• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/ixgbe/
1/*******************************************************************************
2
3  Intel 10 Gigabit PCI Express Linux driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe.h"
33#include "ixgbe_phy.h"
34#include "ixgbe_mbx.h"
35
36#define IXGBE_82599_MAX_TX_QUEUES 128
37#define IXGBE_82599_MAX_RX_QUEUES 128
38#define IXGBE_82599_RAR_ENTRIES   128
39#define IXGBE_82599_MC_TBL_SIZE   128
40#define IXGBE_82599_VFT_TBL_SIZE  128
41
42void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
43void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
44void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
45s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
46                                          ixgbe_link_speed speed,
47                                          bool autoneg,
48                                          bool autoneg_wait_to_complete);
49static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
50                                           ixgbe_link_speed speed,
51                                           bool autoneg,
52                                           bool autoneg_wait_to_complete);
53s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
54                               bool autoneg_wait_to_complete);
55s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
56                               ixgbe_link_speed speed,
57                               bool autoneg,
58                               bool autoneg_wait_to_complete);
59static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
60                                             ixgbe_link_speed *speed,
61                                             bool *autoneg);
62static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
63                                         ixgbe_link_speed speed,
64                                         bool autoneg,
65                                         bool autoneg_wait_to_complete);
66static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
67
68static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
69{
70	struct ixgbe_mac_info *mac = &hw->mac;
71	if (hw->phy.multispeed_fiber) {
72		/* Set up dual speed SFP+ support */
73		mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber;
74		mac->ops.disable_tx_laser =
75		                       &ixgbe_disable_tx_laser_multispeed_fiber;
76		mac->ops.enable_tx_laser =
77		                        &ixgbe_enable_tx_laser_multispeed_fiber;
78		mac->ops.flap_tx_laser = &ixgbe_flap_tx_laser_multispeed_fiber;
79	} else {
80		mac->ops.disable_tx_laser = NULL;
81		mac->ops.enable_tx_laser = NULL;
82		mac->ops.flap_tx_laser = NULL;
83		if ((mac->ops.get_media_type(hw) ==
84		     ixgbe_media_type_backplane) &&
85		    (hw->phy.smart_speed == ixgbe_smart_speed_auto ||
86		     hw->phy.smart_speed == ixgbe_smart_speed_on))
87			mac->ops.setup_link = &ixgbe_setup_mac_link_smartspeed;
88		else
89			mac->ops.setup_link = &ixgbe_setup_mac_link_82599;
90	}
91}
92
93static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
94{
95	s32 ret_val = 0;
96	u16 list_offset, data_offset, data_value;
97
98	if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
99		ixgbe_init_mac_link_ops_82599(hw);
100
101		hw->phy.ops.reset = NULL;
102
103		ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
104		                                              &data_offset);
105
106		if (ret_val != 0)
107			goto setup_sfp_out;
108
109		/* PHY config will finish before releasing the semaphore */
110		ret_val = ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
111		if (ret_val != 0) {
112			ret_val = IXGBE_ERR_SWFW_SYNC;
113			goto setup_sfp_out;
114		}
115
116		hw->eeprom.ops.read(hw, ++data_offset, &data_value);
117		while (data_value != 0xffff) {
118			IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
119			IXGBE_WRITE_FLUSH(hw);
120			hw->eeprom.ops.read(hw, ++data_offset, &data_value);
121		}
122		/* Now restart DSP by setting Restart_AN */
123		IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
124		    (IXGBE_READ_REG(hw, IXGBE_AUTOC) | IXGBE_AUTOC_AN_RESTART));
125
126		/* Release the semaphore */
127		ixgbe_release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
128		/* Delay obtaining semaphore again to allow FW access */
129		msleep(hw->eeprom.semaphore_delay);
130	}
131
132setup_sfp_out:
133	return ret_val;
134}
135
136static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
137{
138	struct ixgbe_mac_info *mac = &hw->mac;
139
140	ixgbe_init_mac_link_ops_82599(hw);
141
142	mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
143	mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
144	mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
145	mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
146	mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
147	mac->max_msix_vectors = ixgbe_get_pcie_msix_count_generic(hw);
148
149	return 0;
150}
151
152/**
153 *  ixgbe_init_phy_ops_82599 - PHY/SFP specific init
154 *  @hw: pointer to hardware structure
155 *
156 *  Initialize any function pointers that were not able to be
157 *  set during get_invariants because the PHY/SFP type was
158 *  not known.  Perform the SFP init if necessary.
159 *
160 **/
161static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
162{
163	struct ixgbe_mac_info *mac = &hw->mac;
164	struct ixgbe_phy_info *phy = &hw->phy;
165	s32 ret_val = 0;
166
167	/* Identify the PHY or SFP module */
168	ret_val = phy->ops.identify(hw);
169
170	/* Setup function pointers based on detected SFP module and speeds */
171	ixgbe_init_mac_link_ops_82599(hw);
172
173	/* If copper media, overwrite with copper function pointers */
174	if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
175		mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
176		mac->ops.get_link_capabilities =
177		                  &ixgbe_get_copper_link_capabilities_82599;
178	}
179
180	/* Set necessary function pointers based on phy type */
181	switch (hw->phy.type) {
182	case ixgbe_phy_tn:
183		phy->ops.check_link = &ixgbe_check_phy_link_tnx;
184		phy->ops.get_firmware_version =
185		             &ixgbe_get_phy_firmware_version_tnx;
186		break;
187	default:
188		break;
189	}
190
191	return ret_val;
192}
193
194/**
195 *  ixgbe_get_link_capabilities_82599 - Determines link capabilities
196 *  @hw: pointer to hardware structure
197 *  @speed: pointer to link speed
198 *  @negotiation: true when autoneg or autotry is enabled
199 *
200 *  Determines the link capabilities by reading the AUTOC register.
201 **/
202static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
203                                             ixgbe_link_speed *speed,
204                                             bool *negotiation)
205{
206	s32 status = 0;
207	u32 autoc = 0;
208
209	/* Determine 1G link capabilities off of SFP+ type */
210	if (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
211	    hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1) {
212		*speed = IXGBE_LINK_SPEED_1GB_FULL;
213		*negotiation = true;
214		goto out;
215	}
216
217	/*
218	 * Determine link capabilities based on the stored value of AUTOC,
219	 * which represents EEPROM defaults.  If AUTOC value has not been
220	 * stored, use the current register value.
221	 */
222	if (hw->mac.orig_link_settings_stored)
223		autoc = hw->mac.orig_autoc;
224	else
225		autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
226
227	switch (autoc & IXGBE_AUTOC_LMS_MASK) {
228	case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
229		*speed = IXGBE_LINK_SPEED_1GB_FULL;
230		*negotiation = false;
231		break;
232
233	case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
234		*speed = IXGBE_LINK_SPEED_10GB_FULL;
235		*negotiation = false;
236		break;
237
238	case IXGBE_AUTOC_LMS_1G_AN:
239		*speed = IXGBE_LINK_SPEED_1GB_FULL;
240		*negotiation = true;
241		break;
242
243	case IXGBE_AUTOC_LMS_10G_SERIAL:
244		*speed = IXGBE_LINK_SPEED_10GB_FULL;
245		*negotiation = false;
246		break;
247
248	case IXGBE_AUTOC_LMS_KX4_KX_KR:
249	case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
250		*speed = IXGBE_LINK_SPEED_UNKNOWN;
251		if (autoc & IXGBE_AUTOC_KR_SUPP)
252			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
253		if (autoc & IXGBE_AUTOC_KX4_SUPP)
254			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
255		if (autoc & IXGBE_AUTOC_KX_SUPP)
256			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
257		*negotiation = true;
258		break;
259
260	case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
261		*speed = IXGBE_LINK_SPEED_100_FULL;
262		if (autoc & IXGBE_AUTOC_KR_SUPP)
263			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
264		if (autoc & IXGBE_AUTOC_KX4_SUPP)
265			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
266		if (autoc & IXGBE_AUTOC_KX_SUPP)
267			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
268		*negotiation = true;
269		break;
270
271	case IXGBE_AUTOC_LMS_SGMII_1G_100M:
272		*speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
273		*negotiation = false;
274		break;
275
276	default:
277		status = IXGBE_ERR_LINK_SETUP;
278		goto out;
279		break;
280	}
281
282	if (hw->phy.multispeed_fiber) {
283		*speed |= IXGBE_LINK_SPEED_10GB_FULL |
284		          IXGBE_LINK_SPEED_1GB_FULL;
285		*negotiation = true;
286	}
287
288out:
289	return status;
290}
291
292/**
293 *  ixgbe_get_copper_link_capabilities_82599 - Determines link capabilities
294 *  @hw: pointer to hardware structure
295 *  @speed: pointer to link speed
296 *  @autoneg: boolean auto-negotiation value
297 *
298 *  Determines the link capabilities by reading the AUTOC register.
299 **/
300static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
301                                                    ixgbe_link_speed *speed,
302                                                    bool *autoneg)
303{
304	s32 status = IXGBE_ERR_LINK_SETUP;
305	u16 speed_ability;
306
307	*speed = 0;
308	*autoneg = true;
309
310	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
311	                              &speed_ability);
312
313	if (status == 0) {
314		if (speed_ability & MDIO_SPEED_10G)
315		    *speed |= IXGBE_LINK_SPEED_10GB_FULL;
316		if (speed_ability & MDIO_PMA_SPEED_1000)
317		    *speed |= IXGBE_LINK_SPEED_1GB_FULL;
318	}
319
320	return status;
321}
322
323/**
324 *  ixgbe_get_media_type_82599 - Get media type
325 *  @hw: pointer to hardware structure
326 *
327 *  Returns the media type (fiber, copper, backplane)
328 **/
329static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
330{
331	enum ixgbe_media_type media_type;
332
333	/* Detect if there is a copper PHY attached. */
334	if (hw->phy.type == ixgbe_phy_cu_unknown ||
335	    hw->phy.type == ixgbe_phy_tn) {
336		media_type = ixgbe_media_type_copper;
337		goto out;
338	}
339
340	switch (hw->device_id) {
341	case IXGBE_DEV_ID_82599_KX4:
342	case IXGBE_DEV_ID_82599_KX4_MEZZ:
343	case IXGBE_DEV_ID_82599_COMBO_BACKPLANE:
344	case IXGBE_DEV_ID_82599_KR:
345	case IXGBE_DEV_ID_82599_XAUI_LOM:
346		/* Default device ID is mezzanine card KX/KX4 */
347		media_type = ixgbe_media_type_backplane;
348		break;
349	case IXGBE_DEV_ID_82599_SFP:
350	case IXGBE_DEV_ID_82599_SFP_EM:
351		media_type = ixgbe_media_type_fiber;
352		break;
353	case IXGBE_DEV_ID_82599_CX4:
354		media_type = ixgbe_media_type_cx4;
355		break;
356	default:
357		media_type = ixgbe_media_type_unknown;
358		break;
359	}
360out:
361	return media_type;
362}
363
364/**
365 *  ixgbe_start_mac_link_82599 - Setup MAC link settings
366 *  @hw: pointer to hardware structure
367 *  @autoneg_wait_to_complete: true when waiting for completion is needed
368 *
369 *  Configures link settings based on values in the ixgbe_hw struct.
370 *  Restarts the link.  Performs autonegotiation if needed.
371 **/
372s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
373                               bool autoneg_wait_to_complete)
374{
375	u32 autoc_reg;
376	u32 links_reg;
377	u32 i;
378	s32 status = 0;
379
380	/* Restart link */
381	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
382	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
383	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
384
385	/* Only poll for autoneg to complete if specified to do so */
386	if (autoneg_wait_to_complete) {
387		if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
388		     IXGBE_AUTOC_LMS_KX4_KX_KR ||
389		    (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
390		     IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
391		    (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
392		     IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
393			links_reg = 0; /* Just in case Autoneg time = 0 */
394			for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
395				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
396				if (links_reg & IXGBE_LINKS_KX_AN_COMP)
397					break;
398				msleep(100);
399			}
400			if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
401				status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
402				hw_dbg(hw, "Autoneg did not complete.\n");
403			}
404		}
405	}
406
407	/* Add delay to filter out noises during initial link setup */
408	msleep(50);
409
410	return status;
411}
412
413 /**
414  *  ixgbe_disable_tx_laser_multispeed_fiber - Disable Tx laser
415  *  @hw: pointer to hardware structure
416  *
417  *  The base drivers may require better control over SFP+ module
418  *  PHY states.  This includes selectively shutting down the Tx
419  *  laser on the PHY, effectively halting physical link.
420  **/
421void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
422{
423	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
424
425	/* Disable tx laser; allow 100us to go dark per spec */
426	esdp_reg |= IXGBE_ESDP_SDP3;
427	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
428	IXGBE_WRITE_FLUSH(hw);
429	udelay(100);
430}
431
432/**
433 *  ixgbe_enable_tx_laser_multispeed_fiber - Enable Tx laser
434 *  @hw: pointer to hardware structure
435 *
436 *  The base drivers may require better control over SFP+ module
437 *  PHY states.  This includes selectively turning on the Tx
438 *  laser on the PHY, effectively starting physical link.
439 **/
440void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
441{
442	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
443
444	/* Enable tx laser; allow 100ms to light up */
445	esdp_reg &= ~IXGBE_ESDP_SDP3;
446	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
447	IXGBE_WRITE_FLUSH(hw);
448	msleep(100);
449}
450
451/**
452 *  ixgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser
453 *  @hw: pointer to hardware structure
454 *
455 *  When the driver changes the link speeds that it can support,
456 *  it sets autotry_restart to true to indicate that we need to
457 *  initiate a new autotry session with the link partner.  To do
458 *  so, we set the speed then disable and re-enable the tx laser, to
459 *  alert the link partner that it also needs to restart autotry on its
460 *  end.  This is consistent with true clause 37 autoneg, which also
461 *  involves a loss of signal.
462 **/
463void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
464{
465	hw_dbg(hw, "ixgbe_flap_tx_laser_multispeed_fiber\n");
466
467	if (hw->mac.autotry_restart) {
468		ixgbe_disable_tx_laser_multispeed_fiber(hw);
469		ixgbe_enable_tx_laser_multispeed_fiber(hw);
470		hw->mac.autotry_restart = false;
471	}
472}
473
474/**
475 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
476 *  @hw: pointer to hardware structure
477 *  @speed: new link speed
478 *  @autoneg: true if autonegotiation enabled
479 *  @autoneg_wait_to_complete: true when waiting for completion is needed
480 *
481 *  Set the link speed in the AUTOC register and restarts link.
482 **/
483s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
484                                          ixgbe_link_speed speed,
485                                          bool autoneg,
486                                          bool autoneg_wait_to_complete)
487{
488	s32 status = 0;
489	ixgbe_link_speed phy_link_speed;
490	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
491	u32 speedcnt = 0;
492	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
493	bool link_up = false;
494	bool negotiation;
495	int i;
496
497	/* Mask off requested but non-supported speeds */
498	hw->mac.ops.get_link_capabilities(hw, &phy_link_speed, &negotiation);
499	speed &= phy_link_speed;
500
501	/*
502	 * Try each speed one by one, highest priority first.  We do this in
503	 * software because 10gb fiber doesn't support speed autonegotiation.
504	 */
505	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
506		speedcnt++;
507		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
508
509		/* If we already have link at this speed, just jump out */
510		hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
511
512		if ((phy_link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
513			goto out;
514
515		/* Set the module link speed */
516		esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
517		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
518		IXGBE_WRITE_FLUSH(hw);
519
520		/* Allow module to change analog characteristics (1G->10G) */
521		msleep(40);
522
523		status = ixgbe_setup_mac_link_82599(hw,
524		                               IXGBE_LINK_SPEED_10GB_FULL,
525		                               autoneg,
526		                               autoneg_wait_to_complete);
527		if (status != 0)
528			return status;
529
530		/* Flap the tx laser if it has not already been done */
531		hw->mac.ops.flap_tx_laser(hw);
532
533		/*
534		 * Wait for the controller to acquire link.  Per IEEE 802.3ap,
535		 * Section 73.10.2, we may have to wait up to 500ms if KR is
536		 * attempted.  82599 uses the same timing for 10g SFI.
537		 */
538
539		for (i = 0; i < 5; i++) {
540			/* Wait for the link partner to also set speed */
541			msleep(100);
542
543			/* If we have link, just jump out */
544			hw->mac.ops.check_link(hw, &phy_link_speed,
545			                       &link_up, false);
546			if (link_up)
547				goto out;
548		}
549	}
550
551	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
552		speedcnt++;
553		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
554			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
555
556		/* If we already have link at this speed, just jump out */
557		hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
558
559		if ((phy_link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
560			goto out;
561
562		/* Set the module link speed */
563		esdp_reg &= ~IXGBE_ESDP_SDP5;
564		esdp_reg |= IXGBE_ESDP_SDP5_DIR;
565		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
566		IXGBE_WRITE_FLUSH(hw);
567
568		/* Allow module to change analog characteristics (10G->1G) */
569		msleep(40);
570
571		status = ixgbe_setup_mac_link_82599(hw,
572		                                      IXGBE_LINK_SPEED_1GB_FULL,
573		                                      autoneg,
574		                                      autoneg_wait_to_complete);
575		if (status != 0)
576			return status;
577
578		/* Flap the tx laser if it has not already been done */
579		hw->mac.ops.flap_tx_laser(hw);
580
581		/* Wait for the link partner to also set speed */
582		msleep(100);
583
584		/* If we have link, just jump out */
585		hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
586		if (link_up)
587			goto out;
588	}
589
590	/*
591	 * We didn't get link.  Configure back to the highest speed we tried,
592	 * (if there was more than one).  We call ourselves back with just the
593	 * single highest speed that the user requested.
594	 */
595	if (speedcnt > 1)
596		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
597		                                               highest_link_speed,
598		                                               autoneg,
599		                                               autoneg_wait_to_complete);
600
601out:
602	/* Set autoneg_advertised value based on input link speed */
603	hw->phy.autoneg_advertised = 0;
604
605	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
606		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
607
608	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
609		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
610
611	return status;
612}
613
614/**
615 *  ixgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
616 *  @hw: pointer to hardware structure
617 *  @speed: new link speed
618 *  @autoneg: true if autonegotiation enabled
619 *  @autoneg_wait_to_complete: true when waiting for completion is needed
620 *
621 *  Implements the Intel SmartSpeed algorithm.
622 **/
623static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
624				     ixgbe_link_speed speed, bool autoneg,
625				     bool autoneg_wait_to_complete)
626{
627	s32 status = 0;
628	ixgbe_link_speed link_speed;
629	s32 i, j;
630	bool link_up = false;
631	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
632	struct ixgbe_adapter *adapter = hw->back;
633
634	hw_dbg(hw, "ixgbe_setup_mac_link_smartspeed.\n");
635
636	 /* Set autoneg_advertised value based on input link speed */
637	hw->phy.autoneg_advertised = 0;
638
639	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
640		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
641
642	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
643		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
644
645	if (speed & IXGBE_LINK_SPEED_100_FULL)
646		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
647
648	/*
649	 * Implement Intel SmartSpeed algorithm.  SmartSpeed will reduce the
650	 * autoneg advertisement if link is unable to be established at the
651	 * highest negotiated rate.  This can sometimes happen due to integrity
652	 * issues with the physical media connection.
653	 */
654
655	/* First, try to get link with full advertisement */
656	hw->phy.smart_speed_active = false;
657	for (j = 0; j < IXGBE_SMARTSPEED_MAX_RETRIES; j++) {
658		status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
659						    autoneg_wait_to_complete);
660		if (status)
661			goto out;
662
663		/*
664		 * Wait for the controller to acquire link.  Per IEEE 802.3ap,
665		 * Section 73.10.2, we may have to wait up to 500ms if KR is
666		 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
667		 * Table 9 in the AN MAS.
668		 */
669		for (i = 0; i < 5; i++) {
670			mdelay(100);
671
672			/* If we have link, just jump out */
673			hw->mac.ops.check_link(hw, &link_speed,
674			                       &link_up, false);
675			if (link_up)
676				goto out;
677		}
678	}
679
680	/*
681	 * We didn't get link.  If we advertised KR plus one of KX4/KX
682	 * (or BX4/BX), then disable KR and try again.
683	 */
684	if (((autoc_reg & IXGBE_AUTOC_KR_SUPP) == 0) ||
685	    ((autoc_reg & IXGBE_AUTOC_KX4_KX_SUPP_MASK) == 0))
686		goto out;
687
688	/* Turn SmartSpeed on to disable KR support */
689	hw->phy.smart_speed_active = true;
690	status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
691					    autoneg_wait_to_complete);
692	if (status)
693		goto out;
694
695	/*
696	 * Wait for the controller to acquire link.  600ms will allow for
697	 * the AN link_fail_inhibit_timer as well for multiple cycles of
698	 * parallel detect, both 10g and 1g. This allows for the maximum
699	 * connect attempts as defined in the AN MAS table 73-7.
700	 */
701	for (i = 0; i < 6; i++) {
702		mdelay(100);
703
704		/* If we have link, just jump out */
705		hw->mac.ops.check_link(hw, &link_speed,
706		                       &link_up, false);
707		if (link_up)
708			goto out;
709	}
710
711	/* We didn't get link.  Turn SmartSpeed back off. */
712	hw->phy.smart_speed_active = false;
713	status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
714					    autoneg_wait_to_complete);
715
716out:
717	if (link_up && (link_speed == IXGBE_LINK_SPEED_1GB_FULL))
718		e_info(hw, "Smartspeed has downgraded the link speed from "
719		       "the maximum advertised\n");
720	return status;
721}
722
723/**
724 *  ixgbe_setup_mac_link_82599 - Set MAC link speed
725 *  @hw: pointer to hardware structure
726 *  @speed: new link speed
727 *  @autoneg: true if autonegotiation enabled
728 *  @autoneg_wait_to_complete: true when waiting for completion is needed
729 *
730 *  Set the link speed in the AUTOC register and restarts link.
731 **/
732s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
733                               ixgbe_link_speed speed, bool autoneg,
734                               bool autoneg_wait_to_complete)
735{
736	s32 status = 0;
737	u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
738	u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
739	u32 start_autoc = autoc;
740	u32 orig_autoc = 0;
741	u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
742	u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
743	u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
744	u32 links_reg;
745	u32 i;
746	ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;
747
748	/* Check to see if speed passed in is supported. */
749	hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg);
750	speed &= link_capabilities;
751
752	if (speed == IXGBE_LINK_SPEED_UNKNOWN) {
753		status = IXGBE_ERR_LINK_SETUP;
754		goto out;
755	}
756
757	/* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
758	if (hw->mac.orig_link_settings_stored)
759		orig_autoc = hw->mac.orig_autoc;
760	else
761		orig_autoc = autoc;
762
763
764	if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
765	    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
766	    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
767		/* Set KX4/KX/KR support according to speed requested */
768		autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
769		if (speed & IXGBE_LINK_SPEED_10GB_FULL)
770			if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
771				autoc |= IXGBE_AUTOC_KX4_SUPP;
772			if ((orig_autoc & IXGBE_AUTOC_KR_SUPP) &&
773			    (hw->phy.smart_speed_active == false))
774				autoc |= IXGBE_AUTOC_KR_SUPP;
775		if (speed & IXGBE_LINK_SPEED_1GB_FULL)
776			autoc |= IXGBE_AUTOC_KX_SUPP;
777	} else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
778	           (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
779	            link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
780		/* Switch from 1G SFI to 10G SFI if requested */
781		if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
782		    (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
783			autoc &= ~IXGBE_AUTOC_LMS_MASK;
784			autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
785		}
786	} else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
787	           (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
788		/* Switch from 10G SFI to 1G SFI if requested */
789		if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
790		    (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
791			autoc &= ~IXGBE_AUTOC_LMS_MASK;
792			if (autoneg)
793				autoc |= IXGBE_AUTOC_LMS_1G_AN;
794			else
795				autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
796		}
797	}
798
799	if (autoc != start_autoc) {
800		/* Restart link */
801		autoc |= IXGBE_AUTOC_AN_RESTART;
802		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);
803
804		/* Only poll for autoneg to complete if specified to do so */
805		if (autoneg_wait_to_complete) {
806			if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
807			    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
808			    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
809				links_reg = 0; /*Just in case Autoneg time=0*/
810				for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
811					links_reg =
812					       IXGBE_READ_REG(hw, IXGBE_LINKS);
813					if (links_reg & IXGBE_LINKS_KX_AN_COMP)
814						break;
815					msleep(100);
816				}
817				if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
818					status =
819					        IXGBE_ERR_AUTONEG_NOT_COMPLETE;
820					hw_dbg(hw, "Autoneg did not "
821					       "complete.\n");
822				}
823			}
824		}
825
826		/* Add delay to filter out noises during initial link setup */
827		msleep(50);
828	}
829
830out:
831	return status;
832}
833
834/**
835 *  ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field
836 *  @hw: pointer to hardware structure
837 *  @speed: new link speed
838 *  @autoneg: true if autonegotiation enabled
839 *  @autoneg_wait_to_complete: true if waiting is needed to complete
840 *
841 *  Restarts link on PHY and MAC based on settings passed in.
842 **/
843static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
844                                         ixgbe_link_speed speed,
845                                         bool autoneg,
846                                         bool autoneg_wait_to_complete)
847{
848	s32 status;
849
850	/* Setup the PHY according to input speed */
851	status = hw->phy.ops.setup_link_speed(hw, speed, autoneg,
852	                                      autoneg_wait_to_complete);
853	/* Set up MAC */
854	ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete);
855
856	return status;
857}
858
859/**
860 *  ixgbe_reset_hw_82599 - Perform hardware reset
861 *  @hw: pointer to hardware structure
862 *
863 *  Resets the hardware by resetting the transmit and receive units, masks
864 *  and clears all interrupts, perform a PHY reset, and perform a link (MAC)
865 *  reset.
866 **/
867static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
868{
869	s32 status = 0;
870	u32 ctrl;
871	u32 i;
872	u32 autoc;
873	u32 autoc2;
874
875	/* Call adapter stop to disable tx/rx and clear interrupts */
876	hw->mac.ops.stop_adapter(hw);
877
878	/* PHY ops must be identified and initialized prior to reset */
879
880	/* Init PHY and function pointers, perform SFP setup */
881	status = hw->phy.ops.init(hw);
882
883	if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
884		goto reset_hw_out;
885
886	/* Setup SFP module if there is one present. */
887	if (hw->phy.sfp_setup_needed) {
888		status = hw->mac.ops.setup_sfp(hw);
889		hw->phy.sfp_setup_needed = false;
890	}
891
892	/* Reset PHY */
893	if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
894		hw->phy.ops.reset(hw);
895
896	/*
897	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
898	 * access and verify no pending requests before reset
899	 */
900	status = ixgbe_disable_pcie_master(hw);
901	if (status != 0) {
902		status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
903		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
904	}
905
906	/*
907	 * Issue global reset to the MAC.  This needs to be a SW reset.
908	 * If link reset is used, it might reset the MAC when mng is using it
909	 */
910	ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
911	IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST));
912	IXGBE_WRITE_FLUSH(hw);
913
914	/* Poll for reset bit to self-clear indicating reset is complete */
915	for (i = 0; i < 10; i++) {
916		udelay(1);
917		ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
918		if (!(ctrl & IXGBE_CTRL_RST))
919			break;
920	}
921	if (ctrl & IXGBE_CTRL_RST) {
922		status = IXGBE_ERR_RESET_FAILED;
923		hw_dbg(hw, "Reset polling failed to complete.\n");
924	}
925
926	msleep(50);
927
928	/*
929	 * Store the original AUTOC/AUTOC2 values if they have not been
930	 * stored off yet.  Otherwise restore the stored original
931	 * values since the reset operation sets back to defaults.
932	 */
933	autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
934	autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
935	if (hw->mac.orig_link_settings_stored == false) {
936		hw->mac.orig_autoc = autoc;
937		hw->mac.orig_autoc2 = autoc2;
938		hw->mac.orig_link_settings_stored = true;
939	} else {
940		if (autoc != hw->mac.orig_autoc)
941			IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc |
942			                IXGBE_AUTOC_AN_RESTART));
943
944		if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
945		    (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
946			autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
947			autoc2 |= (hw->mac.orig_autoc2 &
948			           IXGBE_AUTOC2_UPPER_MASK);
949			IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
950		}
951	}
952
953	/*
954	 * Store MAC address from RAR0, clear receive address registers, and
955	 * clear the multicast table.  Also reset num_rar_entries to 128,
956	 * since we modify this value when programming the SAN MAC address.
957	 */
958	hw->mac.num_rar_entries = 128;
959	hw->mac.ops.init_rx_addrs(hw);
960
961	/* Store the permanent mac address */
962	hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
963
964	/* Store the permanent SAN mac address */
965	hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);
966
967	/* Add the SAN MAC address to the RAR only if it's a valid address */
968	if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
969		hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
970		                    hw->mac.san_addr, 0, IXGBE_RAH_AV);
971
972		/* Reserve the last RAR for the SAN MAC address */
973		hw->mac.num_rar_entries--;
974	}
975
976	/* Store the alternative WWNN/WWPN prefix */
977	hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
978	                               &hw->mac.wwpn_prefix);
979
980reset_hw_out:
981	return status;
982}
983
984/**
985 *  ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
986 *  @hw: pointer to hardware structure
987 **/
988s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
989{
990	int i;
991	u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
992	fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;
993
994	/*
995	 * Before starting reinitialization process,
996	 * FDIRCMD.CMD must be zero.
997	 */
998	for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
999		if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1000		      IXGBE_FDIRCMD_CMD_MASK))
1001			break;
1002		udelay(10);
1003	}
1004	if (i >= IXGBE_FDIRCMD_CMD_POLL) {
1005		hw_dbg(hw ,"Flow Director previous command isn't complete, "
1006		       "aborting table re-initialization.\n");
1007		return IXGBE_ERR_FDIR_REINIT_FAILED;
1008	}
1009
1010	IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
1011	IXGBE_WRITE_FLUSH(hw);
1012	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1013	                (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
1014	                 IXGBE_FDIRCMD_CLEARHT));
1015	IXGBE_WRITE_FLUSH(hw);
1016	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1017	                (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1018	                 ~IXGBE_FDIRCMD_CLEARHT));
1019	IXGBE_WRITE_FLUSH(hw);
1020	/*
1021	 * Clear FDIR Hash register to clear any leftover hashes
1022	 * waiting to be programmed.
1023	 */
1024	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
1025	IXGBE_WRITE_FLUSH(hw);
1026
1027	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1028	IXGBE_WRITE_FLUSH(hw);
1029
1030	/* Poll init-done after we write FDIRCTRL register */
1031	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1032		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1033		                   IXGBE_FDIRCTRL_INIT_DONE)
1034			break;
1035		udelay(10);
1036	}
1037	if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
1038		hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1039		return IXGBE_ERR_FDIR_REINIT_FAILED;
1040	}
1041
1042	/* Clear FDIR statistics registers (read to clear) */
1043	IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
1044	IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
1045	IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
1046	IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
1047	IXGBE_READ_REG(hw, IXGBE_FDIRLEN);
1048
1049	return 0;
1050}
1051
1052/**
1053 *  ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
1054 *  @hw: pointer to hardware structure
1055 *  @pballoc: which mode to allocate filters with
1056 **/
1057s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc)
1058{
1059	u32 fdirctrl = 0;
1060	u32 pbsize;
1061	int i;
1062
1063	/*
1064	 * Before enabling Flow Director, the Rx Packet Buffer size
1065	 * must be reduced.  The new value is the current size minus
1066	 * flow director memory usage size.
1067	 */
1068	pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1069	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1070	    (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1071
1072	/*
1073	 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1074	 * intialized to zero for non DCB mode otherwise actual total RX PB
1075	 * would be bigger than programmed and filter space would run into
1076	 * the PB 0 region.
1077	 */
1078	for (i = 1; i < 8; i++)
1079		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1080
1081	/* Send interrupt when 64 filters are left */
1082	fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1083
1084	/* Set the maximum length per hash bucket to 0xA filters */
1085	fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT;
1086
1087	switch (pballoc) {
1088	case IXGBE_FDIR_PBALLOC_64K:
1089		/* 8k - 1 signature filters */
1090		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1091		break;
1092	case IXGBE_FDIR_PBALLOC_128K:
1093		/* 16k - 1 signature filters */
1094		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1095		break;
1096	case IXGBE_FDIR_PBALLOC_256K:
1097		/* 32k - 1 signature filters */
1098		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1099		break;
1100	default:
1101		/* bad value */
1102		return IXGBE_ERR_CONFIG;
1103	};
1104
1105	/* Move the flexible bytes to use the ethertype - shift 6 words */
1106	fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1107
1108	fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1109
1110	/* Prime the keys for hashing */
1111	IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1112	                htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1113	IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1114	                htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1115
1116	/*
1117	 * Poll init-done after we write the register.  Estimated times:
1118	 *      10G: PBALLOC = 11b, timing is 60us
1119	 *       1G: PBALLOC = 11b, timing is 600us
1120	 *     100M: PBALLOC = 11b, timing is 6ms
1121	 *
1122	 *     Multiple these timings by 4 if under full Rx load
1123	 *
1124	 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1125	 * 1 msec per poll time.  If we're at line rate and drop to 100M, then
1126	 * this might not finish in our poll time, but we can live with that
1127	 * for now.
1128	 */
1129	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1130	IXGBE_WRITE_FLUSH(hw);
1131	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1132		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1133		                   IXGBE_FDIRCTRL_INIT_DONE)
1134			break;
1135		msleep(1);
1136	}
1137	if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1138		hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1139
1140	return 0;
1141}
1142
1143/**
1144 *  ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
1145 *  @hw: pointer to hardware structure
1146 *  @pballoc: which mode to allocate filters with
1147 **/
1148s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc)
1149{
1150	u32 fdirctrl = 0;
1151	u32 pbsize;
1152	int i;
1153
1154	/*
1155	 * Before enabling Flow Director, the Rx Packet Buffer size
1156	 * must be reduced.  The new value is the current size minus
1157	 * flow director memory usage size.
1158	 */
1159	pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1160	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1161	    (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1162
1163	/*
1164	 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1165	 * intialized to zero for non DCB mode otherwise actual total RX PB
1166	 * would be bigger than programmed and filter space would run into
1167	 * the PB 0 region.
1168	 */
1169	for (i = 1; i < 8; i++)
1170		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1171
1172	/* Send interrupt when 64 filters are left */
1173	fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1174
1175	/* Initialize the drop queue to Rx queue 127 */
1176	fdirctrl |= (127 << IXGBE_FDIRCTRL_DROP_Q_SHIFT);
1177
1178	switch (pballoc) {
1179	case IXGBE_FDIR_PBALLOC_64K:
1180		/* 2k - 1 perfect filters */
1181		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1182		break;
1183	case IXGBE_FDIR_PBALLOC_128K:
1184		/* 4k - 1 perfect filters */
1185		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1186		break;
1187	case IXGBE_FDIR_PBALLOC_256K:
1188		/* 8k - 1 perfect filters */
1189		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1190		break;
1191	default:
1192		/* bad value */
1193		return IXGBE_ERR_CONFIG;
1194	};
1195
1196	/* Turn perfect match filtering on */
1197	fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH;
1198	fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1199
1200	/* Move the flexible bytes to use the ethertype - shift 6 words */
1201	fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1202
1203	/* Prime the keys for hashing */
1204	IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1205	                htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1206	IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1207	                htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1208
1209	/*
1210	 * Poll init-done after we write the register.  Estimated times:
1211	 *      10G: PBALLOC = 11b, timing is 60us
1212	 *       1G: PBALLOC = 11b, timing is 600us
1213	 *     100M: PBALLOC = 11b, timing is 6ms
1214	 *
1215	 *     Multiple these timings by 4 if under full Rx load
1216	 *
1217	 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1218	 * 1 msec per poll time.  If we're at line rate and drop to 100M, then
1219	 * this might not finish in our poll time, but we can live with that
1220	 * for now.
1221	 */
1222
1223	/* Set the maximum length per hash bucket to 0xA filters */
1224	fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT);
1225
1226	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1227	IXGBE_WRITE_FLUSH(hw);
1228	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1229		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1230		                   IXGBE_FDIRCTRL_INIT_DONE)
1231			break;
1232		msleep(1);
1233	}
1234	if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1235		hw_dbg(hw, "Flow Director Perfect poll time exceeded!\n");
1236
1237	return 0;
1238}
1239
1240
1241/**
1242 *  ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR
1243 *  @stream: input bitstream to compute the hash on
1244 *  @key: 32-bit hash key
1245 **/
1246static u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input,
1247                                        u32 key)
1248{
1249	/*
1250	 * The algorithm is as follows:
1251	 *    Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350
1252	 *    where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n]
1253	 *    and A[n] x B[n] is bitwise AND between same length strings
1254	 *
1255	 *    K[n] is 16 bits, defined as:
1256	 *       for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15]
1257	 *       for n modulo 32 < 15, K[n] =
1258	 *             K[(n % 32:0) | (31:31 - (14 - (n % 32)))]
1259	 *
1260	 *    S[n] is 16 bits, defined as:
1261	 *       for n >= 15, S[n] = S[n:n - 15]
1262	 *       for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))]
1263	 *
1264	 *    To simplify for programming, the algorithm is implemented
1265	 *    in software this way:
1266	 *
1267	 *    Key[31:0], Stream[335:0]
1268	 *
1269	 *    tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times
1270	 *    int_key[350:0] = tmp_key[351:1]
1271	 *    int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321]
1272	 *
1273	 *    hash[15:0] = 0;
1274	 *    for (i = 0; i < 351; i++) {
1275	 *        if (int_key[i])
1276	 *            hash ^= int_stream[(i + 15):i];
1277	 *    }
1278	 */
1279
1280	union {
1281		u64    fill[6];
1282		u32    key[11];
1283		u8     key_stream[44];
1284	} tmp_key;
1285
1286	u8   *stream = (u8 *)atr_input;
1287	u8   int_key[44];      /* upper-most bit unused */
1288	u8   hash_str[46];     /* upper-most 2 bits unused */
1289	u16  hash_result = 0;
1290	int  i, j, k, h;
1291
1292	/*
1293	 * Initialize the fill member to prevent warnings
1294	 * on some compilers
1295	 */
1296	 tmp_key.fill[0] = 0;
1297
1298	/* First load the temporary key stream */
1299	for (i = 0; i < 6; i++) {
1300		u64 fillkey = ((u64)key << 32) | key;
1301		tmp_key.fill[i] = fillkey;
1302	}
1303
1304	/*
1305	 * Set the interim key for the hashing.  Bit 352 is unused, so we must
1306	 * shift and compensate when building the key.
1307	 */
1308
1309	int_key[0] = tmp_key.key_stream[0] >> 1;
1310	for (i = 1, j = 0; i < 44; i++) {
1311		unsigned int this_key = tmp_key.key_stream[j] << 7;
1312		j++;
1313		int_key[i] = (u8)(this_key | (tmp_key.key_stream[j] >> 1));
1314	}
1315
1316	/*
1317	 * Set the interim bit string for the hashing.  Bits 368 and 367 are
1318	 * unused, so shift and compensate when building the string.
1319	 */
1320	hash_str[0] = (stream[40] & 0x7f) >> 1;
1321	for (i = 1, j = 40; i < 46; i++) {
1322		unsigned int this_str = stream[j] << 7;
1323		j++;
1324		if (j > 41)
1325			j = 0;
1326		hash_str[i] = (u8)(this_str | (stream[j] >> 1));
1327	}
1328
1329	/*
1330	 * Now compute the hash.  i is the index into hash_str, j is into our
1331	 * key stream, k is counting the number of bits, and h interates within
1332	 * each byte.
1333	 */
1334	for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) {
1335		for (h = 0; h < 8 && k < 351; h++, k++) {
1336			if (int_key[j] & (1 << h)) {
1337				/*
1338				 * Key bit is set, XOR in the current 16-bit
1339				 * string.  Example of processing:
1340				 *    h = 0,
1341				 *      tmp = (hash_str[i - 2] & 0 << 16) |
1342				 *            (hash_str[i - 1] & 0xff << 8) |
1343				 *            (hash_str[i] & 0xff >> 0)
1344				 *      So tmp = hash_str[15 + k:k], since the
1345				 *      i + 2 clause rolls off the 16-bit value
1346				 *    h = 7,
1347				 *      tmp = (hash_str[i - 2] & 0x7f << 9) |
1348				 *            (hash_str[i - 1] & 0xff << 1) |
1349				 *            (hash_str[i] & 0x80 >> 7)
1350				 */
1351				int tmp = (hash_str[i] >> h);
1352				tmp |= (hash_str[i - 1] << (8 - h));
1353				tmp |= (int)(hash_str[i - 2] & ((1 << h) - 1))
1354				             << (16 - h);
1355				hash_result ^= (u16)tmp;
1356			}
1357		}
1358	}
1359
1360	return hash_result;
1361}
1362
1363/**
1364 *  ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream
1365 *  @input: input stream to modify
1366 *  @vlan: the VLAN id to load
1367 **/
1368s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan)
1369{
1370	input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8;
1371	input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff;
1372
1373	return 0;
1374}
1375
1376/**
1377 *  ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address
1378 *  @input: input stream to modify
1379 *  @src_addr: the IP address to load
1380 **/
1381s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr)
1382{
1383	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24;
1384	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] =
1385	                                               (src_addr >> 16) & 0xff;
1386	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] =
1387	                                                (src_addr >> 8) & 0xff;
1388	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff;
1389
1390	return 0;
1391}
1392
1393/**
1394 *  ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address
1395 *  @input: input stream to modify
1396 *  @dst_addr: the IP address to load
1397 **/
1398s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr)
1399{
1400	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24;
1401	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] =
1402	                                               (dst_addr >> 16) & 0xff;
1403	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] =
1404	                                                (dst_addr >> 8) & 0xff;
1405	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff;
1406
1407	return 0;
1408}
1409
1410/**
1411 *  ixgbe_atr_set_src_ipv6_82599 - Sets the source IPv6 address
1412 *  @input: input stream to modify
1413 *  @src_addr_1: the first 4 bytes of the IP address to load
1414 *  @src_addr_2: the second 4 bytes of the IP address to load
1415 *  @src_addr_3: the third 4 bytes of the IP address to load
1416 *  @src_addr_4: the fourth 4 bytes of the IP address to load
1417 **/
1418s32 ixgbe_atr_set_src_ipv6_82599(struct ixgbe_atr_input *input,
1419                                 u32 src_addr_1, u32 src_addr_2,
1420                                 u32 src_addr_3, u32 src_addr_4)
1421{
1422	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET] = src_addr_4 & 0xff;
1423	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] =
1424	                                               (src_addr_4 >> 8) & 0xff;
1425	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] =
1426	                                              (src_addr_4 >> 16) & 0xff;
1427	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] = src_addr_4 >> 24;
1428
1429	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4] = src_addr_3 & 0xff;
1430	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] =
1431	                                               (src_addr_3 >> 8) & 0xff;
1432	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] =
1433	                                              (src_addr_3 >> 16) & 0xff;
1434	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] = src_addr_3 >> 24;
1435
1436	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8] = src_addr_2 & 0xff;
1437	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] =
1438	                                               (src_addr_2 >> 8) & 0xff;
1439	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] =
1440	                                              (src_addr_2 >> 16) & 0xff;
1441	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] = src_addr_2 >> 24;
1442
1443	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12] = src_addr_1 & 0xff;
1444	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] =
1445	                                               (src_addr_1 >> 8) & 0xff;
1446	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] =
1447	                                              (src_addr_1 >> 16) & 0xff;
1448	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] = src_addr_1 >> 24;
1449
1450	return 0;
1451}
1452
1453/**
1454 *  ixgbe_atr_set_dst_ipv6_82599 - Sets the destination IPv6 address
1455 *  @input: input stream to modify
1456 *  @dst_addr_1: the first 4 bytes of the IP address to load
1457 *  @dst_addr_2: the second 4 bytes of the IP address to load
1458 *  @dst_addr_3: the third 4 bytes of the IP address to load
1459 *  @dst_addr_4: the fourth 4 bytes of the IP address to load
1460 **/
1461s32 ixgbe_atr_set_dst_ipv6_82599(struct ixgbe_atr_input *input,
1462                                 u32 dst_addr_1, u32 dst_addr_2,
1463                                 u32 dst_addr_3, u32 dst_addr_4)
1464{
1465	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET] = dst_addr_4 & 0xff;
1466	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] =
1467	                                               (dst_addr_4 >> 8) & 0xff;
1468	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] =
1469	                                              (dst_addr_4 >> 16) & 0xff;
1470	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] = dst_addr_4 >> 24;
1471
1472	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4] = dst_addr_3 & 0xff;
1473	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] =
1474	                                               (dst_addr_3 >> 8) & 0xff;
1475	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] =
1476	                                              (dst_addr_3 >> 16) & 0xff;
1477	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] = dst_addr_3 >> 24;
1478
1479	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8] = dst_addr_2 & 0xff;
1480	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] =
1481	                                               (dst_addr_2 >> 8) & 0xff;
1482	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] =
1483	                                              (dst_addr_2 >> 16) & 0xff;
1484	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] = dst_addr_2 >> 24;
1485
1486	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12] = dst_addr_1 & 0xff;
1487	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] =
1488	                                               (dst_addr_1 >> 8) & 0xff;
1489	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] =
1490	                                              (dst_addr_1 >> 16) & 0xff;
1491	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] = dst_addr_1 >> 24;
1492
1493	return 0;
1494}
1495
1496/**
1497 *  ixgbe_atr_set_src_port_82599 - Sets the source port
1498 *  @input: input stream to modify
1499 *  @src_port: the source port to load
1500 **/
1501s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port)
1502{
1503	input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8;
1504	input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff;
1505
1506	return 0;
1507}
1508
1509/**
1510 *  ixgbe_atr_set_dst_port_82599 - Sets the destination port
1511 *  @input: input stream to modify
1512 *  @dst_port: the destination port to load
1513 **/
1514s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port)
1515{
1516	input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8;
1517	input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff;
1518
1519	return 0;
1520}
1521
1522/**
1523 *  ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes
1524 *  @input: input stream to modify
1525 *  @flex_bytes: the flexible bytes to load
1526 **/
1527s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte)
1528{
1529	input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8;
1530	input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff;
1531
1532	return 0;
1533}
1534
1535/**
1536 *  ixgbe_atr_set_vm_pool_82599 - Sets the Virtual Machine pool
1537 *  @input: input stream to modify
1538 *  @vm_pool: the Virtual Machine pool to load
1539 **/
1540s32 ixgbe_atr_set_vm_pool_82599(struct ixgbe_atr_input *input,
1541                                u8 vm_pool)
1542{
1543	input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET] = vm_pool;
1544
1545	return 0;
1546}
1547
1548/**
1549 *  ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type
1550 *  @input: input stream to modify
1551 *  @l4type: the layer 4 type value to load
1552 **/
1553s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type)
1554{
1555	input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type;
1556
1557	return 0;
1558}
1559
1560/**
1561 *  ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream
1562 *  @input: input stream to search
1563 *  @vlan: the VLAN id to load
1564 **/
1565static s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input, u16 *vlan)
1566{
1567	*vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET];
1568	*vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8;
1569
1570	return 0;
1571}
1572
1573/**
1574 *  ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address
1575 *  @input: input stream to search
1576 *  @src_addr: the IP address to load
1577 **/
1578static s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input,
1579                                        u32 *src_addr)
1580{
1581	*src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET];
1582	*src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8;
1583	*src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16;
1584	*src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24;
1585
1586	return 0;
1587}
1588
1589/**
1590 *  ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address
1591 *  @input: input stream to search
1592 *  @dst_addr: the IP address to load
1593 **/
1594static s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input,
1595                                        u32 *dst_addr)
1596{
1597	*dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET];
1598	*dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8;
1599	*dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16;
1600	*dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24;
1601
1602	return 0;
1603}
1604
1605/**
1606 *  ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address
1607 *  @input: input stream to search
1608 *  @src_addr_1: the first 4 bytes of the IP address to load
1609 *  @src_addr_2: the second 4 bytes of the IP address to load
1610 *  @src_addr_3: the third 4 bytes of the IP address to load
1611 *  @src_addr_4: the fourth 4 bytes of the IP address to load
1612 **/
1613static s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input,
1614                                        u32 *src_addr_1, u32 *src_addr_2,
1615                                        u32 *src_addr_3, u32 *src_addr_4)
1616{
1617	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12];
1618	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8;
1619	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16;
1620	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24;
1621
1622	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8];
1623	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8;
1624	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16;
1625	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24;
1626
1627	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4];
1628	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8;
1629	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16;
1630	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24;
1631
1632	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET];
1633	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8;
1634	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16;
1635	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24;
1636
1637	return 0;
1638}
1639
1640/**
1641 *  ixgbe_atr_get_dst_ipv6_82599 - Gets the destination IPv6 address
1642 *  @input: input stream to search
1643 *  @dst_addr_1: the first 4 bytes of the IP address to load
1644 *  @dst_addr_2: the second 4 bytes of the IP address to load
1645 *  @dst_addr_3: the third 4 bytes of the IP address to load
1646 *  @dst_addr_4: the fourth 4 bytes of the IP address to load
1647 **/
1648s32 ixgbe_atr_get_dst_ipv6_82599(struct ixgbe_atr_input *input,
1649                                        u32 *dst_addr_1, u32 *dst_addr_2,
1650                                        u32 *dst_addr_3, u32 *dst_addr_4)
1651{
1652	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12];
1653	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] << 8;
1654	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] << 16;
1655	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] << 24;
1656
1657	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8];
1658	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] << 8;
1659	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] << 16;
1660	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] << 24;
1661
1662	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4];
1663	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] << 8;
1664	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] << 16;
1665	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] << 24;
1666
1667	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET];
1668	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] << 8;
1669	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] << 16;
1670	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] << 24;
1671
1672	return 0;
1673}
1674
1675/**
1676 *  ixgbe_atr_get_src_port_82599 - Gets the source port
1677 *  @input: input stream to modify
1678 *  @src_port: the source port to load
1679 *
1680 *  Even though the input is given in big-endian, the FDIRPORT registers
1681 *  expect the ports to be programmed in little-endian.  Hence the need to swap
1682 *  endianness when retrieving the data.  This can be confusing since the
1683 *  internal hash engine expects it to be big-endian.
1684 **/
1685static s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input,
1686                                        u16 *src_port)
1687{
1688	*src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8;
1689	*src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1];
1690
1691	return 0;
1692}
1693
1694/**
1695 *  ixgbe_atr_get_dst_port_82599 - Gets the destination port
1696 *  @input: input stream to modify
1697 *  @dst_port: the destination port to load
1698 *
1699 *  Even though the input is given in big-endian, the FDIRPORT registers
1700 *  expect the ports to be programmed in little-endian.  Hence the need to swap
1701 *  endianness when retrieving the data.  This can be confusing since the
1702 *  internal hash engine expects it to be big-endian.
1703 **/
1704static s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input,
1705                                        u16 *dst_port)
1706{
1707	*dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8;
1708	*dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1];
1709
1710	return 0;
1711}
1712
1713/**
1714 *  ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes
1715 *  @input: input stream to modify
1716 *  @flex_bytes: the flexible bytes to load
1717 **/
1718static s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input,
1719                                         u16 *flex_byte)
1720{
1721	*flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET];
1722	*flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8;
1723
1724	return 0;
1725}
1726
1727/**
1728 *  ixgbe_atr_get_vm_pool_82599 - Gets the Virtual Machine pool
1729 *  @input: input stream to modify
1730 *  @vm_pool: the Virtual Machine pool to load
1731 **/
1732s32 ixgbe_atr_get_vm_pool_82599(struct ixgbe_atr_input *input,
1733                                       u8 *vm_pool)
1734{
1735	*vm_pool = input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET];
1736
1737	return 0;
1738}
1739
1740/**
1741 *  ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type
1742 *  @input: input stream to modify
1743 *  @l4type: the layer 4 type value to load
1744 **/
1745static s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input,
1746                                      u8 *l4type)
1747{
1748	*l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET];
1749
1750	return 0;
1751}
1752
1753/**
1754 *  ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
1755 *  @hw: pointer to hardware structure
1756 *  @stream: input bitstream
1757 *  @queue: queue index to direct traffic to
1758 **/
1759s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
1760                                          struct ixgbe_atr_input *input,
1761                                          u8 queue)
1762{
1763	u64  fdirhashcmd;
1764	u64  fdircmd;
1765	u32  fdirhash;
1766	u16  bucket_hash, sig_hash;
1767	u8   l4type;
1768
1769	bucket_hash = ixgbe_atr_compute_hash_82599(input,
1770	                                           IXGBE_ATR_BUCKET_HASH_KEY);
1771
1772	/* bucket_hash is only 15 bits */
1773	bucket_hash &= IXGBE_ATR_HASH_MASK;
1774
1775	sig_hash = ixgbe_atr_compute_hash_82599(input,
1776	                                        IXGBE_ATR_SIGNATURE_HASH_KEY);
1777
1778	/* Get the l4type in order to program FDIRCMD properly */
1779	/* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */
1780	ixgbe_atr_get_l4type_82599(input, &l4type);
1781
1782	/*
1783	 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
1784	 * is for FDIRCMD.  Then do a 64-bit register write from FDIRHASH.
1785	 */
1786	fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
1787
1788	fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
1789	           IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN);
1790
1791	switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1792	case IXGBE_ATR_L4TYPE_TCP:
1793		fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1794		break;
1795	case IXGBE_ATR_L4TYPE_UDP:
1796		fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1797		break;
1798	case IXGBE_ATR_L4TYPE_SCTP:
1799		fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1800		break;
1801	default:
1802		hw_dbg(hw, "Error on l4type input\n");
1803		return IXGBE_ERR_CONFIG;
1804	}
1805
1806	if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK)
1807		fdircmd |= IXGBE_FDIRCMD_IPV6;
1808
1809	fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT);
1810	fdirhashcmd = ((fdircmd << 32) | fdirhash);
1811
1812	IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);
1813
1814	return 0;
1815}
1816
1817/**
1818 *  ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter
1819 *  @hw: pointer to hardware structure
1820 *  @input: input bitstream
1821 *  @input_masks: bitwise masks for relevant fields
1822 *  @soft_id: software index into the silicon hash tables for filter storage
1823 *  @queue: queue index to direct traffic to
1824 *
1825 *  Note that the caller to this function must lock before calling, since the
1826 *  hardware writes must be protected from one another.
1827 **/
1828s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw,
1829                                      struct ixgbe_atr_input *input,
1830                                      struct ixgbe_atr_input_masks *input_masks,
1831                                      u16 soft_id, u8 queue)
1832{
1833	u32 fdircmd = 0;
1834	u32 fdirhash;
1835	u32 src_ipv4 = 0, dst_ipv4 = 0;
1836	u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4;
1837	u16 src_port, dst_port, vlan_id, flex_bytes;
1838	u16 bucket_hash;
1839	u8  l4type;
1840	u8  fdirm = 0;
1841
1842	/* Get our input values */
1843	ixgbe_atr_get_l4type_82599(input, &l4type);
1844
1845	/*
1846	 * Check l4type formatting, and bail out before we touch the hardware
1847	 * if there's a configuration issue
1848	 */
1849	switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1850	case IXGBE_ATR_L4TYPE_TCP:
1851		fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1852		break;
1853	case IXGBE_ATR_L4TYPE_UDP:
1854		fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1855		break;
1856	case IXGBE_ATR_L4TYPE_SCTP:
1857		fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1858		break;
1859	default:
1860		hw_dbg(hw, "Error on l4type input\n");
1861		return IXGBE_ERR_CONFIG;
1862	}
1863
1864	bucket_hash = ixgbe_atr_compute_hash_82599(input,
1865	                                           IXGBE_ATR_BUCKET_HASH_KEY);
1866
1867	/* bucket_hash is only 15 bits */
1868	bucket_hash &= IXGBE_ATR_HASH_MASK;
1869
1870	ixgbe_atr_get_vlan_id_82599(input, &vlan_id);
1871	ixgbe_atr_get_src_port_82599(input, &src_port);
1872	ixgbe_atr_get_dst_port_82599(input, &dst_port);
1873	ixgbe_atr_get_flex_byte_82599(input, &flex_bytes);
1874
1875	fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
1876
1877	/* Now figure out if we're IPv4 or IPv6 */
1878	if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) {
1879		/* IPv6 */
1880		ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2,
1881	                                     &src_ipv6_3, &src_ipv6_4);
1882
1883		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1);
1884		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2);
1885		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3);
1886		/* The last 4 bytes is the same register as IPv4 */
1887		IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4);
1888
1889		fdircmd |= IXGBE_FDIRCMD_IPV6;
1890		fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH;
1891	} else {
1892		/* IPv4 */
1893		ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4);
1894		IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4);
1895	}
1896
1897	ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4);
1898	IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4);
1899
1900	IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id |
1901	                            (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT)));
1902	IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port |
1903	              (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT)));
1904
1905	/*
1906	 * Program the relevant mask registers.  If src/dst_port or src/dst_addr
1907	 * are zero, then assume a full mask for that field.  Also assume that
1908	 * a VLAN of 0 is unspecified, so mask that out as well.  L4type
1909	 * cannot be masked out in this implementation.
1910	 *
1911	 * This also assumes IPv4 only.  IPv6 masking isn't supported at this
1912	 * point in time.
1913	 */
1914	if (src_ipv4 == 0)
1915		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, 0xffffffff);
1916	else
1917		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, input_masks->src_ip_mask);
1918
1919	if (dst_ipv4 == 0)
1920		IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, 0xffffffff);
1921	else
1922		IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, input_masks->dst_ip_mask);
1923
1924	switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1925	case IXGBE_ATR_L4TYPE_TCP:
1926		if (src_port == 0)
1927			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM, 0xffff);
1928		else
1929			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
1930			                input_masks->src_port_mask);
1931
1932		if (dst_port == 0)
1933			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
1934			               (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
1935			                (0xffff << 16)));
1936		else
1937			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
1938			               (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
1939			                (input_masks->dst_port_mask << 16)));
1940		break;
1941	case IXGBE_ATR_L4TYPE_UDP:
1942		if (src_port == 0)
1943			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM, 0xffff);
1944		else
1945			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
1946			                input_masks->src_port_mask);
1947
1948		if (dst_port == 0)
1949			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
1950			               (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
1951			                (0xffff << 16)));
1952		else
1953			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
1954			               (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
1955			                (input_masks->src_port_mask << 16)));
1956		break;
1957	default:
1958		/* this already would have failed above */
1959		break;
1960	}
1961
1962	/* Program the last mask register, FDIRM */
1963	if (input_masks->vlan_id_mask || !vlan_id)
1964		/* Mask both VLAN and VLANP - bits 0 and 1 */
1965		fdirm |= 0x3;
1966
1967	if (input_masks->data_mask || !flex_bytes)
1968		/* Flex bytes need masking, so mask the whole thing - bit 4 */
1969		fdirm |= 0x10;
1970
1971	/* Now mask VM pool and destination IPv6 - bits 5 and 2 */
1972	fdirm |= 0x24;
1973
1974	IXGBE_WRITE_REG(hw, IXGBE_FDIRM, fdirm);
1975
1976	fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW;
1977	fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE;
1978	fdircmd |= IXGBE_FDIRCMD_LAST;
1979	fdircmd |= IXGBE_FDIRCMD_QUEUE_EN;
1980	fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
1981
1982	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
1983	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);
1984
1985	return 0;
1986}
1987/**
1988 *  ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
1989 *  @hw: pointer to hardware structure
1990 *  @reg: analog register to read
1991 *  @val: read value
1992 *
1993 *  Performs read operation to Omer analog register specified.
1994 **/
1995static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
1996{
1997	u32  core_ctl;
1998
1999	IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
2000	                (reg << 8));
2001	IXGBE_WRITE_FLUSH(hw);
2002	udelay(10);
2003	core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
2004	*val = (u8)core_ctl;
2005
2006	return 0;
2007}
2008
2009/**
2010 *  ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
2011 *  @hw: pointer to hardware structure
2012 *  @reg: atlas register to write
2013 *  @val: value to write
2014 *
2015 *  Performs write operation to Omer analog register specified.
2016 **/
2017static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
2018{
2019	u32  core_ctl;
2020
2021	core_ctl = (reg << 8) | val;
2022	IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
2023	IXGBE_WRITE_FLUSH(hw);
2024	udelay(10);
2025
2026	return 0;
2027}
2028
2029/**
2030 *  ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
2031 *  @hw: pointer to hardware structure
2032 *
2033 *  Starts the hardware using the generic start_hw function.
2034 *  Then performs device-specific:
2035 *  Clears the rate limiter registers.
2036 **/
2037static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
2038{
2039	u32 q_num;
2040	s32 ret_val;
2041
2042	ret_val = ixgbe_start_hw_generic(hw);
2043
2044	/* Clear the rate limiters */
2045	for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) {
2046		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num);
2047		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
2048	}
2049	IXGBE_WRITE_FLUSH(hw);
2050
2051	/* We need to run link autotry after the driver loads */
2052	hw->mac.autotry_restart = true;
2053
2054	if (ret_val == 0)
2055		ret_val = ixgbe_verify_fw_version_82599(hw);
2056
2057	return ret_val;
2058}
2059
2060/**
2061 *  ixgbe_identify_phy_82599 - Get physical layer module
2062 *  @hw: pointer to hardware structure
2063 *
2064 *  Determines the physical layer module found on the current adapter.
2065 **/
2066static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
2067{
2068	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
2069	status = ixgbe_identify_phy_generic(hw);
2070	if (status != 0)
2071		status = ixgbe_identify_sfp_module_generic(hw);
2072	return status;
2073}
2074
2075/**
2076 *  ixgbe_get_supported_physical_layer_82599 - Returns physical layer type
2077 *  @hw: pointer to hardware structure
2078 *
2079 *  Determines physical layer capabilities of the current configuration.
2080 **/
2081static u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw)
2082{
2083	u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
2084	u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2085	u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
2086	u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
2087	u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK;
2088	u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
2089	u16 ext_ability = 0;
2090	u8 comp_codes_10g = 0;
2091	u8 comp_codes_1g = 0;
2092
2093	hw->phy.ops.identify(hw);
2094
2095	if (hw->phy.type == ixgbe_phy_tn ||
2096	    hw->phy.type == ixgbe_phy_cu_unknown) {
2097		hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD,
2098				     &ext_ability);
2099		if (ext_ability & MDIO_PMA_EXTABLE_10GBT)
2100			physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
2101		if (ext_ability & MDIO_PMA_EXTABLE_1000BT)
2102			physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
2103		if (ext_ability & MDIO_PMA_EXTABLE_100BTX)
2104			physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
2105		goto out;
2106	}
2107
2108	switch (autoc & IXGBE_AUTOC_LMS_MASK) {
2109	case IXGBE_AUTOC_LMS_1G_AN:
2110	case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
2111		if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) {
2112			physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX |
2113			    IXGBE_PHYSICAL_LAYER_1000BASE_BX;
2114			goto out;
2115		} else
2116			/* SFI mode so read SFP module */
2117			goto sfp_check;
2118		break;
2119	case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
2120		if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4)
2121			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4;
2122		else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4)
2123			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2124		else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI)
2125			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI;
2126		goto out;
2127		break;
2128	case IXGBE_AUTOC_LMS_10G_SERIAL:
2129		if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) {
2130			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2131			goto out;
2132		} else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)
2133			goto sfp_check;
2134		break;
2135	case IXGBE_AUTOC_LMS_KX4_KX_KR:
2136	case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
2137		if (autoc & IXGBE_AUTOC_KX_SUPP)
2138			physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX;
2139		if (autoc & IXGBE_AUTOC_KX4_SUPP)
2140			physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2141		if (autoc & IXGBE_AUTOC_KR_SUPP)
2142			physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2143		goto out;
2144		break;
2145	default:
2146		goto out;
2147		break;
2148	}
2149
2150sfp_check:
2151	/* SFP check must be done last since DA modules are sometimes used to
2152	 * test KR mode -  we need to id KR mode correctly before SFP module.
2153	 * Call identify_sfp because the pluggable module may have changed */
2154	hw->phy.ops.identify_sfp(hw);
2155	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2156		goto out;
2157
2158	switch (hw->phy.type) {
2159	case ixgbe_phy_sfp_passive_tyco:
2160	case ixgbe_phy_sfp_passive_unknown:
2161		physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU;
2162		break;
2163	case ixgbe_phy_sfp_ftl_active:
2164	case ixgbe_phy_sfp_active_unknown:
2165		physical_layer = IXGBE_PHYSICAL_LAYER_SFP_ACTIVE_DA;
2166		break;
2167	case ixgbe_phy_sfp_avago:
2168	case ixgbe_phy_sfp_ftl:
2169	case ixgbe_phy_sfp_intel:
2170	case ixgbe_phy_sfp_unknown:
2171		hw->phy.ops.read_i2c_eeprom(hw,
2172		      IXGBE_SFF_1GBE_COMP_CODES, &comp_codes_1g);
2173		hw->phy.ops.read_i2c_eeprom(hw,
2174		      IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g);
2175		if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
2176			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR;
2177		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
2178			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR;
2179		else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE)
2180			physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_T;
2181		break;
2182	default:
2183		break;
2184	}
2185
2186out:
2187	return physical_layer;
2188}
2189
2190/**
2191 *  ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
2192 *  @hw: pointer to hardware structure
2193 *  @regval: register value to write to RXCTRL
2194 *
2195 *  Enables the Rx DMA unit for 82599
2196 **/
2197static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
2198{
2199#define IXGBE_MAX_SECRX_POLL 30
2200	int i;
2201	int secrxreg;
2202
2203	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2204	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2205	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2206	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2207		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2208		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2209			break;
2210		else
2211			udelay(10);
2212	}
2213
2214	/* For informational purposes only */
2215	if (i >= IXGBE_MAX_SECRX_POLL)
2216		hw_dbg(hw, "Rx unit being enabled before security "
2217		       "path fully disabled.  Continuing with init.\n");
2218
2219	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2220	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2221	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2222	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2223	IXGBE_WRITE_FLUSH(hw);
2224
2225	return 0;
2226}
2227
2228/**
2229 *  ixgbe_get_device_caps_82599 - Get additional device capabilities
2230 *  @hw: pointer to hardware structure
2231 *  @device_caps: the EEPROM word with the extra device capabilities
2232 *
2233 *  This function will read the EEPROM location for the device capabilities,
2234 *  and return the word through device_caps.
2235 **/
2236static s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps)
2237{
2238	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
2239
2240	return 0;
2241}
2242
2243/**
2244 *  ixgbe_verify_fw_version_82599 - verify fw version for 82599
2245 *  @hw: pointer to hardware structure
2246 *
2247 *  Verifies that installed the firmware version is 0.6 or higher
2248 *  for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
2249 *
2250 *  Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
2251 *  if the FW version is not supported.
2252 **/
2253static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
2254{
2255	s32 status = IXGBE_ERR_EEPROM_VERSION;
2256	u16 fw_offset, fw_ptp_cfg_offset;
2257	u16 fw_version = 0;
2258
2259	/* firmware check is only necessary for SFI devices */
2260	if (hw->phy.media_type != ixgbe_media_type_fiber) {
2261		status = 0;
2262		goto fw_version_out;
2263	}
2264
2265	/* get the offset to the Firmware Module block */
2266	hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);
2267
2268	if ((fw_offset == 0) || (fw_offset == 0xFFFF))
2269		goto fw_version_out;
2270
2271	/* get the offset to the Pass Through Patch Configuration block */
2272	hw->eeprom.ops.read(hw, (fw_offset +
2273	                         IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR),
2274	                         &fw_ptp_cfg_offset);
2275
2276	if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF))
2277		goto fw_version_out;
2278
2279	/* get the firmware version */
2280	hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset +
2281	                         IXGBE_FW_PATCH_VERSION_4),
2282	                         &fw_version);
2283
2284	if (fw_version > 0x5)
2285		status = 0;
2286
2287fw_version_out:
2288	return status;
2289}
2290
2291/**
2292 *  ixgbe_get_wwn_prefix_82599 - Get alternative WWNN/WWPN prefix from
2293 *  the EEPROM
2294 *  @hw: pointer to hardware structure
2295 *  @wwnn_prefix: the alternative WWNN prefix
2296 *  @wwpn_prefix: the alternative WWPN prefix
2297 *
2298 *  This function will read the EEPROM from the alternative SAN MAC address
2299 *  block to check the support for the alternative WWNN/WWPN prefix support.
2300 **/
2301static s32 ixgbe_get_wwn_prefix_82599(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2302                                      u16 *wwpn_prefix)
2303{
2304	u16 offset, caps;
2305	u16 alt_san_mac_blk_offset;
2306
2307	/* clear output first */
2308	*wwnn_prefix = 0xFFFF;
2309	*wwpn_prefix = 0xFFFF;
2310
2311	/* check if alternative SAN MAC is supported */
2312	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2313	                    &alt_san_mac_blk_offset);
2314
2315	if ((alt_san_mac_blk_offset == 0) ||
2316	    (alt_san_mac_blk_offset == 0xFFFF))
2317		goto wwn_prefix_out;
2318
2319	/* check capability in alternative san mac address block */
2320	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2321	hw->eeprom.ops.read(hw, offset, &caps);
2322	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2323		goto wwn_prefix_out;
2324
2325	/* get the corresponding prefix for WWNN/WWPN */
2326	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2327	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2328
2329	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2330	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2331
2332wwn_prefix_out:
2333	return 0;
2334}
2335
2336static struct ixgbe_mac_operations mac_ops_82599 = {
2337	.init_hw                = &ixgbe_init_hw_generic,
2338	.reset_hw               = &ixgbe_reset_hw_82599,
2339	.start_hw               = &ixgbe_start_hw_82599,
2340	.clear_hw_cntrs         = &ixgbe_clear_hw_cntrs_generic,
2341	.get_media_type         = &ixgbe_get_media_type_82599,
2342	.get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599,
2343	.enable_rx_dma          = &ixgbe_enable_rx_dma_82599,
2344	.get_mac_addr           = &ixgbe_get_mac_addr_generic,
2345	.get_san_mac_addr       = &ixgbe_get_san_mac_addr_generic,
2346	.get_device_caps        = &ixgbe_get_device_caps_82599,
2347	.get_wwn_prefix         = &ixgbe_get_wwn_prefix_82599,
2348	.stop_adapter           = &ixgbe_stop_adapter_generic,
2349	.get_bus_info           = &ixgbe_get_bus_info_generic,
2350	.set_lan_id             = &ixgbe_set_lan_id_multi_port_pcie,
2351	.read_analog_reg8       = &ixgbe_read_analog_reg8_82599,
2352	.write_analog_reg8      = &ixgbe_write_analog_reg8_82599,
2353	.setup_link             = &ixgbe_setup_mac_link_82599,
2354	.check_link             = &ixgbe_check_mac_link_generic,
2355	.get_link_capabilities  = &ixgbe_get_link_capabilities_82599,
2356	.led_on                 = &ixgbe_led_on_generic,
2357	.led_off                = &ixgbe_led_off_generic,
2358	.blink_led_start        = &ixgbe_blink_led_start_generic,
2359	.blink_led_stop         = &ixgbe_blink_led_stop_generic,
2360	.set_rar                = &ixgbe_set_rar_generic,
2361	.clear_rar              = &ixgbe_clear_rar_generic,
2362	.set_vmdq               = &ixgbe_set_vmdq_generic,
2363	.clear_vmdq             = &ixgbe_clear_vmdq_generic,
2364	.init_rx_addrs          = &ixgbe_init_rx_addrs_generic,
2365	.update_uc_addr_list    = &ixgbe_update_uc_addr_list_generic,
2366	.update_mc_addr_list    = &ixgbe_update_mc_addr_list_generic,
2367	.enable_mc              = &ixgbe_enable_mc_generic,
2368	.disable_mc             = &ixgbe_disable_mc_generic,
2369	.clear_vfta             = &ixgbe_clear_vfta_generic,
2370	.set_vfta               = &ixgbe_set_vfta_generic,
2371	.fc_enable              = &ixgbe_fc_enable_generic,
2372	.init_uta_tables        = &ixgbe_init_uta_tables_generic,
2373	.setup_sfp              = &ixgbe_setup_sfp_modules_82599,
2374};
2375
2376static struct ixgbe_eeprom_operations eeprom_ops_82599 = {
2377	.init_params            = &ixgbe_init_eeprom_params_generic,
2378	.read                   = &ixgbe_read_eerd_generic,
2379	.write                  = &ixgbe_write_eeprom_generic,
2380	.validate_checksum      = &ixgbe_validate_eeprom_checksum_generic,
2381	.update_checksum        = &ixgbe_update_eeprom_checksum_generic,
2382};
2383
2384static struct ixgbe_phy_operations phy_ops_82599 = {
2385	.identify               = &ixgbe_identify_phy_82599,
2386	.identify_sfp           = &ixgbe_identify_sfp_module_generic,
2387	.init			            = &ixgbe_init_phy_ops_82599,
2388	.reset                  = &ixgbe_reset_phy_generic,
2389	.read_reg               = &ixgbe_read_phy_reg_generic,
2390	.write_reg              = &ixgbe_write_phy_reg_generic,
2391	.setup_link             = &ixgbe_setup_phy_link_generic,
2392	.setup_link_speed       = &ixgbe_setup_phy_link_speed_generic,
2393	.read_i2c_byte          = &ixgbe_read_i2c_byte_generic,
2394	.write_i2c_byte         = &ixgbe_write_i2c_byte_generic,
2395	.read_i2c_eeprom        = &ixgbe_read_i2c_eeprom_generic,
2396	.write_i2c_eeprom       = &ixgbe_write_i2c_eeprom_generic,
2397	.check_overtemp         = &ixgbe_tn_check_overtemp,
2398};
2399
2400struct ixgbe_info ixgbe_82599_info = {
2401	.mac                    = ixgbe_mac_82599EB,
2402	.get_invariants         = &ixgbe_get_invariants_82599,
2403	.mac_ops                = &mac_ops_82599,
2404	.eeprom_ops             = &eeprom_ops_82599,
2405	.phy_ops                = &phy_ops_82599,
2406	.mbx_ops                = &mbx_ops_82599,
2407};
2408