• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/skfp/
1/*
2 * File Name:
3 *   skfddi.c
4 *
5 * Copyright Information:
6 *   Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17 *   familie.
18 *
19 * Maintainers:
20 *   CG    Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 *   DM    David S. Miller
24 *
25 * Address all question to:
26 *   linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 *   The driver architecture is based on the DEC FDDI driver by
34 *   Lawrence V. Stefani and several ethernet drivers.
35 *   I also used an existing Windows NT miniport driver.
36 *   All hardware dependent fuctions are handled by the SysKonnect
37 *   Hardware Module.
38 *   The only headerfiles that are directly related to this source
39 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 *   The others belong to the SysKonnect FDDI Hardware Module and
41 *   should better not be changed.
42 *
43 * Modification History:
44 *              Date            Name    Description
45 *              02-Mar-98       CG	Created.
46 *
47 *		10-Mar-99	CG	Support for 2.2.x added.
48 *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49 *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50 *		12-Nov-99	CG	Source code release
51 *		22-Nov-99	CG	Included in kernel source.
52 *		07-May-00	DM	64 bit fixes, new dma interface
53 *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54 *					  Daniele Bellucci <bellucda@tiscali.it>
55 *		03-Dec-03	SH	Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 *              DRIVERDEBUG     print lots of messages to log file
59 *              DUMPPACKETS     print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 *	- i386
63 *	- sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION		"2.07"
69
70static const char * const boot_msg =
71	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
76#include <linux/capability.h>
77#include <linux/module.h>
78#include <linux/kernel.h>
79#include <linux/errno.h>
80#include <linux/ioport.h>
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
87#include <linux/gfp.h>
88
89#include <asm/byteorder.h>
90#include <asm/io.h>
91#include <asm/uaccess.h>
92
93#include	"h/types.h"
94#undef ADDR			// undo Linux definition
95#include	"h/skfbi.h"
96#include	"h/fddi.h"
97#include	"h/smc.h"
98#include	"h/smtstate.h"
99
100
101// Define module-wide (static) routines
102static int skfp_driver_init(struct net_device *dev);
103static int skfp_open(struct net_device *dev);
104static int skfp_close(struct net_device *dev);
105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107static void skfp_ctl_set_multicast_list(struct net_device *dev);
108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112				       struct net_device *dev);
113static void send_queued_packets(struct s_smc *smc);
114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115static void ResetAdapter(struct s_smc *smc);
116
117
118// Functions needed by the hardware module
119void *mac_drv_get_space(struct s_smc *smc, u_int size);
120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124		  int flag);
125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126void llc_restart_tx(struct s_smc *smc);
127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128			 int frag_count, int len);
129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130			 int frag_count);
131void mac_drv_fill_rxd(struct s_smc *smc);
132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133		       int frag_count);
134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135		    int la_len);
136void dump_data(unsigned char *Data, int length);
137
138// External functions from the hardware module
139extern u_int mac_drv_check_space(void);
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142			int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144		       int frame_len, int frame_status);
145extern void fddi_isr(struct s_smc *smc);
146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147			int len, int frame_status);
148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151
152static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
153	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154	{ }			/* Terminating entry */
155};
156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157MODULE_LICENSE("GPL");
158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159
160// Define module-wide (static) variables
161
162static int num_boards;	/* total number of adapters configured */
163
164static const struct net_device_ops skfp_netdev_ops = {
165	.ndo_open		= skfp_open,
166	.ndo_stop		= skfp_close,
167	.ndo_start_xmit		= skfp_send_pkt,
168	.ndo_get_stats		= skfp_ctl_get_stats,
169	.ndo_change_mtu		= fddi_change_mtu,
170	.ndo_set_multicast_list = skfp_ctl_set_multicast_list,
171	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
172	.ndo_do_ioctl		= skfp_ioctl,
173};
174
175/*
176 * =================
177 * = skfp_init_one =
178 * =================
179 *
180 * Overview:
181 *   Probes for supported FDDI PCI controllers
182 *
183 * Returns:
184 *   Condition code
185 *
186 * Arguments:
187 *   pdev - pointer to PCI device information
188 *
189 * Functional Description:
190 *   This is now called by PCI driver registration process
191 *   for each board found.
192 *
193 * Return Codes:
194 *   0           - This device (fddi0, fddi1, etc) configured successfully
195 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196 *                         present for this device name
197 *
198 *
199 * Side Effects:
200 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
201 *   initialized and the board resources are read and stored in
202 *   the device structure.
203 */
204static int skfp_init_one(struct pci_dev *pdev,
205				const struct pci_device_id *ent)
206{
207	struct net_device *dev;
208	struct s_smc *smc;	/* board pointer */
209	void __iomem *mem;
210	int err;
211
212	pr_debug(KERN_INFO "entering skfp_init_one\n");
213
214	if (num_boards == 0)
215		printk("%s\n", boot_msg);
216
217	err = pci_enable_device(pdev);
218	if (err)
219		return err;
220
221	err = pci_request_regions(pdev, "skfddi");
222	if (err)
223		goto err_out1;
224
225	pci_set_master(pdev);
226
227#ifdef MEM_MAPPED_IO
228	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230		err = -EIO;
231		goto err_out2;
232	}
233
234	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235#else
236	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237		printk(KERN_ERR "skfp: region is not PIO resource\n");
238		err = -EIO;
239		goto err_out2;
240	}
241
242	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243#endif
244	if (!mem) {
245		printk(KERN_ERR "skfp:  Unable to map register, "
246				"FDDI adapter will be disabled.\n");
247		err = -EIO;
248		goto err_out2;
249	}
250
251	dev = alloc_fddidev(sizeof(struct s_smc));
252	if (!dev) {
253		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254				"FDDI adapter will be disabled.\n");
255		err = -ENOMEM;
256		goto err_out3;
257	}
258
259	dev->irq = pdev->irq;
260	dev->netdev_ops = &skfp_netdev_ops;
261
262	SET_NETDEV_DEV(dev, &pdev->dev);
263
264	/* Initialize board structure with bus-specific info */
265	smc = netdev_priv(dev);
266	smc->os.dev = dev;
267	smc->os.bus_type = SK_BUS_TYPE_PCI;
268	smc->os.pdev = *pdev;
269	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271	smc->os.dev = dev;
272	smc->hw.slot = -1;
273	smc->hw.iop = mem;
274	smc->os.ResetRequested = FALSE;
275	skb_queue_head_init(&smc->os.SendSkbQueue);
276
277	dev->base_addr = (unsigned long)mem;
278
279	err = skfp_driver_init(dev);
280	if (err)
281		goto err_out4;
282
283	err = register_netdev(dev);
284	if (err)
285		goto err_out5;
286
287	++num_boards;
288	pci_set_drvdata(pdev, dev);
289
290	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291	    (pdev->subsystem_device & 0xff00) == 0x5800)
292		printk("%s: SysKonnect FDDI PCI adapter"
293		       " found (SK-%04X)\n", dev->name,
294		       pdev->subsystem_device);
295	else
296		printk("%s: FDDI PCI adapter found\n", dev->name);
297
298	return 0;
299err_out5:
300	if (smc->os.SharedMemAddr)
301		pci_free_consistent(pdev, smc->os.SharedMemSize,
302				    smc->os.SharedMemAddr,
303				    smc->os.SharedMemDMA);
304	pci_free_consistent(pdev, MAX_FRAME_SIZE,
305			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306err_out4:
307	free_netdev(dev);
308err_out3:
309#ifdef MEM_MAPPED_IO
310	iounmap(mem);
311#else
312	ioport_unmap(mem);
313#endif
314err_out2:
315	pci_release_regions(pdev);
316err_out1:
317	pci_disable_device(pdev);
318	return err;
319}
320
321/*
322 * Called for each adapter board from pci_unregister_driver
323 */
324static void __devexit skfp_remove_one(struct pci_dev *pdev)
325{
326	struct net_device *p = pci_get_drvdata(pdev);
327	struct s_smc *lp = netdev_priv(p);
328
329	unregister_netdev(p);
330
331	if (lp->os.SharedMemAddr) {
332		pci_free_consistent(&lp->os.pdev,
333				    lp->os.SharedMemSize,
334				    lp->os.SharedMemAddr,
335				    lp->os.SharedMemDMA);
336		lp->os.SharedMemAddr = NULL;
337	}
338	if (lp->os.LocalRxBuffer) {
339		pci_free_consistent(&lp->os.pdev,
340				    MAX_FRAME_SIZE,
341				    lp->os.LocalRxBuffer,
342				    lp->os.LocalRxBufferDMA);
343		lp->os.LocalRxBuffer = NULL;
344	}
345#ifdef MEM_MAPPED_IO
346	iounmap(lp->hw.iop);
347#else
348	ioport_unmap(lp->hw.iop);
349#endif
350	pci_release_regions(pdev);
351	free_netdev(p);
352
353	pci_disable_device(pdev);
354	pci_set_drvdata(pdev, NULL);
355}
356
357/*
358 * ====================
359 * = skfp_driver_init =
360 * ====================
361 *
362 * Overview:
363 *   Initializes remaining adapter board structure information
364 *   and makes sure adapter is in a safe state prior to skfp_open().
365 *
366 * Returns:
367 *   Condition code
368 *
369 * Arguments:
370 *   dev - pointer to device information
371 *
372 * Functional Description:
373 *   This function allocates additional resources such as the host memory
374 *   blocks needed by the adapter.
375 *   The adapter is also reset. The OS must call skfp_open() to open
376 *   the adapter and bring it on-line.
377 *
378 * Return Codes:
379 *    0 - initialization succeeded
380 *   -1 - initialization failed
381 */
382static  int skfp_driver_init(struct net_device *dev)
383{
384	struct s_smc *smc = netdev_priv(dev);
385	skfddi_priv *bp = &smc->os;
386	int err = -EIO;
387
388	pr_debug(KERN_INFO "entering skfp_driver_init\n");
389
390	// set the io address in private structures
391	bp->base_addr = dev->base_addr;
392
393	// Get the interrupt level from the PCI Configuration Table
394	smc->hw.irq = dev->irq;
395
396	spin_lock_init(&bp->DriverLock);
397
398	// Allocate invalid frame
399	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
400	if (!bp->LocalRxBuffer) {
401		printk("could not allocate mem for ");
402		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403		goto fail;
404	}
405
406	// Determine the required size of the 'shared' memory area.
407	bp->SharedMemSize = mac_drv_check_space();
408	pr_debug(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
409	if (bp->SharedMemSize > 0) {
410		bp->SharedMemSize += 16;	// for descriptor alignment
411
412		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
413							 bp->SharedMemSize,
414							 &bp->SharedMemDMA);
415		if (!bp->SharedMemSize) {
416			printk("could not allocate mem for ");
417			printk("hardware module: %ld byte\n",
418			       bp->SharedMemSize);
419			goto fail;
420		}
421		bp->SharedMemHeap = 0;	// Nothing used yet.
422
423	} else {
424		bp->SharedMemAddr = NULL;
425		bp->SharedMemHeap = 0;
426	}			// SharedMemSize > 0
427
428	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
429
430	card_stop(smc);		// Reset adapter.
431
432	pr_debug(KERN_INFO "mac_drv_init()..\n");
433	if (mac_drv_init(smc) != 0) {
434		pr_debug(KERN_INFO "mac_drv_init() failed.\n");
435		goto fail;
436	}
437	read_address(smc, NULL);
438	pr_debug(KERN_INFO "HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
439	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
440
441	smt_reset_defaults(smc, 0);
442
443	return (0);
444
445fail:
446	if (bp->SharedMemAddr) {
447		pci_free_consistent(&bp->pdev,
448				    bp->SharedMemSize,
449				    bp->SharedMemAddr,
450				    bp->SharedMemDMA);
451		bp->SharedMemAddr = NULL;
452	}
453	if (bp->LocalRxBuffer) {
454		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
455				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
456		bp->LocalRxBuffer = NULL;
457	}
458	return err;
459}				// skfp_driver_init
460
461
462/*
463 * =============
464 * = skfp_open =
465 * =============
466 *
467 * Overview:
468 *   Opens the adapter
469 *
470 * Returns:
471 *   Condition code
472 *
473 * Arguments:
474 *   dev - pointer to device information
475 *
476 * Functional Description:
477 *   This function brings the adapter to an operational state.
478 *
479 * Return Codes:
480 *   0           - Adapter was successfully opened
481 *   -EAGAIN - Could not register IRQ
482 */
483static int skfp_open(struct net_device *dev)
484{
485	struct s_smc *smc = netdev_priv(dev);
486	int err;
487
488	pr_debug(KERN_INFO "entering skfp_open\n");
489	/* Register IRQ - support shared interrupts by passing device ptr */
490	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
491			  dev->name, dev);
492	if (err)
493		return err;
494
495	/*
496	 * Set current address to factory MAC address
497	 *
498	 * Note: We've already done this step in skfp_driver_init.
499	 *       However, it's possible that a user has set a node
500	 *               address override, then closed and reopened the
501	 *               adapter.  Unless we reset the device address field
502	 *               now, we'll continue to use the existing modified
503	 *               address.
504	 */
505	read_address(smc, NULL);
506	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
507
508	init_smt(smc, NULL);
509	smt_online(smc, 1);
510	STI_FBI();
511
512	/* Clear local multicast address tables */
513	mac_clear_multicast(smc);
514
515	/* Disable promiscuous filter settings */
516	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
517
518	netif_start_queue(dev);
519	return (0);
520}				// skfp_open
521
522
523/*
524 * ==============
525 * = skfp_close =
526 * ==============
527 *
528 * Overview:
529 *   Closes the device/module.
530 *
531 * Returns:
532 *   Condition code
533 *
534 * Arguments:
535 *   dev - pointer to device information
536 *
537 * Functional Description:
538 *   This routine closes the adapter and brings it to a safe state.
539 *   The interrupt service routine is deregistered with the OS.
540 *   The adapter can be opened again with another call to skfp_open().
541 *
542 * Return Codes:
543 *   Always return 0.
544 *
545 * Assumptions:
546 *   No further requests for this adapter are made after this routine is
547 *   called.  skfp_open() can be called to reset and reinitialize the
548 *   adapter.
549 */
550static int skfp_close(struct net_device *dev)
551{
552	struct s_smc *smc = netdev_priv(dev);
553	skfddi_priv *bp = &smc->os;
554
555	CLI_FBI();
556	smt_reset_defaults(smc, 1);
557	card_stop(smc);
558	mac_drv_clear_tx_queue(smc);
559	mac_drv_clear_rx_queue(smc);
560
561	netif_stop_queue(dev);
562	/* Deregister (free) IRQ */
563	free_irq(dev->irq, dev);
564
565	skb_queue_purge(&bp->SendSkbQueue);
566	bp->QueueSkb = MAX_TX_QUEUE_LEN;
567
568	return (0);
569}				// skfp_close
570
571
572/*
573 * ==================
574 * = skfp_interrupt =
575 * ==================
576 *
577 * Overview:
578 *   Interrupt processing routine
579 *
580 * Returns:
581 *   None
582 *
583 * Arguments:
584 *   irq        - interrupt vector
585 *   dev_id     - pointer to device information
586 *
587 * Functional Description:
588 *   This routine calls the interrupt processing routine for this adapter.  It
589 *   disables and reenables adapter interrupts, as appropriate.  We can support
590 *   shared interrupts since the incoming dev_id pointer provides our device
591 *   structure context. All the real work is done in the hardware module.
592 *
593 * Return Codes:
594 *   None
595 *
596 * Assumptions:
597 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
598 *   on Intel-based systems) is done by the operating system outside this
599 *   routine.
600 *
601 *       System interrupts are enabled through this call.
602 *
603 * Side Effects:
604 *   Interrupts are disabled, then reenabled at the adapter.
605 */
606
607static irqreturn_t skfp_interrupt(int irq, void *dev_id)
608{
609	struct net_device *dev = dev_id;
610	struct s_smc *smc;	/* private board structure pointer */
611	skfddi_priv *bp;
612
613	smc = netdev_priv(dev);
614	bp = &smc->os;
615
616	// IRQs enabled or disabled ?
617	if (inpd(ADDR(B0_IMSK)) == 0) {
618		// IRQs are disabled: must be shared interrupt
619		return IRQ_NONE;
620	}
621	// Note: At this point, IRQs are enabled.
622	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
623		// Adapter did not issue an IRQ: must be shared interrupt
624		return IRQ_NONE;
625	}
626	CLI_FBI();		// Disable IRQs from our adapter.
627	spin_lock(&bp->DriverLock);
628
629	// Call interrupt handler in hardware module (HWM).
630	fddi_isr(smc);
631
632	if (smc->os.ResetRequested) {
633		ResetAdapter(smc);
634		smc->os.ResetRequested = FALSE;
635	}
636	spin_unlock(&bp->DriverLock);
637	STI_FBI();		// Enable IRQs from our adapter.
638
639	return IRQ_HANDLED;
640}				// skfp_interrupt
641
642
643/*
644 * ======================
645 * = skfp_ctl_get_stats =
646 * ======================
647 *
648 * Overview:
649 *   Get statistics for FDDI adapter
650 *
651 * Returns:
652 *   Pointer to FDDI statistics structure
653 *
654 * Arguments:
655 *   dev - pointer to device information
656 *
657 * Functional Description:
658 *   Gets current MIB objects from adapter, then
659 *   returns FDDI statistics structure as defined
660 *   in if_fddi.h.
661 *
662 *   Note: Since the FDDI statistics structure is
663 *   still new and the device structure doesn't
664 *   have an FDDI-specific get statistics handler,
665 *   we'll return the FDDI statistics structure as
666 *   a pointer to an Ethernet statistics structure.
667 *   That way, at least the first part of the statistics
668 *   structure can be decoded properly.
669 *   We'll have to pay attention to this routine as the
670 *   device structure becomes more mature and LAN media
671 *   independent.
672 *
673 */
674static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
675{
676	struct s_smc *bp = netdev_priv(dev);
677
678	/* Fill the bp->stats structure with driver-maintained counters */
679
680	bp->os.MacStat.port_bs_flag[0] = 0x1234;
681	bp->os.MacStat.port_bs_flag[1] = 0x5678;
682// goos: need to fill out fddi statistic
683	return ((struct net_device_stats *) &bp->os.MacStat);
684}				// ctl_get_stat
685
686
687/*
688 * ==============================
689 * = skfp_ctl_set_multicast_list =
690 * ==============================
691 *
692 * Overview:
693 *   Enable/Disable LLC frame promiscuous mode reception
694 *   on the adapter and/or update multicast address table.
695 *
696 * Returns:
697 *   None
698 *
699 * Arguments:
700 *   dev - pointer to device information
701 *
702 * Functional Description:
703 *   This function acquires the driver lock and only calls
704 *   skfp_ctl_set_multicast_list_wo_lock then.
705 *   This routine follows a fairly simple algorithm for setting the
706 *   adapter filters and CAM:
707 *
708 *      if IFF_PROMISC flag is set
709 *              enable promiscuous mode
710 *      else
711 *              disable promiscuous mode
712 *              if number of multicast addresses <= max. multicast number
713 *                      add mc addresses to adapter table
714 *              else
715 *                      enable promiscuous mode
716 *              update adapter filters
717 *
718 * Assumptions:
719 *   Multicast addresses are presented in canonical (LSB) format.
720 *
721 * Side Effects:
722 *   On-board adapter filters are updated.
723 */
724static void skfp_ctl_set_multicast_list(struct net_device *dev)
725{
726	struct s_smc *smc = netdev_priv(dev);
727	skfddi_priv *bp = &smc->os;
728	unsigned long Flags;
729
730	spin_lock_irqsave(&bp->DriverLock, Flags);
731	skfp_ctl_set_multicast_list_wo_lock(dev);
732	spin_unlock_irqrestore(&bp->DriverLock, Flags);
733}				// skfp_ctl_set_multicast_list
734
735
736
737static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
738{
739	struct s_smc *smc = netdev_priv(dev);
740	struct netdev_hw_addr *ha;
741
742	/* Enable promiscuous mode, if necessary */
743	if (dev->flags & IFF_PROMISC) {
744		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
745		pr_debug(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
746	}
747	/* Else, update multicast address table */
748	else {
749		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
750		pr_debug(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
751
752		// Reset all MC addresses
753		mac_clear_multicast(smc);
754		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
755
756		if (dev->flags & IFF_ALLMULTI) {
757			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
758			pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
759		} else if (!netdev_mc_empty(dev)) {
760			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
761				/* use exact filtering */
762
763				// point to first multicast addr
764				netdev_for_each_mc_addr(ha, dev) {
765					mac_add_multicast(smc,
766						(struct fddi_addr *)ha->addr,
767						1);
768
769					pr_debug(KERN_INFO "ENABLE MC ADDRESS: %pMF\n",
770						ha->addr);
771				}
772
773			} else {	// more MC addresses than HW supports
774
775				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
776				pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
777			}
778		} else {	// no MC addresses
779
780			pr_debug(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
781		}
782
783		/* Update adapter filters */
784		mac_update_multicast(smc);
785	}
786}				// skfp_ctl_set_multicast_list_wo_lock
787
788
789/*
790 * ===========================
791 * = skfp_ctl_set_mac_address =
792 * ===========================
793 *
794 * Overview:
795 *   set new mac address on adapter and update dev_addr field in device table.
796 *
797 * Returns:
798 *   None
799 *
800 * Arguments:
801 *   dev  - pointer to device information
802 *   addr - pointer to sockaddr structure containing unicast address to set
803 *
804 * Assumptions:
805 *   The address pointed to by addr->sa_data is a valid unicast
806 *   address and is presented in canonical (LSB) format.
807 */
808static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
809{
810	struct s_smc *smc = netdev_priv(dev);
811	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
812	skfddi_priv *bp = &smc->os;
813	unsigned long Flags;
814
815
816	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
817	spin_lock_irqsave(&bp->DriverLock, Flags);
818	ResetAdapter(smc);
819	spin_unlock_irqrestore(&bp->DriverLock, Flags);
820
821	return (0);		/* always return zero */
822}				// skfp_ctl_set_mac_address
823
824
825/*
826 * ==============
827 * = skfp_ioctl =
828 * ==============
829 *
830 * Overview:
831 *
832 * Perform IOCTL call functions here. Some are privileged operations and the
833 * effective uid is checked in those cases.
834 *
835 * Returns:
836 *   status value
837 *   0 - success
838 *   other - failure
839 *
840 * Arguments:
841 *   dev  - pointer to device information
842 *   rq - pointer to ioctl request structure
843 *   cmd - ?
844 *
845 */
846
847
848static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
849{
850	struct s_smc *smc = netdev_priv(dev);
851	skfddi_priv *lp = &smc->os;
852	struct s_skfp_ioctl ioc;
853	int status = 0;
854
855	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
856		return -EFAULT;
857
858	switch (ioc.cmd) {
859	case SKFP_GET_STATS:	/* Get the driver statistics */
860		ioc.len = sizeof(lp->MacStat);
861		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
862				? -EFAULT : 0;
863		break;
864	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
865		if (!capable(CAP_NET_ADMIN)) {
866			status = -EPERM;
867		} else {
868			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
869		}
870		break;
871	default:
872		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
873		status = -EOPNOTSUPP;
874
875	}			// switch
876
877	return status;
878}				// skfp_ioctl
879
880
881/*
882 * =====================
883 * = skfp_send_pkt     =
884 * =====================
885 *
886 * Overview:
887 *   Queues a packet for transmission and try to transmit it.
888 *
889 * Returns:
890 *   Condition code
891 *
892 * Arguments:
893 *   skb - pointer to sk_buff to queue for transmission
894 *   dev - pointer to device information
895 *
896 * Functional Description:
897 *   Here we assume that an incoming skb transmit request
898 *   is contained in a single physically contiguous buffer
899 *   in which the virtual address of the start of packet
900 *   (skb->data) can be converted to a physical address
901 *   by using pci_map_single().
902 *
903 *   We have an internal queue for packets we can not send
904 *   immediately. Packets in this queue can be given to the
905 *   adapter if transmit buffers are freed.
906 *
907 *   We can't free the skb until after it's been DMA'd
908 *   out by the adapter, so we'll keep it in the driver and
909 *   return it in mac_drv_tx_complete.
910 *
911 * Return Codes:
912 *   0 - driver has queued and/or sent packet
913 *       1 - caller should requeue the sk_buff for later transmission
914 *
915 * Assumptions:
916 *   The entire packet is stored in one physically
917 *   contiguous buffer which is not cached and whose
918 *   32-bit physical address can be determined.
919 *
920 *   It's vital that this routine is NOT reentered for the
921 *   same board and that the OS is not in another section of
922 *   code (eg. skfp_interrupt) for the same board on a
923 *   different thread.
924 *
925 * Side Effects:
926 *   None
927 */
928static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
929				       struct net_device *dev)
930{
931	struct s_smc *smc = netdev_priv(dev);
932	skfddi_priv *bp = &smc->os;
933
934	pr_debug(KERN_INFO "skfp_send_pkt\n");
935
936	/*
937	 * Verify that incoming transmit request is OK
938	 *
939	 * Note: The packet size check is consistent with other
940	 *               Linux device drivers, although the correct packet
941	 *               size should be verified before calling the
942	 *               transmit routine.
943	 */
944
945	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
946		bp->MacStat.gen.tx_errors++;	/* bump error counter */
947		// dequeue packets from xmt queue and send them
948		netif_start_queue(dev);
949		dev_kfree_skb(skb);
950		return NETDEV_TX_OK;	/* return "success" */
951	}
952	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
953
954		netif_stop_queue(dev);
955		return NETDEV_TX_BUSY;
956	}
957	bp->QueueSkb--;
958	skb_queue_tail(&bp->SendSkbQueue, skb);
959	send_queued_packets(netdev_priv(dev));
960	if (bp->QueueSkb == 0) {
961		netif_stop_queue(dev);
962	}
963	return NETDEV_TX_OK;
964
965}				// skfp_send_pkt
966
967
968/*
969 * =======================
970 * = send_queued_packets =
971 * =======================
972 *
973 * Overview:
974 *   Send packets from the driver queue as long as there are some and
975 *   transmit resources are available.
976 *
977 * Returns:
978 *   None
979 *
980 * Arguments:
981 *   smc - pointer to smc (adapter) structure
982 *
983 * Functional Description:
984 *   Take a packet from queue if there is any. If not, then we are done.
985 *   Check if there are resources to send the packet. If not, requeue it
986 *   and exit.
987 *   Set packet descriptor flags and give packet to adapter.
988 *   Check if any send resources can be freed (we do not use the
989 *   transmit complete interrupt).
990 */
991static void send_queued_packets(struct s_smc *smc)
992{
993	skfddi_priv *bp = &smc->os;
994	struct sk_buff *skb;
995	unsigned char fc;
996	int queue;
997	struct s_smt_fp_txd *txd;	// Current TxD.
998	dma_addr_t dma_address;
999	unsigned long Flags;
1000
1001	int frame_status;	// HWM tx frame status.
1002
1003	pr_debug(KERN_INFO "send queued packets\n");
1004	for (;;) {
1005		// send first buffer from queue
1006		skb = skb_dequeue(&bp->SendSkbQueue);
1007
1008		if (!skb) {
1009			pr_debug(KERN_INFO "queue empty\n");
1010			return;
1011		}		// queue empty !
1012
1013		spin_lock_irqsave(&bp->DriverLock, Flags);
1014		fc = skb->data[0];
1015		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1016#ifdef ESS
1017		// Check if the frame may/must be sent as a synchronous frame.
1018
1019		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1020			// It's an LLC frame.
1021			if (!smc->ess.sync_bw_available)
1022				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1023
1024			else {	// Bandwidth is available.
1025
1026				if (smc->mib.fddiESSSynchTxMode) {
1027					// Send as sync. frame.
1028					fc |= FC_SYNC_BIT;
1029				}
1030			}
1031		}
1032#endif				// ESS
1033		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1034
1035		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1036			// Unable to send the frame.
1037
1038			if ((frame_status & RING_DOWN) != 0) {
1039				// Ring is down.
1040				pr_debug("Tx attempt while ring down.\n");
1041			} else if ((frame_status & OUT_OF_TXD) != 0) {
1042				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1043			} else {
1044				pr_debug("%s: out of transmit resources",
1045					bp->dev->name);
1046			}
1047
1048			// Note: We will retry the operation as soon as
1049			// transmit resources become available.
1050			skb_queue_head(&bp->SendSkbQueue, skb);
1051			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1052			return;	// Packet has been queued.
1053
1054		}		// if (unable to send frame)
1055
1056		bp->QueueSkb++;	// one packet less in local queue
1057
1058		// source address in packet ?
1059		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1060
1061		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1062
1063		dma_address = pci_map_single(&bp->pdev, skb->data,
1064					     skb->len, PCI_DMA_TODEVICE);
1065		if (frame_status & LAN_TX) {
1066			txd->txd_os.skb = skb;			// save skb
1067			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1068		}
1069		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1070                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1071
1072		if (!(frame_status & LAN_TX)) {		// local only frame
1073			pci_unmap_single(&bp->pdev, dma_address,
1074					 skb->len, PCI_DMA_TODEVICE);
1075			dev_kfree_skb_irq(skb);
1076		}
1077		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1078	}			// for
1079
1080	return;			// never reached
1081
1082}				// send_queued_packets
1083
1084
1085/************************
1086 *
1087 * CheckSourceAddress
1088 *
1089 * Verify if the source address is set. Insert it if necessary.
1090 *
1091 ************************/
1092static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1093{
1094	unsigned char SRBit;
1095
1096	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1097
1098		return;
1099	if ((unsigned short) frame[1 + 10] != 0)
1100		return;
1101	SRBit = frame[1 + 6] & 0x01;
1102	memcpy(&frame[1 + 6], hw_addr, 6);
1103	frame[8] |= SRBit;
1104}				// CheckSourceAddress
1105
1106
1107/************************
1108 *
1109 *	ResetAdapter
1110 *
1111 *	Reset the adapter and bring it back to operational mode.
1112 * Args
1113 *	smc - A pointer to the SMT context struct.
1114 * Out
1115 *	Nothing.
1116 *
1117 ************************/
1118static void ResetAdapter(struct s_smc *smc)
1119{
1120
1121	pr_debug(KERN_INFO "[fddi: ResetAdapter]\n");
1122
1123	// Stop the adapter.
1124
1125	card_stop(smc);		// Stop all activity.
1126
1127	// Clear the transmit and receive descriptor queues.
1128	mac_drv_clear_tx_queue(smc);
1129	mac_drv_clear_rx_queue(smc);
1130
1131	// Restart the adapter.
1132
1133	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1134
1135	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1136
1137	smt_online(smc, 1);	// Insert into the ring again.
1138	STI_FBI();
1139
1140	// Restore original receive mode (multicasts, promiscuous, etc.).
1141	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1142}				// ResetAdapter
1143
1144
1145//--------------- functions called by hardware module ----------------
1146
1147/************************
1148 *
1149 *	llc_restart_tx
1150 *
1151 *	The hardware driver calls this routine when the transmit complete
1152 *	interrupt bits (end of frame) for the synchronous or asynchronous
1153 *	queue is set.
1154 *
1155 * NOTE The hardware driver calls this function also if no packets are queued.
1156 *	The routine must be able to handle this case.
1157 * Args
1158 *	smc - A pointer to the SMT context struct.
1159 * Out
1160 *	Nothing.
1161 *
1162 ************************/
1163void llc_restart_tx(struct s_smc *smc)
1164{
1165	skfddi_priv *bp = &smc->os;
1166
1167	pr_debug(KERN_INFO "[llc_restart_tx]\n");
1168
1169	// Try to send queued packets
1170	spin_unlock(&bp->DriverLock);
1171	send_queued_packets(smc);
1172	spin_lock(&bp->DriverLock);
1173	netif_start_queue(bp->dev);// system may send again if it was blocked
1174
1175}				// llc_restart_tx
1176
1177
1178/************************
1179 *
1180 *	mac_drv_get_space
1181 *
1182 *	The hardware module calls this function to allocate the memory
1183 *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1184 * Args
1185 *	smc - A pointer to the SMT context struct.
1186 *
1187 *	size - Size of memory in bytes to allocate.
1188 * Out
1189 *	!= 0	A pointer to the virtual address of the allocated memory.
1190 *	== 0	Allocation error.
1191 *
1192 ************************/
1193void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1194{
1195	void *virt;
1196
1197	pr_debug(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1198	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1199
1200	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1201		printk("Unexpected SMT memory size requested: %d\n", size);
1202		return (NULL);
1203	}
1204	smc->os.SharedMemHeap += size;	// Move heap pointer.
1205
1206	pr_debug(KERN_INFO "mac_drv_get_space end\n");
1207	pr_debug(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1208	pr_debug(KERN_INFO "bus  addr: %lx\n", (ulong)
1209	       (smc->os.SharedMemDMA +
1210		((char *) virt - (char *)smc->os.SharedMemAddr)));
1211	return (virt);
1212}				// mac_drv_get_space
1213
1214
1215/************************
1216 *
1217 *	mac_drv_get_desc_mem
1218 *
1219 *	This function is called by the hardware dependent module.
1220 *	It allocates the memory for the RxD and TxD descriptors.
1221 *
1222 *	This memory must be non-cached, non-movable and non-swappable.
1223 *	This memory should start at a physical page boundary.
1224 * Args
1225 *	smc - A pointer to the SMT context struct.
1226 *
1227 *	size - Size of memory in bytes to allocate.
1228 * Out
1229 *	!= 0	A pointer to the virtual address of the allocated memory.
1230 *	== 0	Allocation error.
1231 *
1232 ************************/
1233void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1234{
1235
1236	char *virt;
1237
1238	pr_debug(KERN_INFO "mac_drv_get_desc_mem\n");
1239
1240	// Descriptor memory must be aligned on 16-byte boundary.
1241
1242	virt = mac_drv_get_space(smc, size);
1243
1244	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1245	size = size % 16;
1246
1247	pr_debug("Allocate %u bytes alignment gap ", size);
1248	pr_debug("for descriptor memory.\n");
1249
1250	if (!mac_drv_get_space(smc, size)) {
1251		printk("fddi: Unable to align descriptor memory.\n");
1252		return (NULL);
1253	}
1254	return (virt + size);
1255}				// mac_drv_get_desc_mem
1256
1257
1258/************************
1259 *
1260 *	mac_drv_virt2phys
1261 *
1262 *	Get the physical address of a given virtual address.
1263 * Args
1264 *	smc - A pointer to the SMT context struct.
1265 *
1266 *	virt - A (virtual) pointer into our 'shared' memory area.
1267 * Out
1268 *	Physical address of the given virtual address.
1269 *
1270 ************************/
1271unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1272{
1273	return (smc->os.SharedMemDMA +
1274		((char *) virt - (char *)smc->os.SharedMemAddr));
1275}				// mac_drv_virt2phys
1276
1277
1278/************************
1279 *
1280 *	dma_master
1281 *
1282 *	The HWM calls this function, when the driver leads through a DMA
1283 *	transfer. If the OS-specific module must prepare the system hardware
1284 *	for the DMA transfer, it should do it in this function.
1285 *
1286 *	The hardware module calls this dma_master if it wants to send an SMT
1287 *	frame.  This means that the virt address passed in here is part of
1288 *      the 'shared' memory area.
1289 * Args
1290 *	smc - A pointer to the SMT context struct.
1291 *
1292 *	virt - The virtual address of the data.
1293 *
1294 *	len - The length in bytes of the data.
1295 *
1296 *	flag - Indicates the transmit direction and the buffer type:
1297 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1298 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1299 *		SMT_BUF (0x80)	SMT buffer
1300 *
1301 *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1302 * Out
1303 *	Returns the pyhsical address for the DMA transfer.
1304 *
1305 ************************/
1306u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1307{
1308	return (smc->os.SharedMemDMA +
1309		((char *) virt - (char *)smc->os.SharedMemAddr));
1310}				// dma_master
1311
1312
1313/************************
1314 *
1315 *	dma_complete
1316 *
1317 *	The hardware module calls this routine when it has completed a DMA
1318 *	transfer. If the operating system dependent module has set up the DMA
1319 *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1320 *	the DMA channel.
1321 * Args
1322 *	smc - A pointer to the SMT context struct.
1323 *
1324 *	descr - A pointer to a TxD or RxD, respectively.
1325 *
1326 *	flag - Indicates the DMA transfer direction / SMT buffer:
1327 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1328 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1329 *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1330 * Out
1331 *	Nothing.
1332 *
1333 ************************/
1334void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1335{
1336	/* For TX buffers, there are two cases.  If it is an SMT transmit
1337	 * buffer, there is nothing to do since we use consistent memory
1338	 * for the 'shared' memory area.  The other case is for normal
1339	 * transmit packets given to us by the networking stack, and in
1340	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1341	 * below.
1342	 *
1343	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1344	 * because the hardware module is about to potentially look at
1345	 * the contents of the buffer.  If we did not call the PCI DMA
1346	 * unmap first, the hardware module could read inconsistent data.
1347	 */
1348	if (flag & DMA_WR) {
1349		skfddi_priv *bp = &smc->os;
1350		volatile struct s_smt_fp_rxd *r = &descr->r;
1351
1352		/* If SKB is NULL, we used the local buffer. */
1353		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1354			int MaxFrameSize = bp->MaxFrameSize;
1355
1356			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1357					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1358			r->rxd_os.dma_addr = 0;
1359		}
1360	}
1361}				// dma_complete
1362
1363
1364/************************
1365 *
1366 *	mac_drv_tx_complete
1367 *
1368 *	Transmit of a packet is complete. Release the tx staging buffer.
1369 *
1370 * Args
1371 *	smc - A pointer to the SMT context struct.
1372 *
1373 *	txd - A pointer to the last TxD which is used by the frame.
1374 * Out
1375 *	Returns nothing.
1376 *
1377 ************************/
1378void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1379{
1380	struct sk_buff *skb;
1381
1382	pr_debug(KERN_INFO "entering mac_drv_tx_complete\n");
1383	// Check if this TxD points to a skb
1384
1385	if (!(skb = txd->txd_os.skb)) {
1386		pr_debug("TXD with no skb assigned.\n");
1387		return;
1388	}
1389	txd->txd_os.skb = NULL;
1390
1391	// release the DMA mapping
1392	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1393			 skb->len, PCI_DMA_TODEVICE);
1394	txd->txd_os.dma_addr = 0;
1395
1396	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1397	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1398
1399	// free the skb
1400	dev_kfree_skb_irq(skb);
1401
1402	pr_debug(KERN_INFO "leaving mac_drv_tx_complete\n");
1403}				// mac_drv_tx_complete
1404
1405
1406/************************
1407 *
1408 * dump packets to logfile
1409 *
1410 ************************/
1411#ifdef DUMPPACKETS
1412void dump_data(unsigned char *Data, int length)
1413{
1414	int i, j;
1415	unsigned char s[255], sh[10];
1416	if (length > 64) {
1417		length = 64;
1418	}
1419	printk(KERN_INFO "---Packet start---\n");
1420	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1421		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1422		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1423		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1424	strcpy(s, "");
1425	for (i = 0; i < length % 8; i++) {
1426		sprintf(sh, "%02x ", Data[j + i]);
1427		strcat(s, sh);
1428	}
1429	printk(KERN_INFO "%s\n", s);
1430	printk(KERN_INFO "------------------\n");
1431}				// dump_data
1432#else
1433#define dump_data(data,len)
1434#endif				// DUMPPACKETS
1435
1436/************************
1437 *
1438 *	mac_drv_rx_complete
1439 *
1440 *	The hardware module calls this function if an LLC frame is received
1441 *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1442 *	from the network will be passed to the LLC layer by this function
1443 *	if passing is enabled.
1444 *
1445 *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1446 *	be received. It also fills the RxD ring with new receive buffers if
1447 *	some can be queued.
1448 * Args
1449 *	smc - A pointer to the SMT context struct.
1450 *
1451 *	rxd - A pointer to the first RxD which is used by the receive frame.
1452 *
1453 *	frag_count - Count of RxDs used by the received frame.
1454 *
1455 *	len - Frame length.
1456 * Out
1457 *	Nothing.
1458 *
1459 ************************/
1460void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1461			 int frag_count, int len)
1462{
1463	skfddi_priv *bp = &smc->os;
1464	struct sk_buff *skb;
1465	unsigned char *virt, *cp;
1466	unsigned short ri;
1467	u_int RifLength;
1468
1469	pr_debug(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1470	if (frag_count != 1) {	// This is not allowed to happen.
1471
1472		printk("fddi: Multi-fragment receive!\n");
1473		goto RequeueRxd;	// Re-use the given RXD(s).
1474
1475	}
1476	skb = rxd->rxd_os.skb;
1477	if (!skb) {
1478		pr_debug(KERN_INFO "No skb in rxd\n");
1479		smc->os.MacStat.gen.rx_errors++;
1480		goto RequeueRxd;
1481	}
1482	virt = skb->data;
1483
1484	// The DMA mapping was released in dma_complete above.
1485
1486	dump_data(skb->data, len);
1487
1488	/*
1489	 * FDDI Frame format:
1490	 * +-------+-------+-------+------------+--------+------------+
1491	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1492	 * +-------+-------+-------+------------+--------+------------+
1493	 *
1494	 * FC = Frame Control
1495	 * DA = Destination Address
1496	 * SA = Source Address
1497	 * RIF = Routing Information Field
1498	 * LLC = Logical Link Control
1499	 */
1500
1501	// Remove Routing Information Field (RIF), if present.
1502
1503	if ((virt[1 + 6] & FDDI_RII) == 0)
1504		RifLength = 0;
1505	else {
1506		int n;
1507// goos: RIF removal has still to be tested
1508		pr_debug(KERN_INFO "RIF found\n");
1509		// Get RIF length from Routing Control (RC) field.
1510		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1511
1512		ri = ntohs(*((__be16 *) cp));
1513		RifLength = ri & FDDI_RCF_LEN_MASK;
1514		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1515			printk("fddi: Invalid RIF.\n");
1516			goto RequeueRxd;	// Discard the frame.
1517
1518		}
1519		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1520		// regions overlap
1521
1522		virt = cp + RifLength;
1523		for (n = FDDI_MAC_HDR_LEN; n; n--)
1524			*--virt = *--cp;
1525		// adjust sbd->data pointer
1526		skb_pull(skb, RifLength);
1527		len -= RifLength;
1528		RifLength = 0;
1529	}
1530
1531	// Count statistics.
1532	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1533						// packets.
1534	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1535
1536	// virt points to header again
1537	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1538
1539		smc->os.MacStat.gen.multicast++;
1540	}
1541
1542	// deliver frame to system
1543	rxd->rxd_os.skb = NULL;
1544	skb_trim(skb, len);
1545	skb->protocol = fddi_type_trans(skb, bp->dev);
1546
1547	netif_rx(skb);
1548
1549	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1550	return;
1551
1552      RequeueRxd:
1553	pr_debug(KERN_INFO "Rx: re-queue RXD.\n");
1554	mac_drv_requeue_rxd(smc, rxd, frag_count);
1555	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1556						// not indicated.
1557
1558}				// mac_drv_rx_complete
1559
1560
1561/************************
1562 *
1563 *	mac_drv_requeue_rxd
1564 *
1565 *	The hardware module calls this function to request the OS-specific
1566 *	module to queue the receive buffer(s) represented by the pointer
1567 *	to the RxD and the frag_count into the receive queue again. This
1568 *	buffer was filled with an invalid frame or an SMT frame.
1569 * Args
1570 *	smc - A pointer to the SMT context struct.
1571 *
1572 *	rxd - A pointer to the first RxD which is used by the receive frame.
1573 *
1574 *	frag_count - Count of RxDs used by the received frame.
1575 * Out
1576 *	Nothing.
1577 *
1578 ************************/
1579void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1580			 int frag_count)
1581{
1582	volatile struct s_smt_fp_rxd *next_rxd;
1583	volatile struct s_smt_fp_rxd *src_rxd;
1584	struct sk_buff *skb;
1585	int MaxFrameSize;
1586	unsigned char *v_addr;
1587	dma_addr_t b_addr;
1588
1589	if (frag_count != 1)	// This is not allowed to happen.
1590
1591		printk("fddi: Multi-fragment requeue!\n");
1592
1593	MaxFrameSize = smc->os.MaxFrameSize;
1594	src_rxd = rxd;
1595	for (; frag_count > 0; frag_count--) {
1596		next_rxd = src_rxd->rxd_next;
1597		rxd = HWM_GET_CURR_RXD(smc);
1598
1599		skb = src_rxd->rxd_os.skb;
1600		if (skb == NULL) {	// this should not happen
1601
1602			pr_debug("Requeue with no skb in rxd!\n");
1603			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1604			if (skb) {
1605				// we got a skb
1606				rxd->rxd_os.skb = skb;
1607				skb_reserve(skb, 3);
1608				skb_put(skb, MaxFrameSize);
1609				v_addr = skb->data;
1610				b_addr = pci_map_single(&smc->os.pdev,
1611							v_addr,
1612							MaxFrameSize,
1613							PCI_DMA_FROMDEVICE);
1614				rxd->rxd_os.dma_addr = b_addr;
1615			} else {
1616				// no skb available, use local buffer
1617				pr_debug("Queueing invalid buffer!\n");
1618				rxd->rxd_os.skb = NULL;
1619				v_addr = smc->os.LocalRxBuffer;
1620				b_addr = smc->os.LocalRxBufferDMA;
1621			}
1622		} else {
1623			// we use skb from old rxd
1624			rxd->rxd_os.skb = skb;
1625			v_addr = skb->data;
1626			b_addr = pci_map_single(&smc->os.pdev,
1627						v_addr,
1628						MaxFrameSize,
1629						PCI_DMA_FROMDEVICE);
1630			rxd->rxd_os.dma_addr = b_addr;
1631		}
1632		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1633			    FIRST_FRAG | LAST_FRAG);
1634
1635		src_rxd = next_rxd;
1636	}
1637}				// mac_drv_requeue_rxd
1638
1639
1640/************************
1641 *
1642 *	mac_drv_fill_rxd
1643 *
1644 *	The hardware module calls this function at initialization time
1645 *	to fill the RxD ring with receive buffers. It is also called by
1646 *	mac_drv_rx_complete if rx_free is large enough to queue some new
1647 *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1648 *	receive buffers as long as enough RxDs and receive buffers are
1649 *	available.
1650 * Args
1651 *	smc - A pointer to the SMT context struct.
1652 * Out
1653 *	Nothing.
1654 *
1655 ************************/
1656void mac_drv_fill_rxd(struct s_smc *smc)
1657{
1658	int MaxFrameSize;
1659	unsigned char *v_addr;
1660	unsigned long b_addr;
1661	struct sk_buff *skb;
1662	volatile struct s_smt_fp_rxd *rxd;
1663
1664	pr_debug(KERN_INFO "entering mac_drv_fill_rxd\n");
1665
1666	// Walk through the list of free receive buffers, passing receive
1667	// buffers to the HWM as long as RXDs are available.
1668
1669	MaxFrameSize = smc->os.MaxFrameSize;
1670	// Check if there is any RXD left.
1671	while (HWM_GET_RX_FREE(smc) > 0) {
1672		pr_debug(KERN_INFO ".\n");
1673
1674		rxd = HWM_GET_CURR_RXD(smc);
1675		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1676		if (skb) {
1677			// we got a skb
1678			skb_reserve(skb, 3);
1679			skb_put(skb, MaxFrameSize);
1680			v_addr = skb->data;
1681			b_addr = pci_map_single(&smc->os.pdev,
1682						v_addr,
1683						MaxFrameSize,
1684						PCI_DMA_FROMDEVICE);
1685			rxd->rxd_os.dma_addr = b_addr;
1686		} else {
1687			// no skb available, use local buffer
1688			// System has run out of buffer memory, but we want to
1689			// keep the receiver running in hope of better times.
1690			// Multiple descriptors may point to this local buffer,
1691			// so data in it must be considered invalid.
1692			pr_debug("Queueing invalid buffer!\n");
1693			v_addr = smc->os.LocalRxBuffer;
1694			b_addr = smc->os.LocalRxBufferDMA;
1695		}
1696
1697		rxd->rxd_os.skb = skb;
1698
1699		// Pass receive buffer to HWM.
1700		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1701			    FIRST_FRAG | LAST_FRAG);
1702	}
1703	pr_debug(KERN_INFO "leaving mac_drv_fill_rxd\n");
1704}				// mac_drv_fill_rxd
1705
1706
1707/************************
1708 *
1709 *	mac_drv_clear_rxd
1710 *
1711 *	The hardware module calls this function to release unused
1712 *	receive buffers.
1713 * Args
1714 *	smc - A pointer to the SMT context struct.
1715 *
1716 *	rxd - A pointer to the first RxD which is used by the receive buffer.
1717 *
1718 *	frag_count - Count of RxDs used by the receive buffer.
1719 * Out
1720 *	Nothing.
1721 *
1722 ************************/
1723void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1724		       int frag_count)
1725{
1726
1727	struct sk_buff *skb;
1728
1729	pr_debug("entering mac_drv_clear_rxd\n");
1730
1731	if (frag_count != 1)	// This is not allowed to happen.
1732
1733		printk("fddi: Multi-fragment clear!\n");
1734
1735	for (; frag_count > 0; frag_count--) {
1736		skb = rxd->rxd_os.skb;
1737		if (skb != NULL) {
1738			skfddi_priv *bp = &smc->os;
1739			int MaxFrameSize = bp->MaxFrameSize;
1740
1741			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1742					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1743
1744			dev_kfree_skb(skb);
1745			rxd->rxd_os.skb = NULL;
1746		}
1747		rxd = rxd->rxd_next;	// Next RXD.
1748
1749	}
1750}				// mac_drv_clear_rxd
1751
1752
1753/************************
1754 *
1755 *	mac_drv_rx_init
1756 *
1757 *	The hardware module calls this routine when an SMT or NSA frame of the
1758 *	local SMT should be delivered to the LLC layer.
1759 *
1760 *	It is necessary to have this function, because there is no other way to
1761 *	copy the contents of SMT MBufs into receive buffers.
1762 *
1763 *	mac_drv_rx_init allocates the required target memory for this frame,
1764 *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1765 * Args
1766 *	smc - A pointer to the SMT context struct.
1767 *
1768 *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1769 *
1770 *	fc - The Frame Control field of the received frame.
1771 *
1772 *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1773 *
1774 *	la_len - The length of the lookahead data stored in the lookahead
1775 *	buffer (may be zero).
1776 * Out
1777 *	Always returns zero (0).
1778 *
1779 ************************/
1780int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1781		    char *look_ahead, int la_len)
1782{
1783	struct sk_buff *skb;
1784
1785	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1786
1787	// "Received" a SMT or NSA frame of the local SMT.
1788
1789	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1790		pr_debug("fddi: Discard invalid local SMT frame\n");
1791		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1792		       len, la_len, (unsigned long) look_ahead);
1793		return (0);
1794	}
1795	skb = alloc_skb(len + 3, GFP_ATOMIC);
1796	if (!skb) {
1797		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1798		return (0);
1799	}
1800	skb_reserve(skb, 3);
1801	skb_put(skb, len);
1802	skb_copy_to_linear_data(skb, look_ahead, len);
1803
1804	// deliver frame to system
1805	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1806	netif_rx(skb);
1807
1808	return (0);
1809}				// mac_drv_rx_init
1810
1811
1812/************************
1813 *
1814 *	smt_timer_poll
1815 *
1816 *	This routine is called periodically by the SMT module to clean up the
1817 *	driver.
1818 *
1819 *	Return any queued frames back to the upper protocol layers if the ring
1820 *	is down.
1821 * Args
1822 *	smc - A pointer to the SMT context struct.
1823 * Out
1824 *	Nothing.
1825 *
1826 ************************/
1827void smt_timer_poll(struct s_smc *smc)
1828{
1829}				// smt_timer_poll
1830
1831
1832/************************
1833 *
1834 *	ring_status_indication
1835 *
1836 *	This function indicates a change of the ring state.
1837 * Args
1838 *	smc - A pointer to the SMT context struct.
1839 *
1840 *	status - The current ring status.
1841 * Out
1842 *	Nothing.
1843 *
1844 ************************/
1845void ring_status_indication(struct s_smc *smc, u_long status)
1846{
1847	pr_debug("ring_status_indication( ");
1848	if (status & RS_RES15)
1849		pr_debug("RS_RES15 ");
1850	if (status & RS_HARDERROR)
1851		pr_debug("RS_HARDERROR ");
1852	if (status & RS_SOFTERROR)
1853		pr_debug("RS_SOFTERROR ");
1854	if (status & RS_BEACON)
1855		pr_debug("RS_BEACON ");
1856	if (status & RS_PATHTEST)
1857		pr_debug("RS_PATHTEST ");
1858	if (status & RS_SELFTEST)
1859		pr_debug("RS_SELFTEST ");
1860	if (status & RS_RES9)
1861		pr_debug("RS_RES9 ");
1862	if (status & RS_DISCONNECT)
1863		pr_debug("RS_DISCONNECT ");
1864	if (status & RS_RES7)
1865		pr_debug("RS_RES7 ");
1866	if (status & RS_DUPADDR)
1867		pr_debug("RS_DUPADDR ");
1868	if (status & RS_NORINGOP)
1869		pr_debug("RS_NORINGOP ");
1870	if (status & RS_VERSION)
1871		pr_debug("RS_VERSION ");
1872	if (status & RS_STUCKBYPASSS)
1873		pr_debug("RS_STUCKBYPASSS ");
1874	if (status & RS_EVENT)
1875		pr_debug("RS_EVENT ");
1876	if (status & RS_RINGOPCHANGE)
1877		pr_debug("RS_RINGOPCHANGE ");
1878	if (status & RS_RES0)
1879		pr_debug("RS_RES0 ");
1880	pr_debug("]\n");
1881}				// ring_status_indication
1882
1883
1884/************************
1885 *
1886 *	smt_get_time
1887 *
1888 *	Gets the current time from the system.
1889 * Args
1890 *	None.
1891 * Out
1892 *	The current time in TICKS_PER_SECOND.
1893 *
1894 *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1895 *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1896 *	to the time returned by smt_get_time().
1897 *
1898 ************************/
1899unsigned long smt_get_time(void)
1900{
1901	return jiffies;
1902}				// smt_get_time
1903
1904
1905/************************
1906 *
1907 *	smt_stat_counter
1908 *
1909 *	Status counter update (ring_op, fifo full).
1910 * Args
1911 *	smc - A pointer to the SMT context struct.
1912 *
1913 *	stat -	= 0: A ring operational change occurred.
1914 *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
1915 * Out
1916 *	Nothing.
1917 *
1918 ************************/
1919void smt_stat_counter(struct s_smc *smc, int stat)
1920{
1921//      BOOLEAN RingIsUp ;
1922
1923	pr_debug(KERN_INFO "smt_stat_counter\n");
1924	switch (stat) {
1925	case 0:
1926		pr_debug(KERN_INFO "Ring operational change.\n");
1927		break;
1928	case 1:
1929		pr_debug(KERN_INFO "Receive fifo overflow.\n");
1930		smc->os.MacStat.gen.rx_errors++;
1931		break;
1932	default:
1933		pr_debug(KERN_INFO "Unknown status (%d).\n", stat);
1934		break;
1935	}
1936}				// smt_stat_counter
1937
1938
1939/************************
1940 *
1941 *	cfm_state_change
1942 *
1943 *	Sets CFM state in custom statistics.
1944 * Args
1945 *	smc - A pointer to the SMT context struct.
1946 *
1947 *	c_state - Possible values are:
1948 *
1949 *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
1950 *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
1951 * Out
1952 *	Nothing.
1953 *
1954 ************************/
1955void cfm_state_change(struct s_smc *smc, int c_state)
1956{
1957#ifdef DRIVERDEBUG
1958	char *s;
1959
1960	switch (c_state) {
1961	case SC0_ISOLATED:
1962		s = "SC0_ISOLATED";
1963		break;
1964	case SC1_WRAP_A:
1965		s = "SC1_WRAP_A";
1966		break;
1967	case SC2_WRAP_B:
1968		s = "SC2_WRAP_B";
1969		break;
1970	case SC4_THRU_A:
1971		s = "SC4_THRU_A";
1972		break;
1973	case SC5_THRU_B:
1974		s = "SC5_THRU_B";
1975		break;
1976	case SC7_WRAP_S:
1977		s = "SC7_WRAP_S";
1978		break;
1979	case SC9_C_WRAP_A:
1980		s = "SC9_C_WRAP_A";
1981		break;
1982	case SC10_C_WRAP_B:
1983		s = "SC10_C_WRAP_B";
1984		break;
1985	case SC11_C_WRAP_S:
1986		s = "SC11_C_WRAP_S";
1987		break;
1988	default:
1989		pr_debug(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
1990		return;
1991	}
1992	pr_debug(KERN_INFO "cfm_state_change: %s\n", s);
1993#endif				// DRIVERDEBUG
1994}				// cfm_state_change
1995
1996
1997/************************
1998 *
1999 *	ecm_state_change
2000 *
2001 *	Sets ECM state in custom statistics.
2002 * Args
2003 *	smc - A pointer to the SMT context struct.
2004 *
2005 *	e_state - Possible values are:
2006 *
2007 *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2008 *		SC5_THRU_B (7), SC7_WRAP_S (8)
2009 * Out
2010 *	Nothing.
2011 *
2012 ************************/
2013void ecm_state_change(struct s_smc *smc, int e_state)
2014{
2015#ifdef DRIVERDEBUG
2016	char *s;
2017
2018	switch (e_state) {
2019	case EC0_OUT:
2020		s = "EC0_OUT";
2021		break;
2022	case EC1_IN:
2023		s = "EC1_IN";
2024		break;
2025	case EC2_TRACE:
2026		s = "EC2_TRACE";
2027		break;
2028	case EC3_LEAVE:
2029		s = "EC3_LEAVE";
2030		break;
2031	case EC4_PATH_TEST:
2032		s = "EC4_PATH_TEST";
2033		break;
2034	case EC5_INSERT:
2035		s = "EC5_INSERT";
2036		break;
2037	case EC6_CHECK:
2038		s = "EC6_CHECK";
2039		break;
2040	case EC7_DEINSERT:
2041		s = "EC7_DEINSERT";
2042		break;
2043	default:
2044		s = "unknown";
2045		break;
2046	}
2047	pr_debug(KERN_INFO "ecm_state_change: %s\n", s);
2048#endif				//DRIVERDEBUG
2049}				// ecm_state_change
2050
2051
2052/************************
2053 *
2054 *	rmt_state_change
2055 *
2056 *	Sets RMT state in custom statistics.
2057 * Args
2058 *	smc - A pointer to the SMT context struct.
2059 *
2060 *	r_state - Possible values are:
2061 *
2062 *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2063 *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2064 * Out
2065 *	Nothing.
2066 *
2067 ************************/
2068void rmt_state_change(struct s_smc *smc, int r_state)
2069{
2070#ifdef DRIVERDEBUG
2071	char *s;
2072
2073	switch (r_state) {
2074	case RM0_ISOLATED:
2075		s = "RM0_ISOLATED";
2076		break;
2077	case RM1_NON_OP:
2078		s = "RM1_NON_OP - not operational";
2079		break;
2080	case RM2_RING_OP:
2081		s = "RM2_RING_OP - ring operational";
2082		break;
2083	case RM3_DETECT:
2084		s = "RM3_DETECT - detect dupl addresses";
2085		break;
2086	case RM4_NON_OP_DUP:
2087		s = "RM4_NON_OP_DUP - dupl. addr detected";
2088		break;
2089	case RM5_RING_OP_DUP:
2090		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2091		break;
2092	case RM6_DIRECTED:
2093		s = "RM6_DIRECTED - sending directed beacons";
2094		break;
2095	case RM7_TRACE:
2096		s = "RM7_TRACE - trace initiated";
2097		break;
2098	default:
2099		s = "unknown";
2100		break;
2101	}
2102	pr_debug(KERN_INFO "[rmt_state_change: %s]\n", s);
2103#endif				// DRIVERDEBUG
2104}				// rmt_state_change
2105
2106
2107/************************
2108 *
2109 *	drv_reset_indication
2110 *
2111 *	This function is called by the SMT when it has detected a severe
2112 *	hardware problem. The driver should perform a reset on the adapter
2113 *	as soon as possible, but not from within this function.
2114 * Args
2115 *	smc - A pointer to the SMT context struct.
2116 * Out
2117 *	Nothing.
2118 *
2119 ************************/
2120void drv_reset_indication(struct s_smc *smc)
2121{
2122	pr_debug(KERN_INFO "entering drv_reset_indication\n");
2123
2124	smc->os.ResetRequested = TRUE;	// Set flag.
2125
2126}				// drv_reset_indication
2127
2128static struct pci_driver skfddi_pci_driver = {
2129	.name		= "skfddi",
2130	.id_table	= skfddi_pci_tbl,
2131	.probe		= skfp_init_one,
2132	.remove		= __devexit_p(skfp_remove_one),
2133};
2134
2135static int __init skfd_init(void)
2136{
2137	return pci_register_driver(&skfddi_pci_driver);
2138}
2139
2140static void __exit skfd_exit(void)
2141{
2142	pci_unregister_driver(&skfddi_pci_driver);
2143}
2144
2145module_init(skfd_init);
2146module_exit(skfd_exit);
2147