
1374	} *p, do_setting[] = {
1375		{ dscc4_encoding_setting },
1376		{ dscc4_clock_setting },
1377		{ dscc4_loopback_setting },
1378		{ dscc4_crc_setting },
1379		{ NULL }
1380	};
1381	int ret = 0;
1382
1383	for (p = do_setting; p->action; p++) {
1384		if ((ret = p->action(dpriv, dev)) < 0)
1385			break;
1386	}
1387	return ret;
1388}
1389
1390static irqreturn_t dscc4_irq(int irq, void *token)
1391{
1392	struct dscc4_dev_priv *root = token;
1393	struct dscc4_pci_priv *priv;
1394	struct net_device *dev;
1395	void __iomem *ioaddr;
1396	u32 state;
1397	unsigned long flags;
1398	int i, handled = 1;
1399
1400	priv = root->pci_priv;
1401	dev = dscc4_to_dev(root);
1402
1403	spin_lock_irqsave(&priv->lock, flags);
1404
1405	ioaddr = root->base_addr;
1406
1407	state = readl(ioaddr + GSTAR);
1408	if (!state) {
1409		handled = 0;
1410		goto out;
1411	}
1412	if (debug > 3)
1413		printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1414	writel(state, ioaddr + GSTAR);
1415
1416	if (state & Arf) {
1417		printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1418		       dev->name);
1419		goto out;
1420	}
1421	state &= ~ArAck;
1422	if (state & Cfg) {
1423		if (debug > 0)
1424			printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1425		if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1426			printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1427		if (!(state &= ~Cfg))
1428			goto out;
1429	}
1430	if (state & RxEvt) {
1431		i = dev_per_card - 1;
1432		do {
1433			dscc4_rx_irq(priv, root + i);
1434		} while (--i >= 0);
1435		state &= ~RxEvt;
1436	}
1437	if (state & TxEvt) {
1438		i = dev_per_card - 1;
1439		do {
1440			dscc4_tx_irq(priv, root + i);
1441		} while (--i >= 0);
1442		state &= ~TxEvt;
1443	}
1444out:
1445	spin_unlock_irqrestore(&priv->lock, flags);
1446	return IRQ_RETVAL(handled);
1447}
1448
1449static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1450				struct dscc4_dev_priv *dpriv)
1451{
1452	struct net_device *dev = dscc4_to_dev(dpriv);
1453	u32 state;
1454	int cur, loop = 0;
1455
1456try:
1457	cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1458	state = le32_to_cpu(dpriv->iqtx[cur]);
1459	if (!state) {
1460		if (debug > 4)
1461			printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1462			       state);
1463		if ((debug > 1) && (loop > 1))
1464			printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1465		if (loop && netif_queue_stopped(dev))
1466			if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1467				netif_wake_queue(dev);
1468
1469		if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1470		    !dscc4_tx_done(dpriv))
1471				dscc4_do_tx(dpriv, dev);
1472		return;
1473	}
1474	loop++;
1475	dpriv->iqtx[cur] = 0;
1476	dpriv->iqtx_current++;
1477
1478	if (state_check(state, dpriv, dev, "Tx") < 0)
1479		return;
1480
1481	if (state & SccEvt) {
1482		if (state & Alls) {
1483			struct sk_buff *skb;
1484			struct TxFD *tx_fd;
1485
1486			if (debug > 2)
1487				dscc4_tx_print(dev, dpriv, "Alls");
1488			/*
1489			 * DataComplete can't be trusted for Tx completion.
1490			 * Cf errata DS5 p.8
1491			 */
1492			cur = dpriv->tx_dirty%TX_RING_SIZE;
1493			tx_fd = dpriv->tx_fd + cur;
1494			skb = dpriv->tx_skbuff[cur];
1495			if (skb) {
1496				pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1497						 skb->len, PCI_DMA_TODEVICE);
1498				if (tx_fd->state & FrameEnd) {
1499					dev->stats.tx_packets++;
1500					dev->stats.tx_bytes += skb->len;
1501				}
1502				dev_kfree_skb_irq(skb);
1503				dpriv->tx_skbuff[cur] = NULL;
1504				++dpriv->tx_dirty;
1505			} else {
1506				if (debug > 1)
1507					printk(KERN_ERR "%s Tx: NULL skb %d\n",
1508						dev->name, cur);
1509			}
1510			/*
1511			 * If the driver ends sending crap on the wire, it
1512			 * will be way easier to diagnose than the (not so)
1513			 * random freeze induced by null sized tx frames.
1514			 */
1515			tx_fd->data = tx_fd->next;
1516			tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1517			tx_fd->complete = 0x00000000;
1518			tx_fd->jiffies = 0;
1519
1520			if (!(state &= ~Alls))
1521				goto try;
1522		}
1523		/*
1524		 * Transmit Data Underrun
1525		 */
1526		if (state & Xdu) {
1527			printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1528			dpriv->flags = NeedIDT;
1529			/* Tx reset */
1530			writel(MTFi | Rdt,
1531			       dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1532			writel(Action, dpriv->base_addr + GCMDR);
1533			return;
1534		}
1535		if (state & Cts) {
1536			printk(KERN_INFO "%s: CTS transition\n", dev->name);
1537			if (!(state &= ~Cts)) /* DEBUG */
1538				goto try;
1539		}
1540		if (state & Xmr) {
1541			printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1542			if (!(state &= ~Xmr)) /* DEBUG */
1543				goto try;
1544		}
1545		if (state & Xpr) {
1546			void __iomem *scc_addr;
1547			unsigned long ring;
1548			int i;
1549
1550			/*
1551			 * - the busy condition happens (sometimes);
1552			 * - it doesn't seem to make the handler unreliable.
1553			 */
1554			for (i = 1; i; i <<= 1) {
1555				if (!(scc_readl_star(dpriv, dev) & SccBusy))
1556					break;
1557			}
1558			if (!i)
1559				printk(KERN_INFO "%s busy in irq\n", dev->name);
1560
1561			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1562			/* Keep this order: IDT before IDR */
1563			if (dpriv->flags & NeedIDT) {
1564				if (debug > 2)
1565					dscc4_tx_print(dev, dpriv, "Xpr");
1566				ring = dpriv->tx_fd_dma +
1567				       (dpriv->tx_dirty%TX_RING_SIZE)*
1568				       sizeof(struct TxFD);
1569				writel(ring, scc_addr + CH0BTDA);
1570				dscc4_do_tx(dpriv, dev);
1571				writel(MTFi | Idt, scc_addr + CH0CFG);
1572				if (dscc4_do_action(dev, "IDT") < 0)
1573					goto err_xpr;
1574				dpriv->flags &= ~NeedIDT;
1575			}
1576			if (dpriv->flags & NeedIDR) {
1577				ring = dpriv->rx_fd_dma +
1578				       (dpriv->rx_current%RX_RING_SIZE)*
1579				       sizeof(struct RxFD);
1580				writel(ring, scc_addr + CH0BRDA);
1581				dscc4_rx_update(dpriv, dev);
1582				writel(MTFi | Idr, scc_addr + CH0CFG);
1583				if (dscc4_do_action(dev, "IDR") < 0)
1584					goto err_xpr;
1585				dpriv->flags &= ~NeedIDR;
1586				smp_wmb();
1587				/* Activate receiver and misc */
1588				scc_writel(0x08050008, dpriv, dev, CCR2);
1589			}
1590		err_xpr:
1591			if (!(state &= ~Xpr))
1592				goto try;
1593		}
1594		if (state & Cd) {
1595			if (debug > 0)
1596				printk(KERN_INFO "%s: CD transition\n", dev->name);
1597			if (!(state &= ~Cd)) /* DEBUG */
1598				goto try;
1599		}
1600	} else { /* ! SccEvt */
1601		if (state & Hi) {
1602#ifdef DSCC4_POLLING
1603			while (!dscc4_tx_poll(dpriv, dev));
1604#endif
1605			printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1606			state &= ~Hi;
1607		}
1608		if (state & Err) {
1609			printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1610			dev->stats.tx_errors++;
1611			state &= ~Err;
1612		}
1613	}
1614	goto try;
1615}
1616
1617static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1618				    struct dscc4_dev_priv *dpriv)
1619{
1620	struct net_device *dev = dscc4_to_dev(dpriv);
1621	u32 state;
1622	int cur;
1623
1624try:
1625	cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1626	state = le32_to_cpu(dpriv->iqrx[cur]);
1627	if (!state)
1628		return;
1629	dpriv->iqrx[cur] = 0;
1630	dpriv->iqrx_current++;
1631
1632	if (state_check(state, dpriv, dev, "Rx") < 0)
1633		return;
1634
1635	if (!(state & SccEvt)){
1636		struct RxFD *rx_fd;
1637
1638		if (debug > 4)
1639			printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1640			       state);
1641		state &= 0x00ffffff;
1642		if (state & Err) { /* Hold or reset */
1643			printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1644			cur = dpriv->rx_current%RX_RING_SIZE;
1645			rx_fd = dpriv->rx_fd + cur;
1646			/*
1647			 * Presume we're not facing a DMAC receiver reset.
1648			 * As We use the rx size-filtering feature of the
1649			 * DSCC4, the beginning of a new frame is waiting in
1650			 * the rx fifo. I bet a Receive Data Overflow will
1651			 * happen most of time but let's try and avoid it.
1652			 * Btw (as for RDO) if one experiences ERR whereas
1653			 * the system looks rather idle, there may be a
1654			 * problem with latency. In this case, increasing
1655			 * RX_RING_SIZE may help.
1656			 */
1657			//while (dpriv->rx_needs_refill) {
1658				while (!(rx_fd->state1 & Hold)) {
1659					rx_fd++;
1660					cur++;
1661					if (!(cur = cur%RX_RING_SIZE))
1662						rx_fd = dpriv->rx_fd;
1663				}
1664				//dpriv->rx_needs_refill--;
1665				try_get_rx_skb(dpriv, dev);
1666				if (!rx_fd->data)
1667					goto try;
1668				rx_fd->state1 &= ~Hold;
1669				rx_fd->state2 = 0x00000000;
1670				rx_fd->end = cpu_to_le32(0xbabeface);
1671			//}
1672			goto try;
1673		}
1674		if (state & Fi) {
1675			dscc4_rx_skb(dpriv, dev);
1676			goto try;
1677		}
1678		if (state & Hi ) { /* HI bit */
1679			printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1680			state &= ~Hi;
1681			goto try;
1682		}
1683	} else { /* SccEvt */
1684		if (debug > 1) {
1685		static struct {
1686			u32 mask;
1687			const char *irq_name;
1688		} evts[] = {
1689			{ 0x00008000, "TIN"},
1690			{ 0x00000020, "RSC"},
1691			{ 0x00000010, "PCE"},
1692			{ 0x00000008, "PLLA"},
1693			{ 0, NULL}
1694		}, *evt;
1695
1696		for (evt = evts; evt->irq_name; evt++) {
1697			if (state & evt->mask) {
1698					printk(KERN_DEBUG "%s: %s\n",
1699						dev->name, evt->irq_name);
1700				if (!(state &= ~evt->mask))
1701					goto try;
1702			}
1703		}
1704		} else {
1705			if (!(state &= ~0x0000c03c))
1706				goto try;
1707		}
1708		if (state & Cts) {
1709			printk(KERN_INFO "%s: CTS transition\n", dev->name);
1710			if (!(state &= ~Cts)) /* DEBUG */
1711				goto try;
1712		}
1713		if (state & Rdo) {
1714			struct RxFD *rx_fd;
1715			void __iomem *scc_addr;
1716			int cur;
1717
1718			//if (debug)
1719			//	dscc4_rx_dump(dpriv);
1720			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1721
1722			scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1723			/*
1724			 * This has no effect. Why ?
1725			 * ORed with TxSccRes, one sees the CFG ack (for
1726			 * the TX part only).
1727			 */
1728			scc_writel(RxSccRes, dpriv, dev, CMDR);
1729			dpriv->flags |= RdoSet;
1730
1731			/*
1732			 * Let's try and save something in the received data.
1733			 * rx_current must be incremented at least once to
1734			 * avoid HOLD in the BRDA-to-be-pointed desc.
1735			 */
1736			do {
1737				cur = dpriv->rx_current++%RX_RING_SIZE;
1738				rx_fd = dpriv->rx_fd + cur;
1739				if (!(rx_fd->state2 & DataComplete))
1740					break;
1741				if (rx_fd->state2 & FrameAborted) {
1742					dev->stats.rx_over_errors++;
1743					rx_fd->state1 |= Hold;
1744					rx_fd->state2 = 0x00000000;
1745					rx_fd->end = cpu_to_le32(0xbabeface);
1746				} else
1747					dscc4_rx_skb(dpriv, dev);
1748			} while (1);
1749
1750			if (debug > 0) {
1751				if (dpriv->flags & RdoSet)
1752					printk(KERN_DEBUG
1753					       "%s: no RDO in Rx data\n", DRV_NAME);
1754			}
1755#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1756#warning "FIXME: CH0BRDA"
1757			writel(dpriv->rx_fd_dma +
1758			       (dpriv->rx_current%RX_RING_SIZE)*
1759			       sizeof(struct RxFD), scc_addr + CH0BRDA);
1760			writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1761			if (dscc4_do_action(dev, "RDR") < 0) {
1762				printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1763				       dev->name, "RDR");
1764				goto rdo_end;
1765			}
1766			writel(MTFi|Idr, scc_addr + CH0CFG);
1767			if (dscc4_do_action(dev, "IDR") < 0) {
1768				printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1769				       dev->name, "IDR");
1770				goto rdo_end;
1771			}
1772		rdo_end:
1773#endif
1774			scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1775			goto try;
1776		}
1777		if (state & Cd) {
1778			printk(KERN_INFO "%s: CD transition\n", dev->name);
1779			if (!(state &= ~Cd)) /* DEBUG */
1780				goto try;
1781		}
1782		if (state & Flex) {
1783			printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1784			if (!(state &= ~Flex))
1785				goto try;
1786		}
1787	}
1788}
1789
1790/*
1791 * I had expected the following to work for the first descriptor
1792 * (tx_fd->state = 0xc0000000)
1793 * - Hold=1 (don't try and branch to the next descripto);
1794 * - No=0 (I want an empty data section, i.e. size=0);
1795 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1796 * It failed and locked solid. Thus the introduction of a dummy skb.
1797 * Problem is acknowledged in errata sheet DS5. Joy :o/
1798 */
1799static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1800{
1801	struct sk_buff *skb;
1802
1803	skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1804	if (skb) {
1805		int last = dpriv->tx_dirty%TX_RING_SIZE;
1806		struct TxFD *tx_fd = dpriv->tx_fd + last;
1807
1808		skb->len = DUMMY_SKB_SIZE;
1809		skb_copy_to_linear_data(skb, version,
1810					strlen(version) % DUMMY_SKB_SIZE);
1811		tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1812		tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1813					     skb->data, DUMMY_SKB_SIZE,
1814					     PCI_DMA_TODEVICE));
1815		dpriv->tx_skbuff[last] = skb;
1816	}
1817	return skb;
1818}
1819
1820static int dscc4_init_ring(struct net_device *dev)
1821{
1822	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1823	struct pci_dev *pdev = dpriv->pci_priv->pdev;
1824	struct TxFD *tx_fd;
1825	struct RxFD *rx_fd;
1826	void *ring;
1827	int i;
1828
1829	ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1830	if (!ring)
1831		goto err_out;
1832	dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1833
1834	ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1835	if (!ring)
1836		goto err_free_dma_rx;
1837	dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1838
1839	memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1840	dpriv->tx_dirty = 0xffffffff;
1841	i = dpriv->tx_current = 0;
1842	do {
1843		tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1844		tx_fd->complete = 0x00000000;
1845	        tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1846		(tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1847					(++i%TX_RING_SIZE)*sizeof(*tx_fd));
1848	} while (i < TX_RING_SIZE);
1849
1850	if (!dscc4_init_dummy_skb(dpriv))
1851		goto err_free_dma_tx;
1852
1853	memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1854	i = dpriv->rx_dirty = dpriv->rx_current = 0;
1855	do {
1856		/* size set by the host. Multiple of 4 bytes please */
1857	        rx_fd->state1 = HiDesc;
1858	        rx_fd->state2 = 0x00000000;
1859	        rx_fd->end = cpu_to_le32(0xbabeface);
1860	        rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1861		if (try_get_rx_skb(dpriv, dev) >= 0)
1862			dpriv->rx_dirty++;
1863		(rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1864					(++i%RX_RING_SIZE)*sizeof(*rx_fd));
1865	} while (i < RX_RING_SIZE);
1866
1867	return 0;
1868
1869err_free_dma_tx:
1870	pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1871err_free_dma_rx:
1872	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1873err_out:
1874	return -ENOMEM;
1875}
1876
1877static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1878{
1879	struct dscc4_pci_priv *ppriv;
1880	struct dscc4_dev_priv *root;
1881	void __iomem *ioaddr;
1882	int i;
1883
1884	ppriv = pci_get_drvdata(pdev);
1885	root = ppriv->root;
1886
1887	ioaddr = root->base_addr;
1888
1889	dscc4_pci_reset(pdev, ioaddr);
1890
1891	free_irq(pdev->irq, root);
1892	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1893			    ppriv->iqcfg_dma);
1894	for (i = 0; i < dev_per_card; i++) {
1895		struct dscc4_dev_priv *dpriv = root + i;
1896
1897		dscc4_release_ring(dpriv);
1898		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1899				    dpriv->iqrx, dpriv->iqrx_dma);
1900		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1901				    dpriv->iqtx, dpriv->iqtx_dma);
1902	}
1903
1904	dscc4_free1(pdev);
1905
1906	iounmap(ioaddr);
1907
1908	pci_release_region(pdev, 1);
1909	pci_release_region(pdev, 0);
1910
1911	pci_disable_device(pdev);
1912}
1913
1914static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
1915	unsigned short parity)
1916{
1917	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1918
1919	if (encoding != ENCODING_NRZ &&
1920	    encoding != ENCODING_NRZI &&
1921	    encoding != ENCODING_FM_MARK &&
1922	    encoding != ENCODING_FM_SPACE &&
1923	    encoding != ENCODING_MANCHESTER)
1924		return -EINVAL;
1925
1926	if (parity != PARITY_NONE &&
1927	    parity != PARITY_CRC16_PR0_CCITT &&
1928	    parity != PARITY_CRC16_PR1_CCITT &&
1929	    parity != PARITY_CRC32_PR0_CCITT &&
1930	    parity != PARITY_CRC32_PR1_CCITT)
1931		return -EINVAL;
1932
1933        dpriv->encoding = encoding;
1934        dpriv->parity = parity;
1935	return 0;
1936}
1937
1938#ifndef MODULE
1939static int __init dscc4_setup(char *str)
1940{
1941	int *args[] = { &debug, &quartz, NULL }, **p = args;
1942
1943	while (*p && (get_option(&str, *p) == 2))
1944		p++;
1945	return 1;
1946}
1947
1948__setup("dscc4.setup=", dscc4_setup);
1949#endif
1950
1951static DEFINE_PCI_DEVICE_TABLE(dscc4_pci_tbl) = {
1952	{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
1953	        PCI_ANY_ID, PCI_ANY_ID, },
1954	{ 0,}
1955};
1956MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
1957
1958static struct pci_driver dscc4_driver = {
1959	.name		= DRV_NAME,
1960	.id_table	= dscc4_pci_tbl,
1961	.probe		= dscc4_init_one,
1962	.remove		= __devexit_p(dscc4_remove_one),
1963};
1964
1965static int __init dscc4_init_module(void)
1966{
1967	return pci_register_driver(&dscc4_driver);
1968}
1969
1970static void __exit dscc4_cleanup_module(void)
1971{
1972	pci_unregister_driver(&dscc4_driver);
1973}
1974
1975module_init(dscc4_init_module);
1976module_exit(dscc4_cleanup_module);
1977