• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/igb/
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2009 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_phy.h"
33
34static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36					       u16 *phy_ctrl);
37static s32  igb_wait_autoneg(struct e1000_hw *hw);
38
39/* Cable length tables */
40static const u16 e1000_m88_cable_length_table[] =
41	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43                (sizeof(e1000_m88_cable_length_table) / \
44                 sizeof(e1000_m88_cable_length_table[0]))
45
46static const u16 e1000_igp_2_cable_length_table[] =
47    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54      104, 109, 114, 118, 121, 124};
55#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56		(sizeof(e1000_igp_2_cable_length_table) / \
57		 sizeof(e1000_igp_2_cable_length_table[0]))
58
59/**
60 *  igb_check_reset_block - Check if PHY reset is blocked
61 *  @hw: pointer to the HW structure
62 *
63 *  Read the PHY management control register and check whether a PHY reset
64 *  is blocked.  If a reset is not blocked return 0, otherwise
65 *  return E1000_BLK_PHY_RESET (12).
66 **/
67s32 igb_check_reset_block(struct e1000_hw *hw)
68{
69	u32 manc;
70
71	manc = rd32(E1000_MANC);
72
73	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
74	       E1000_BLK_PHY_RESET : 0;
75}
76
77/**
78 *  igb_get_phy_id - Retrieve the PHY ID and revision
79 *  @hw: pointer to the HW structure
80 *
81 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82 *  revision in the hardware structure.
83 **/
84s32 igb_get_phy_id(struct e1000_hw *hw)
85{
86	struct e1000_phy_info *phy = &hw->phy;
87	s32 ret_val = 0;
88	u16 phy_id;
89
90	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91	if (ret_val)
92		goto out;
93
94	phy->id = (u32)(phy_id << 16);
95	udelay(20);
96	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97	if (ret_val)
98		goto out;
99
100	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102
103out:
104	return ret_val;
105}
106
107/**
108 *  igb_phy_reset_dsp - Reset PHY DSP
109 *  @hw: pointer to the HW structure
110 *
111 *  Reset the digital signal processor.
112 **/
113static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114{
115	s32 ret_val = 0;
116
117	if (!(hw->phy.ops.write_reg))
118		goto out;
119
120	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121	if (ret_val)
122		goto out;
123
124	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125
126out:
127	return ret_val;
128}
129
130/**
131 *  igb_read_phy_reg_mdic - Read MDI control register
132 *  @hw: pointer to the HW structure
133 *  @offset: register offset to be read
134 *  @data: pointer to the read data
135 *
136 *  Reads the MDI control regsiter in the PHY at offset and stores the
137 *  information read to data.
138 **/
139s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140{
141	struct e1000_phy_info *phy = &hw->phy;
142	u32 i, mdic = 0;
143	s32 ret_val = 0;
144
145	if (offset > MAX_PHY_REG_ADDRESS) {
146		hw_dbg("PHY Address %d is out of range\n", offset);
147		ret_val = -E1000_ERR_PARAM;
148		goto out;
149	}
150
151	/*
152	 * Set up Op-code, Phy Address, and register offset in the MDI
153	 * Control register.  The MAC will take care of interfacing with the
154	 * PHY to retrieve the desired data.
155	 */
156	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
157		(phy->addr << E1000_MDIC_PHY_SHIFT) |
158		(E1000_MDIC_OP_READ));
159
160	wr32(E1000_MDIC, mdic);
161
162	/*
163	 * Poll the ready bit to see if the MDI read completed
164	 * Increasing the time out as testing showed failures with
165	 * the lower time out
166	 */
167	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168		udelay(50);
169		mdic = rd32(E1000_MDIC);
170		if (mdic & E1000_MDIC_READY)
171			break;
172	}
173	if (!(mdic & E1000_MDIC_READY)) {
174		hw_dbg("MDI Read did not complete\n");
175		ret_val = -E1000_ERR_PHY;
176		goto out;
177	}
178	if (mdic & E1000_MDIC_ERROR) {
179		hw_dbg("MDI Error\n");
180		ret_val = -E1000_ERR_PHY;
181		goto out;
182	}
183	*data = (u16) mdic;
184
185out:
186	return ret_val;
187}
188
189/**
190 *  igb_write_phy_reg_mdic - Write MDI control register
191 *  @hw: pointer to the HW structure
192 *  @offset: register offset to write to
193 *  @data: data to write to register at offset
194 *
195 *  Writes data to MDI control register in the PHY at offset.
196 **/
197s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
198{
199	struct e1000_phy_info *phy = &hw->phy;
200	u32 i, mdic = 0;
201	s32 ret_val = 0;
202
203	if (offset > MAX_PHY_REG_ADDRESS) {
204		hw_dbg("PHY Address %d is out of range\n", offset);
205		ret_val = -E1000_ERR_PARAM;
206		goto out;
207	}
208
209	/*
210	 * Set up Op-code, Phy Address, and register offset in the MDI
211	 * Control register.  The MAC will take care of interfacing with the
212	 * PHY to retrieve the desired data.
213	 */
214	mdic = (((u32)data) |
215		(offset << E1000_MDIC_REG_SHIFT) |
216		(phy->addr << E1000_MDIC_PHY_SHIFT) |
217		(E1000_MDIC_OP_WRITE));
218
219	wr32(E1000_MDIC, mdic);
220
221	/*
222	 * Poll the ready bit to see if the MDI read completed
223	 * Increasing the time out as testing showed failures with
224	 * the lower time out
225	 */
226	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
227		udelay(50);
228		mdic = rd32(E1000_MDIC);
229		if (mdic & E1000_MDIC_READY)
230			break;
231	}
232	if (!(mdic & E1000_MDIC_READY)) {
233		hw_dbg("MDI Write did not complete\n");
234		ret_val = -E1000_ERR_PHY;
235		goto out;
236	}
237	if (mdic & E1000_MDIC_ERROR) {
238		hw_dbg("MDI Error\n");
239		ret_val = -E1000_ERR_PHY;
240		goto out;
241	}
242
243out:
244	return ret_val;
245}
246
247/**
248 *  igb_read_phy_reg_i2c - Read PHY register using i2c
249 *  @hw: pointer to the HW structure
250 *  @offset: register offset to be read
251 *  @data: pointer to the read data
252 *
253 *  Reads the PHY register at offset using the i2c interface and stores the
254 *  retrieved information in data.
255 **/
256s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
257{
258	struct e1000_phy_info *phy = &hw->phy;
259	u32 i, i2ccmd = 0;
260
261
262	/*
263	 * Set up Op-code, Phy Address, and register address in the I2CCMD
264	 * register.  The MAC will take care of interfacing with the
265	 * PHY to retrieve the desired data.
266	 */
267	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
268	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
269	          (E1000_I2CCMD_OPCODE_READ));
270
271	wr32(E1000_I2CCMD, i2ccmd);
272
273	/* Poll the ready bit to see if the I2C read completed */
274	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
275		udelay(50);
276		i2ccmd = rd32(E1000_I2CCMD);
277		if (i2ccmd & E1000_I2CCMD_READY)
278			break;
279	}
280	if (!(i2ccmd & E1000_I2CCMD_READY)) {
281		hw_dbg("I2CCMD Read did not complete\n");
282		return -E1000_ERR_PHY;
283	}
284	if (i2ccmd & E1000_I2CCMD_ERROR) {
285		hw_dbg("I2CCMD Error bit set\n");
286		return -E1000_ERR_PHY;
287	}
288
289	/* Need to byte-swap the 16-bit value. */
290	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
291
292	return 0;
293}
294
295/**
296 *  igb_write_phy_reg_i2c - Write PHY register using i2c
297 *  @hw: pointer to the HW structure
298 *  @offset: register offset to write to
299 *  @data: data to write at register offset
300 *
301 *  Writes the data to PHY register at the offset using the i2c interface.
302 **/
303s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
304{
305	struct e1000_phy_info *phy = &hw->phy;
306	u32 i, i2ccmd = 0;
307	u16 phy_data_swapped;
308
309
310	/* Swap the data bytes for the I2C interface */
311	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312
313	/*
314	 * Set up Op-code, Phy Address, and register address in the I2CCMD
315	 * register.  The MAC will take care of interfacing with the
316	 * PHY to retrieve the desired data.
317	 */
318	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
319	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
320	          E1000_I2CCMD_OPCODE_WRITE |
321	          phy_data_swapped);
322
323	wr32(E1000_I2CCMD, i2ccmd);
324
325	/* Poll the ready bit to see if the I2C read completed */
326	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
327		udelay(50);
328		i2ccmd = rd32(E1000_I2CCMD);
329		if (i2ccmd & E1000_I2CCMD_READY)
330			break;
331	}
332	if (!(i2ccmd & E1000_I2CCMD_READY)) {
333		hw_dbg("I2CCMD Write did not complete\n");
334		return -E1000_ERR_PHY;
335	}
336	if (i2ccmd & E1000_I2CCMD_ERROR) {
337		hw_dbg("I2CCMD Error bit set\n");
338		return -E1000_ERR_PHY;
339	}
340
341	return 0;
342}
343
344/**
345 *  igb_read_phy_reg_igp - Read igp PHY register
346 *  @hw: pointer to the HW structure
347 *  @offset: register offset to be read
348 *  @data: pointer to the read data
349 *
350 *  Acquires semaphore, if necessary, then reads the PHY register at offset
351 *  and storing the retrieved information in data.  Release any acquired
352 *  semaphores before exiting.
353 **/
354s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
355{
356	s32 ret_val = 0;
357
358	if (!(hw->phy.ops.acquire))
359		goto out;
360
361	ret_val = hw->phy.ops.acquire(hw);
362	if (ret_val)
363		goto out;
364
365	if (offset > MAX_PHY_MULTI_PAGE_REG) {
366		ret_val = igb_write_phy_reg_mdic(hw,
367						   IGP01E1000_PHY_PAGE_SELECT,
368						   (u16)offset);
369		if (ret_val) {
370			hw->phy.ops.release(hw);
371			goto out;
372		}
373	}
374
375	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
376					data);
377
378	hw->phy.ops.release(hw);
379
380out:
381	return ret_val;
382}
383
384/**
385 *  igb_write_phy_reg_igp - Write igp PHY register
386 *  @hw: pointer to the HW structure
387 *  @offset: register offset to write to
388 *  @data: data to write at register offset
389 *
390 *  Acquires semaphore, if necessary, then writes the data to PHY register
391 *  at the offset.  Release any acquired semaphores before exiting.
392 **/
393s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
394{
395	s32 ret_val = 0;
396
397	if (!(hw->phy.ops.acquire))
398		goto out;
399
400	ret_val = hw->phy.ops.acquire(hw);
401	if (ret_val)
402		goto out;
403
404	if (offset > MAX_PHY_MULTI_PAGE_REG) {
405		ret_val = igb_write_phy_reg_mdic(hw,
406						   IGP01E1000_PHY_PAGE_SELECT,
407						   (u16)offset);
408		if (ret_val) {
409			hw->phy.ops.release(hw);
410			goto out;
411		}
412	}
413
414	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
415					   data);
416
417	hw->phy.ops.release(hw);
418
419out:
420	return ret_val;
421}
422
423/**
424 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
425 *  @hw: pointer to the HW structure
426 *
427 *  Sets up Carrier-sense on Transmit and downshift values.
428 **/
429s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
430{
431	struct e1000_phy_info *phy = &hw->phy;
432	s32 ret_val;
433	u16 phy_data;
434
435
436	if (phy->reset_disable) {
437		ret_val = 0;
438		goto out;
439	}
440
441	if (phy->type == e1000_phy_82580) {
442		ret_val = hw->phy.ops.reset(hw);
443		if (ret_val) {
444			hw_dbg("Error resetting the PHY.\n");
445			goto out;
446		}
447	}
448
449	/* Enable CRS on TX. This must be set for half-duplex operation. */
450	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
451	if (ret_val)
452		goto out;
453
454	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
455
456	/* Enable downshift */
457	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
458
459	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
460
461out:
462	return ret_val;
463}
464
465/**
466 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
467 *  @hw: pointer to the HW structure
468 *
469 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
470 *  and downshift values are set also.
471 **/
472s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
473{
474	struct e1000_phy_info *phy = &hw->phy;
475	s32 ret_val;
476	u16 phy_data;
477
478	if (phy->reset_disable) {
479		ret_val = 0;
480		goto out;
481	}
482
483	/* Enable CRS on TX. This must be set for half-duplex operation. */
484	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
485	if (ret_val)
486		goto out;
487
488	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
489
490	/*
491	 * Options:
492	 *   MDI/MDI-X = 0 (default)
493	 *   0 - Auto for all speeds
494	 *   1 - MDI mode
495	 *   2 - MDI-X mode
496	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
497	 */
498	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
499
500	switch (phy->mdix) {
501	case 1:
502		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
503		break;
504	case 2:
505		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
506		break;
507	case 3:
508		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
509		break;
510	case 0:
511	default:
512		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
513		break;
514	}
515
516	/*
517	 * Options:
518	 *   disable_polarity_correction = 0 (default)
519	 *       Automatic Correction for Reversed Cable Polarity
520	 *   0 - Disabled
521	 *   1 - Enabled
522	 */
523	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
524	if (phy->disable_polarity_correction == 1)
525		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
526
527	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
528	if (ret_val)
529		goto out;
530
531	if (phy->revision < E1000_REVISION_4) {
532		/*
533		 * Force TX_CLK in the Extended PHY Specific Control Register
534		 * to 25MHz clock.
535		 */
536		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
537					     &phy_data);
538		if (ret_val)
539			goto out;
540
541		phy_data |= M88E1000_EPSCR_TX_CLK_25;
542
543		if ((phy->revision == E1000_REVISION_2) &&
544		    (phy->id == M88E1111_I_PHY_ID)) {
545			/* 82573L PHY - set the downshift counter to 5x. */
546			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
547			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
548		} else {
549			/* Configure Master and Slave downshift values */
550			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
551				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
552			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
553				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
554		}
555		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
556					     phy_data);
557		if (ret_val)
558			goto out;
559	}
560
561	/* Commit the changes. */
562	ret_val = igb_phy_sw_reset(hw);
563	if (ret_val) {
564		hw_dbg("Error committing the PHY changes\n");
565		goto out;
566	}
567
568out:
569	return ret_val;
570}
571
572/**
573 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
574 *  @hw: pointer to the HW structure
575 *
576 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
577 *  igp PHY's.
578 **/
579s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
580{
581	struct e1000_phy_info *phy = &hw->phy;
582	s32 ret_val;
583	u16 data;
584
585	if (phy->reset_disable) {
586		ret_val = 0;
587		goto out;
588	}
589
590	ret_val = phy->ops.reset(hw);
591	if (ret_val) {
592		hw_dbg("Error resetting the PHY.\n");
593		goto out;
594	}
595
596	/*
597	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
598	 * timeout issues when LFS is enabled.
599	 */
600	msleep(100);
601
602	/*
603	 * The NVM settings will configure LPLU in D3 for
604	 * non-IGP1 PHYs.
605	 */
606	if (phy->type == e1000_phy_igp) {
607		/* disable lplu d3 during driver init */
608		if (phy->ops.set_d3_lplu_state)
609			ret_val = phy->ops.set_d3_lplu_state(hw, false);
610		if (ret_val) {
611			hw_dbg("Error Disabling LPLU D3\n");
612			goto out;
613		}
614	}
615
616	/* disable lplu d0 during driver init */
617	ret_val = phy->ops.set_d0_lplu_state(hw, false);
618	if (ret_val) {
619		hw_dbg("Error Disabling LPLU D0\n");
620		goto out;
621	}
622	/* Configure mdi-mdix settings */
623	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
624	if (ret_val)
625		goto out;
626
627	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
628
629	switch (phy->mdix) {
630	case 1:
631		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
632		break;
633	case 2:
634		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
635		break;
636	case 0:
637	default:
638		data |= IGP01E1000_PSCR_AUTO_MDIX;
639		break;
640	}
641	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
642	if (ret_val)
643		goto out;
644
645	/* set auto-master slave resolution settings */
646	if (hw->mac.autoneg) {
647		/*
648		 * when autonegotiation advertisement is only 1000Mbps then we
649		 * should disable SmartSpeed and enable Auto MasterSlave
650		 * resolution as hardware default.
651		 */
652		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
653			/* Disable SmartSpeed */
654			ret_val = phy->ops.read_reg(hw,
655						    IGP01E1000_PHY_PORT_CONFIG,
656						    &data);
657			if (ret_val)
658				goto out;
659
660			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
661			ret_val = phy->ops.write_reg(hw,
662						     IGP01E1000_PHY_PORT_CONFIG,
663						     data);
664			if (ret_val)
665				goto out;
666
667			/* Set auto Master/Slave resolution process */
668			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
669			if (ret_val)
670				goto out;
671
672			data &= ~CR_1000T_MS_ENABLE;
673			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
674			if (ret_val)
675				goto out;
676		}
677
678		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
679		if (ret_val)
680			goto out;
681
682		/* load defaults for future use */
683		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
684			((data & CR_1000T_MS_VALUE) ?
685			e1000_ms_force_master :
686			e1000_ms_force_slave) :
687			e1000_ms_auto;
688
689		switch (phy->ms_type) {
690		case e1000_ms_force_master:
691			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
692			break;
693		case e1000_ms_force_slave:
694			data |= CR_1000T_MS_ENABLE;
695			data &= ~(CR_1000T_MS_VALUE);
696			break;
697		case e1000_ms_auto:
698			data &= ~CR_1000T_MS_ENABLE;
699		default:
700			break;
701		}
702		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
703		if (ret_val)
704			goto out;
705	}
706
707out:
708	return ret_val;
709}
710
711/**
712 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
713 *  @hw: pointer to the HW structure
714 *
715 *  Performs initial bounds checking on autoneg advertisement parameter, then
716 *  configure to advertise the full capability.  Setup the PHY to autoneg
717 *  and restart the negotiation process between the link partner.  If
718 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
719 **/
720static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
721{
722	struct e1000_phy_info *phy = &hw->phy;
723	s32 ret_val;
724	u16 phy_ctrl;
725
726	/*
727	 * Perform some bounds checking on the autoneg advertisement
728	 * parameter.
729	 */
730	phy->autoneg_advertised &= phy->autoneg_mask;
731
732	/*
733	 * If autoneg_advertised is zero, we assume it was not defaulted
734	 * by the calling code so we set to advertise full capability.
735	 */
736	if (phy->autoneg_advertised == 0)
737		phy->autoneg_advertised = phy->autoneg_mask;
738
739	hw_dbg("Reconfiguring auto-neg advertisement params\n");
740	ret_val = igb_phy_setup_autoneg(hw);
741	if (ret_val) {
742		hw_dbg("Error Setting up Auto-Negotiation\n");
743		goto out;
744	}
745	hw_dbg("Restarting Auto-Neg\n");
746
747	/*
748	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
749	 * the Auto Neg Restart bit in the PHY control register.
750	 */
751	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
752	if (ret_val)
753		goto out;
754
755	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
756	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
757	if (ret_val)
758		goto out;
759
760	/*
761	 * Does the user want to wait for Auto-Neg to complete here, or
762	 * check at a later time (for example, callback routine).
763	 */
764	if (phy->autoneg_wait_to_complete) {
765		ret_val = igb_wait_autoneg(hw);
766		if (ret_val) {
767			hw_dbg("Error while waiting for "
768			       "autoneg to complete\n");
769			goto out;
770		}
771	}
772
773	hw->mac.get_link_status = true;
774
775out:
776	return ret_val;
777}
778
779/**
780 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
781 *  @hw: pointer to the HW structure
782 *
783 *  Reads the MII auto-neg advertisement register and/or the 1000T control
784 *  register and if the PHY is already setup for auto-negotiation, then
785 *  return successful.  Otherwise, setup advertisement and flow control to
786 *  the appropriate values for the wanted auto-negotiation.
787 **/
788static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
789{
790	struct e1000_phy_info *phy = &hw->phy;
791	s32 ret_val;
792	u16 mii_autoneg_adv_reg;
793	u16 mii_1000t_ctrl_reg = 0;
794
795	phy->autoneg_advertised &= phy->autoneg_mask;
796
797	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
798	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
799	if (ret_val)
800		goto out;
801
802	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
803		/* Read the MII 1000Base-T Control Register (Address 9). */
804		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
805					    &mii_1000t_ctrl_reg);
806		if (ret_val)
807			goto out;
808	}
809
810	/*
811	 * Need to parse both autoneg_advertised and fc and set up
812	 * the appropriate PHY registers.  First we will parse for
813	 * autoneg_advertised software override.  Since we can advertise
814	 * a plethora of combinations, we need to check each bit
815	 * individually.
816	 */
817
818	/*
819	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
820	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
821	 * the  1000Base-T Control Register (Address 9).
822	 */
823	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
824				 NWAY_AR_100TX_HD_CAPS |
825				 NWAY_AR_10T_FD_CAPS   |
826				 NWAY_AR_10T_HD_CAPS);
827	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
828
829	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
830
831	/* Do we want to advertise 10 Mb Half Duplex? */
832	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
833		hw_dbg("Advertise 10mb Half duplex\n");
834		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
835	}
836
837	/* Do we want to advertise 10 Mb Full Duplex? */
838	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
839		hw_dbg("Advertise 10mb Full duplex\n");
840		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
841	}
842
843	/* Do we want to advertise 100 Mb Half Duplex? */
844	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
845		hw_dbg("Advertise 100mb Half duplex\n");
846		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
847	}
848
849	/* Do we want to advertise 100 Mb Full Duplex? */
850	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
851		hw_dbg("Advertise 100mb Full duplex\n");
852		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
853	}
854
855	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
856	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
857		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
858
859	/* Do we want to advertise 1000 Mb Full Duplex? */
860	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
861		hw_dbg("Advertise 1000mb Full duplex\n");
862		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
863	}
864
865	/*
866	 * Check for a software override of the flow control settings, and
867	 * setup the PHY advertisement registers accordingly.  If
868	 * auto-negotiation is enabled, then software will have to set the
869	 * "PAUSE" bits to the correct value in the Auto-Negotiation
870	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
871	 * negotiation.
872	 *
873	 * The possible values of the "fc" parameter are:
874	 *      0:  Flow control is completely disabled
875	 *      1:  Rx flow control is enabled (we can receive pause frames
876	 *          but not send pause frames).
877	 *      2:  Tx flow control is enabled (we can send pause frames
878	 *          but we do not support receiving pause frames).
879	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
880	 *  other:  No software override.  The flow control configuration
881	 *          in the EEPROM is used.
882	 */
883	switch (hw->fc.current_mode) {
884	case e1000_fc_none:
885		/*
886		 * Flow control (RX & TX) is completely disabled by a
887		 * software over-ride.
888		 */
889		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
890		break;
891	case e1000_fc_rx_pause:
892		/*
893		 * RX Flow control is enabled, and TX Flow control is
894		 * disabled, by a software over-ride.
895		 *
896		 * Since there really isn't a way to advertise that we are
897		 * capable of RX Pause ONLY, we will advertise that we
898		 * support both symmetric and asymmetric RX PAUSE.  Later
899		 * (in e1000_config_fc_after_link_up) we will disable the
900		 * hw's ability to send PAUSE frames.
901		 */
902		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
903		break;
904	case e1000_fc_tx_pause:
905		/*
906		 * TX Flow control is enabled, and RX Flow control is
907		 * disabled, by a software over-ride.
908		 */
909		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
910		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
911		break;
912	case e1000_fc_full:
913		/*
914		 * Flow control (both RX and TX) is enabled by a software
915		 * over-ride.
916		 */
917		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
918		break;
919	default:
920		hw_dbg("Flow control param set incorrectly\n");
921		ret_val = -E1000_ERR_CONFIG;
922		goto out;
923	}
924
925	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
926	if (ret_val)
927		goto out;
928
929	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
930
931	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
932		ret_val = phy->ops.write_reg(hw,
933					     PHY_1000T_CTRL,
934					     mii_1000t_ctrl_reg);
935		if (ret_val)
936			goto out;
937	}
938
939out:
940	return ret_val;
941}
942
943/**
944 *  igb_setup_copper_link - Configure copper link settings
945 *  @hw: pointer to the HW structure
946 *
947 *  Calls the appropriate function to configure the link for auto-neg or forced
948 *  speed and duplex.  Then we check for link, once link is established calls
949 *  to configure collision distance and flow control are called.  If link is
950 *  not established, we return -E1000_ERR_PHY (-2).
951 **/
952s32 igb_setup_copper_link(struct e1000_hw *hw)
953{
954	s32 ret_val;
955	bool link;
956
957
958	if (hw->mac.autoneg) {
959		/*
960		 * Setup autoneg and flow control advertisement and perform
961		 * autonegotiation.
962		 */
963		ret_val = igb_copper_link_autoneg(hw);
964		if (ret_val)
965			goto out;
966	} else {
967		/*
968		 * PHY will be set to 10H, 10F, 100H or 100F
969		 * depending on user settings.
970		 */
971		hw_dbg("Forcing Speed and Duplex\n");
972		ret_val = hw->phy.ops.force_speed_duplex(hw);
973		if (ret_val) {
974			hw_dbg("Error Forcing Speed and Duplex\n");
975			goto out;
976		}
977	}
978
979	/*
980	 * Check link status. Wait up to 100 microseconds for link to become
981	 * valid.
982	 */
983	ret_val = igb_phy_has_link(hw,
984	                           COPPER_LINK_UP_LIMIT,
985	                           10,
986	                           &link);
987	if (ret_val)
988		goto out;
989
990	if (link) {
991		hw_dbg("Valid link established!!!\n");
992		igb_config_collision_dist(hw);
993		ret_val = igb_config_fc_after_link_up(hw);
994	} else {
995		hw_dbg("Unable to establish link!!!\n");
996	}
997
998out:
999	return ret_val;
1000}
1001
1002/**
1003 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1004 *  @hw: pointer to the HW structure
1005 *
1006 *  Calls the PHY setup function to force speed and duplex.  Clears the
1007 *  auto-crossover to force MDI manually.  Waits for link and returns
1008 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1009 **/
1010s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1011{
1012	struct e1000_phy_info *phy = &hw->phy;
1013	s32 ret_val;
1014	u16 phy_data;
1015	bool link;
1016
1017	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1018	if (ret_val)
1019		goto out;
1020
1021	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1022
1023	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1024	if (ret_val)
1025		goto out;
1026
1027	/*
1028	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1029	 * forced whenever speed and duplex are forced.
1030	 */
1031	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1032	if (ret_val)
1033		goto out;
1034
1035	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1036	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1037
1038	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1039	if (ret_val)
1040		goto out;
1041
1042	hw_dbg("IGP PSCR: %X\n", phy_data);
1043
1044	udelay(1);
1045
1046	if (phy->autoneg_wait_to_complete) {
1047		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1048
1049		ret_val = igb_phy_has_link(hw,
1050						     PHY_FORCE_LIMIT,
1051						     100000,
1052						     &link);
1053		if (ret_val)
1054			goto out;
1055
1056		if (!link)
1057			hw_dbg("Link taking longer than expected.\n");
1058
1059		/* Try once more */
1060		ret_val = igb_phy_has_link(hw,
1061						     PHY_FORCE_LIMIT,
1062						     100000,
1063						     &link);
1064		if (ret_val)
1065			goto out;
1066	}
1067
1068out:
1069	return ret_val;
1070}
1071
1072/**
1073 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Calls the PHY setup function to force speed and duplex.  Clears the
1077 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1078 *  changes.  If time expires while waiting for link up, we reset the DSP.
1079 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1080 *  successful completion, else return corresponding error code.
1081 **/
1082s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1083{
1084	struct e1000_phy_info *phy = &hw->phy;
1085	s32 ret_val;
1086	u16 phy_data;
1087	bool link;
1088
1089	/*
1090	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1091	 * forced whenever speed and duplex are forced.
1092	 */
1093	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1094	if (ret_val)
1095		goto out;
1096
1097	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1098	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1099	if (ret_val)
1100		goto out;
1101
1102	hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1103
1104	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1105	if (ret_val)
1106		goto out;
1107
1108	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1109
1110	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1111	if (ret_val)
1112		goto out;
1113
1114	/* Reset the phy to commit changes. */
1115	ret_val = igb_phy_sw_reset(hw);
1116	if (ret_val)
1117		goto out;
1118
1119	if (phy->autoneg_wait_to_complete) {
1120		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1121
1122		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1123		if (ret_val)
1124			goto out;
1125
1126		if (!link) {
1127			/*
1128			 * We didn't get link.
1129			 * Reset the DSP and cross our fingers.
1130			 */
1131			ret_val = phy->ops.write_reg(hw,
1132						     M88E1000_PHY_PAGE_SELECT,
1133						     0x001d);
1134			if (ret_val)
1135				goto out;
1136			ret_val = igb_phy_reset_dsp(hw);
1137			if (ret_val)
1138				goto out;
1139		}
1140
1141		/* Try once more */
1142		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1143					   100000, &link);
1144		if (ret_val)
1145			goto out;
1146	}
1147
1148	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1149	if (ret_val)
1150		goto out;
1151
1152	/*
1153	 * Resetting the phy means we need to re-force TX_CLK in the
1154	 * Extended PHY Specific Control Register to 25MHz clock from
1155	 * the reset value of 2.5MHz.
1156	 */
1157	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1158	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1159	if (ret_val)
1160		goto out;
1161
1162	/*
1163	 * In addition, we must re-enable CRS on Tx for both half and full
1164	 * duplex.
1165	 */
1166	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1167	if (ret_val)
1168		goto out;
1169
1170	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1171	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1172
1173out:
1174	return ret_val;
1175}
1176
1177/**
1178 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1179 *  @hw: pointer to the HW structure
1180 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1181 *
1182 *  Forces speed and duplex on the PHY by doing the following: disable flow
1183 *  control, force speed/duplex on the MAC, disable auto speed detection,
1184 *  disable auto-negotiation, configure duplex, configure speed, configure
1185 *  the collision distance, write configuration to CTRL register.  The
1186 *  caller must write to the PHY_CONTROL register for these settings to
1187 *  take affect.
1188 **/
1189static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1190					       u16 *phy_ctrl)
1191{
1192	struct e1000_mac_info *mac = &hw->mac;
1193	u32 ctrl;
1194
1195	/* Turn off flow control when forcing speed/duplex */
1196	hw->fc.current_mode = e1000_fc_none;
1197
1198	/* Force speed/duplex on the mac */
1199	ctrl = rd32(E1000_CTRL);
1200	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1201	ctrl &= ~E1000_CTRL_SPD_SEL;
1202
1203	/* Disable Auto Speed Detection */
1204	ctrl &= ~E1000_CTRL_ASDE;
1205
1206	/* Disable autoneg on the phy */
1207	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1208
1209	/* Forcing Full or Half Duplex? */
1210	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1211		ctrl &= ~E1000_CTRL_FD;
1212		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1213		hw_dbg("Half Duplex\n");
1214	} else {
1215		ctrl |= E1000_CTRL_FD;
1216		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1217		hw_dbg("Full Duplex\n");
1218	}
1219
1220	/* Forcing 10mb or 100mb? */
1221	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1222		ctrl |= E1000_CTRL_SPD_100;
1223		*phy_ctrl |= MII_CR_SPEED_100;
1224		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1225		hw_dbg("Forcing 100mb\n");
1226	} else {
1227		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1228		*phy_ctrl |= MII_CR_SPEED_10;
1229		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1230		hw_dbg("Forcing 10mb\n");
1231	}
1232
1233	igb_config_collision_dist(hw);
1234
1235	wr32(E1000_CTRL, ctrl);
1236}
1237
1238/**
1239 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1240 *  @hw: pointer to the HW structure
1241 *  @active: boolean used to enable/disable lplu
1242 *
1243 *  Success returns 0, Failure returns 1
1244 *
1245 *  The low power link up (lplu) state is set to the power management level D3
1246 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1247 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1248 *  is used during Dx states where the power conservation is most important.
1249 *  During driver activity, SmartSpeed should be enabled so performance is
1250 *  maintained.
1251 **/
1252s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1253{
1254	struct e1000_phy_info *phy = &hw->phy;
1255	s32 ret_val = 0;
1256	u16 data;
1257
1258	if (!(hw->phy.ops.read_reg))
1259		goto out;
1260
1261	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1262	if (ret_val)
1263		goto out;
1264
1265	if (!active) {
1266		data &= ~IGP02E1000_PM_D3_LPLU;
1267		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1268					     data);
1269		if (ret_val)
1270			goto out;
1271		/*
1272		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1273		 * during Dx states where the power conservation is most
1274		 * important.  During driver activity we should enable
1275		 * SmartSpeed, so performance is maintained.
1276		 */
1277		if (phy->smart_speed == e1000_smart_speed_on) {
1278			ret_val = phy->ops.read_reg(hw,
1279						    IGP01E1000_PHY_PORT_CONFIG,
1280						    &data);
1281			if (ret_val)
1282				goto out;
1283
1284			data |= IGP01E1000_PSCFR_SMART_SPEED;
1285			ret_val = phy->ops.write_reg(hw,
1286						     IGP01E1000_PHY_PORT_CONFIG,
1287						     data);
1288			if (ret_val)
1289				goto out;
1290		} else if (phy->smart_speed == e1000_smart_speed_off) {
1291			ret_val = phy->ops.read_reg(hw,
1292						     IGP01E1000_PHY_PORT_CONFIG,
1293						     &data);
1294			if (ret_val)
1295				goto out;
1296
1297			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1298			ret_val = phy->ops.write_reg(hw,
1299						     IGP01E1000_PHY_PORT_CONFIG,
1300						     data);
1301			if (ret_val)
1302				goto out;
1303		}
1304	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1305		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1306		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1307		data |= IGP02E1000_PM_D3_LPLU;
1308		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1309					      data);
1310		if (ret_val)
1311			goto out;
1312
1313		/* When LPLU is enabled, we should disable SmartSpeed */
1314		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1315					     &data);
1316		if (ret_val)
1317			goto out;
1318
1319		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1320		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1321					      data);
1322	}
1323
1324out:
1325	return ret_val;
1326}
1327
1328/**
1329 *  igb_check_downshift - Checks whether a downshift in speed occured
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Success returns 0, Failure returns 1
1333 *
1334 *  A downshift is detected by querying the PHY link health.
1335 **/
1336s32 igb_check_downshift(struct e1000_hw *hw)
1337{
1338	struct e1000_phy_info *phy = &hw->phy;
1339	s32 ret_val;
1340	u16 phy_data, offset, mask;
1341
1342	switch (phy->type) {
1343	case e1000_phy_m88:
1344	case e1000_phy_gg82563:
1345		offset	= M88E1000_PHY_SPEC_STATUS;
1346		mask	= M88E1000_PSSR_DOWNSHIFT;
1347		break;
1348	case e1000_phy_igp_2:
1349	case e1000_phy_igp:
1350	case e1000_phy_igp_3:
1351		offset	= IGP01E1000_PHY_LINK_HEALTH;
1352		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1353		break;
1354	default:
1355		/* speed downshift not supported */
1356		phy->speed_downgraded = false;
1357		ret_val = 0;
1358		goto out;
1359	}
1360
1361	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1362
1363	if (!ret_val)
1364		phy->speed_downgraded = (phy_data & mask) ? true : false;
1365
1366out:
1367	return ret_val;
1368}
1369
1370/**
1371 *  igb_check_polarity_m88 - Checks the polarity.
1372 *  @hw: pointer to the HW structure
1373 *
1374 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1375 *
1376 *  Polarity is determined based on the PHY specific status register.
1377 **/
1378static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1379{
1380	struct e1000_phy_info *phy = &hw->phy;
1381	s32 ret_val;
1382	u16 data;
1383
1384	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1385
1386	if (!ret_val)
1387		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1388				      ? e1000_rev_polarity_reversed
1389				      : e1000_rev_polarity_normal;
1390
1391	return ret_val;
1392}
1393
1394/**
1395 *  igb_check_polarity_igp - Checks the polarity.
1396 *  @hw: pointer to the HW structure
1397 *
1398 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1399 *
1400 *  Polarity is determined based on the PHY port status register, and the
1401 *  current speed (since there is no polarity at 100Mbps).
1402 **/
1403static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1404{
1405	struct e1000_phy_info *phy = &hw->phy;
1406	s32 ret_val;
1407	u16 data, offset, mask;
1408
1409	/*
1410	 * Polarity is determined based on the speed of
1411	 * our connection.
1412	 */
1413	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1414	if (ret_val)
1415		goto out;
1416
1417	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1418	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1419		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1420		mask	= IGP01E1000_PHY_POLARITY_MASK;
1421	} else {
1422		/*
1423		 * This really only applies to 10Mbps since
1424		 * there is no polarity for 100Mbps (always 0).
1425		 */
1426		offset	= IGP01E1000_PHY_PORT_STATUS;
1427		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1428	}
1429
1430	ret_val = phy->ops.read_reg(hw, offset, &data);
1431
1432	if (!ret_val)
1433		phy->cable_polarity = (data & mask)
1434				      ? e1000_rev_polarity_reversed
1435				      : e1000_rev_polarity_normal;
1436
1437out:
1438	return ret_val;
1439}
1440
1441/**
1442 *  igb_wait_autoneg - Wait for auto-neg compeletion
1443 *  @hw: pointer to the HW structure
1444 *
1445 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1446 *  limit to expire, which ever happens first.
1447 **/
1448static s32 igb_wait_autoneg(struct e1000_hw *hw)
1449{
1450	s32 ret_val = 0;
1451	u16 i, phy_status;
1452
1453	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1454	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1455		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1456		if (ret_val)
1457			break;
1458		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1459		if (ret_val)
1460			break;
1461		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1462			break;
1463		msleep(100);
1464	}
1465
1466	/*
1467	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1468	 * has completed.
1469	 */
1470	return ret_val;
1471}
1472
1473/**
1474 *  igb_phy_has_link - Polls PHY for link
1475 *  @hw: pointer to the HW structure
1476 *  @iterations: number of times to poll for link
1477 *  @usec_interval: delay between polling attempts
1478 *  @success: pointer to whether polling was successful or not
1479 *
1480 *  Polls the PHY status register for link, 'iterations' number of times.
1481 **/
1482s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1483			       u32 usec_interval, bool *success)
1484{
1485	s32 ret_val = 0;
1486	u16 i, phy_status;
1487
1488	for (i = 0; i < iterations; i++) {
1489		/*
1490		 * Some PHYs require the PHY_STATUS register to be read
1491		 * twice due to the link bit being sticky.  No harm doing
1492		 * it across the board.
1493		 */
1494		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1495		if (ret_val) {
1496			/*
1497			 * If the first read fails, another entity may have
1498			 * ownership of the resources, wait and try again to
1499			 * see if they have relinquished the resources yet.
1500			 */
1501			udelay(usec_interval);
1502		}
1503		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1504		if (ret_val)
1505			break;
1506		if (phy_status & MII_SR_LINK_STATUS)
1507			break;
1508		if (usec_interval >= 1000)
1509			mdelay(usec_interval/1000);
1510		else
1511			udelay(usec_interval);
1512	}
1513
1514	*success = (i < iterations) ? true : false;
1515
1516	return ret_val;
1517}
1518
1519/**
1520 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1521 *  @hw: pointer to the HW structure
1522 *
1523 *  Reads the PHY specific status register to retrieve the cable length
1524 *  information.  The cable length is determined by averaging the minimum and
1525 *  maximum values to get the "average" cable length.  The m88 PHY has four
1526 *  possible cable length values, which are:
1527 *	Register Value		Cable Length
1528 *	0			< 50 meters
1529 *	1			50 - 80 meters
1530 *	2			80 - 110 meters
1531 *	3			110 - 140 meters
1532 *	4			> 140 meters
1533 **/
1534s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1535{
1536	struct e1000_phy_info *phy = &hw->phy;
1537	s32 ret_val;
1538	u16 phy_data, index;
1539
1540	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1541	if (ret_val)
1542		goto out;
1543
1544	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1545		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1546	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1547		ret_val = -E1000_ERR_PHY;
1548		goto out;
1549	}
1550
1551	phy->min_cable_length = e1000_m88_cable_length_table[index];
1552	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1553
1554	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1555
1556out:
1557	return ret_val;
1558}
1559
1560/**
1561 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  The automatic gain control (agc) normalizes the amplitude of the
1565 *  received signal, adjusting for the attenuation produced by the
1566 *  cable.  By reading the AGC registers, which represent the
1567 *  combination of coarse and fine gain value, the value can be put
1568 *  into a lookup table to obtain the approximate cable length
1569 *  for each channel.
1570 **/
1571s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1572{
1573	struct e1000_phy_info *phy = &hw->phy;
1574	s32 ret_val = 0;
1575	u16 phy_data, i, agc_value = 0;
1576	u16 cur_agc_index, max_agc_index = 0;
1577	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1578	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1579							 {IGP02E1000_PHY_AGC_A,
1580							  IGP02E1000_PHY_AGC_B,
1581							  IGP02E1000_PHY_AGC_C,
1582							  IGP02E1000_PHY_AGC_D};
1583
1584	/* Read the AGC registers for all channels */
1585	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1586		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1587		if (ret_val)
1588			goto out;
1589
1590		/*
1591		 * Getting bits 15:9, which represent the combination of
1592		 * coarse and fine gain values.  The result is a number
1593		 * that can be put into the lookup table to obtain the
1594		 * approximate cable length.
1595		 */
1596		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1597				IGP02E1000_AGC_LENGTH_MASK;
1598
1599		/* Array index bound check. */
1600		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1601		    (cur_agc_index == 0)) {
1602			ret_val = -E1000_ERR_PHY;
1603			goto out;
1604		}
1605
1606		/* Remove min & max AGC values from calculation. */
1607		if (e1000_igp_2_cable_length_table[min_agc_index] >
1608		    e1000_igp_2_cable_length_table[cur_agc_index])
1609			min_agc_index = cur_agc_index;
1610		if (e1000_igp_2_cable_length_table[max_agc_index] <
1611		    e1000_igp_2_cable_length_table[cur_agc_index])
1612			max_agc_index = cur_agc_index;
1613
1614		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1615	}
1616
1617	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1618		      e1000_igp_2_cable_length_table[max_agc_index]);
1619	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1620
1621	/* Calculate cable length with the error range of +/- 10 meters. */
1622	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1623				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1624	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1625
1626	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1627
1628out:
1629	return ret_val;
1630}
1631
1632/**
1633 *  igb_get_phy_info_m88 - Retrieve PHY information
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Valid for only copper links.  Read the PHY status register (sticky read)
1637 *  to verify that link is up.  Read the PHY special control register to
1638 *  determine the polarity and 10base-T extended distance.  Read the PHY
1639 *  special status register to determine MDI/MDIx and current speed.  If
1640 *  speed is 1000, then determine cable length, local and remote receiver.
1641 **/
1642s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1643{
1644	struct e1000_phy_info *phy = &hw->phy;
1645	s32  ret_val;
1646	u16 phy_data;
1647	bool link;
1648
1649	if (phy->media_type != e1000_media_type_copper) {
1650		hw_dbg("Phy info is only valid for copper media\n");
1651		ret_val = -E1000_ERR_CONFIG;
1652		goto out;
1653	}
1654
1655	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1656	if (ret_val)
1657		goto out;
1658
1659	if (!link) {
1660		hw_dbg("Phy info is only valid if link is up\n");
1661		ret_val = -E1000_ERR_CONFIG;
1662		goto out;
1663	}
1664
1665	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1666	if (ret_val)
1667		goto out;
1668
1669	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1670				   ? true : false;
1671
1672	ret_val = igb_check_polarity_m88(hw);
1673	if (ret_val)
1674		goto out;
1675
1676	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1677	if (ret_val)
1678		goto out;
1679
1680	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1681
1682	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1683		ret_val = phy->ops.get_cable_length(hw);
1684		if (ret_val)
1685			goto out;
1686
1687		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1688		if (ret_val)
1689			goto out;
1690
1691		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1692				? e1000_1000t_rx_status_ok
1693				: e1000_1000t_rx_status_not_ok;
1694
1695		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1696				 ? e1000_1000t_rx_status_ok
1697				 : e1000_1000t_rx_status_not_ok;
1698	} else {
1699		/* Set values to "undefined" */
1700		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1701		phy->local_rx = e1000_1000t_rx_status_undefined;
1702		phy->remote_rx = e1000_1000t_rx_status_undefined;
1703	}
1704
1705out:
1706	return ret_val;
1707}
1708
1709/**
1710 *  igb_get_phy_info_igp - Retrieve igp PHY information
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Read PHY status to determine if link is up.  If link is up, then
1714 *  set/determine 10base-T extended distance and polarity correction.  Read
1715 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1716 *  determine on the cable length, local and remote receiver.
1717 **/
1718s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1719{
1720	struct e1000_phy_info *phy = &hw->phy;
1721	s32 ret_val;
1722	u16 data;
1723	bool link;
1724
1725	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1726	if (ret_val)
1727		goto out;
1728
1729	if (!link) {
1730		hw_dbg("Phy info is only valid if link is up\n");
1731		ret_val = -E1000_ERR_CONFIG;
1732		goto out;
1733	}
1734
1735	phy->polarity_correction = true;
1736
1737	ret_val = igb_check_polarity_igp(hw);
1738	if (ret_val)
1739		goto out;
1740
1741	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1742	if (ret_val)
1743		goto out;
1744
1745	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1746
1747	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1748	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1749		ret_val = phy->ops.get_cable_length(hw);
1750		if (ret_val)
1751			goto out;
1752
1753		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1754		if (ret_val)
1755			goto out;
1756
1757		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1758				? e1000_1000t_rx_status_ok
1759				: e1000_1000t_rx_status_not_ok;
1760
1761		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1762				 ? e1000_1000t_rx_status_ok
1763				 : e1000_1000t_rx_status_not_ok;
1764	} else {
1765		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1766		phy->local_rx = e1000_1000t_rx_status_undefined;
1767		phy->remote_rx = e1000_1000t_rx_status_undefined;
1768	}
1769
1770out:
1771	return ret_val;
1772}
1773
1774/**
1775 *  igb_phy_sw_reset - PHY software reset
1776 *  @hw: pointer to the HW structure
1777 *
1778 *  Does a software reset of the PHY by reading the PHY control register and
1779 *  setting/write the control register reset bit to the PHY.
1780 **/
1781s32 igb_phy_sw_reset(struct e1000_hw *hw)
1782{
1783	s32 ret_val = 0;
1784	u16 phy_ctrl;
1785
1786	if (!(hw->phy.ops.read_reg))
1787		goto out;
1788
1789	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1790	if (ret_val)
1791		goto out;
1792
1793	phy_ctrl |= MII_CR_RESET;
1794	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1795	if (ret_val)
1796		goto out;
1797
1798	udelay(1);
1799
1800out:
1801	return ret_val;
1802}
1803
1804/**
1805 *  igb_phy_hw_reset - PHY hardware reset
1806 *  @hw: pointer to the HW structure
1807 *
1808 *  Verify the reset block is not blocking us from resetting.  Acquire
1809 *  semaphore (if necessary) and read/set/write the device control reset
1810 *  bit in the PHY.  Wait the appropriate delay time for the device to
1811 *  reset and relase the semaphore (if necessary).
1812 **/
1813s32 igb_phy_hw_reset(struct e1000_hw *hw)
1814{
1815	struct e1000_phy_info *phy = &hw->phy;
1816	s32  ret_val;
1817	u32 ctrl;
1818
1819	ret_val = igb_check_reset_block(hw);
1820	if (ret_val) {
1821		ret_val = 0;
1822		goto out;
1823	}
1824
1825	ret_val = phy->ops.acquire(hw);
1826	if (ret_val)
1827		goto out;
1828
1829	ctrl = rd32(E1000_CTRL);
1830	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
1831	wrfl();
1832
1833	udelay(phy->reset_delay_us);
1834
1835	wr32(E1000_CTRL, ctrl);
1836	wrfl();
1837
1838	udelay(150);
1839
1840	phy->ops.release(hw);
1841
1842	ret_val = phy->ops.get_cfg_done(hw);
1843
1844out:
1845	return ret_val;
1846}
1847
1848/**
1849 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
1850 *  @hw: pointer to the HW structure
1851 *
1852 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1853 **/
1854s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
1855{
1856	hw_dbg("Running IGP 3 PHY init script\n");
1857
1858	/* PHY init IGP 3 */
1859	/* Enable rise/fall, 10-mode work in class-A */
1860	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
1861	/* Remove all caps from Replica path filter */
1862	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
1863	/* Bias trimming for ADC, AFE and Driver (Default) */
1864	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
1865	/* Increase Hybrid poly bias */
1866	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
1867	/* Add 4% to TX amplitude in Giga mode */
1868	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
1869	/* Disable trimming (TTT) */
1870	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
1871	/* Poly DC correction to 94.6% + 2% for all channels */
1872	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
1873	/* ABS DC correction to 95.9% */
1874	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
1875	/* BG temp curve trim */
1876	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
1877	/* Increasing ADC OPAMP stage 1 currents to max */
1878	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
1879	/* Force 1000 ( required for enabling PHY regs configuration) */
1880	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
1881	/* Set upd_freq to 6 */
1882	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
1883	/* Disable NPDFE */
1884	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
1885	/* Disable adaptive fixed FFE (Default) */
1886	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
1887	/* Enable FFE hysteresis */
1888	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
1889	/* Fixed FFE for short cable lengths */
1890	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
1891	/* Fixed FFE for medium cable lengths */
1892	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
1893	/* Fixed FFE for long cable lengths */
1894	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
1895	/* Enable Adaptive Clip Threshold */
1896	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
1897	/* AHT reset limit to 1 */
1898	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
1899	/* Set AHT master delay to 127 msec */
1900	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
1901	/* Set scan bits for AHT */
1902	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
1903	/* Set AHT Preset bits */
1904	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
1905	/* Change integ_factor of channel A to 3 */
1906	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
1907	/* Change prop_factor of channels BCD to 8 */
1908	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
1909	/* Change cg_icount + enable integbp for channels BCD */
1910	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
1911	/*
1912	 * Change cg_icount + enable integbp + change prop_factor_master
1913	 * to 8 for channel A
1914	 */
1915	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
1916	/* Disable AHT in Slave mode on channel A */
1917	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
1918	/*
1919	 * Enable LPLU and disable AN to 1000 in non-D0a states,
1920	 * Enable SPD+B2B
1921	 */
1922	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
1923	/* Enable restart AN on an1000_dis change */
1924	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
1925	/* Enable wh_fifo read clock in 10/100 modes */
1926	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
1927	/* Restart AN, Speed selection is 1000 */
1928	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
1929
1930	return 0;
1931}
1932
1933/**
1934 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
1935 * @hw: pointer to the HW structure
1936 *
1937 * In the case of a PHY power down to save power, or to turn off link during a
1938 * driver unload, restore the link to previous settings.
1939 **/
1940void igb_power_up_phy_copper(struct e1000_hw *hw)
1941{
1942	u16 mii_reg = 0;
1943
1944	/* The PHY will retain its settings across a power down/up cycle */
1945	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
1946	mii_reg &= ~MII_CR_POWER_DOWN;
1947	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
1948}
1949
1950/**
1951 * igb_power_down_phy_copper - Power down copper PHY
1952 * @hw: pointer to the HW structure
1953 *
1954 * Power down PHY to save power when interface is down and wake on lan
1955 * is not enabled.
1956 **/
1957void igb_power_down_phy_copper(struct e1000_hw *hw)
1958{
1959	u16 mii_reg = 0;
1960
1961	/* The PHY will retain its settings across a power down/up cycle */
1962	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
1963	mii_reg |= MII_CR_POWER_DOWN;
1964	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
1965	msleep(1);
1966}
1967
1968/**
1969 *  igb_check_polarity_82580 - Checks the polarity.
1970 *  @hw: pointer to the HW structure
1971 *
1972 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1973 *
1974 *  Polarity is determined based on the PHY specific status register.
1975 **/
1976static s32 igb_check_polarity_82580(struct e1000_hw *hw)
1977{
1978	struct e1000_phy_info *phy = &hw->phy;
1979	s32 ret_val;
1980	u16 data;
1981
1982
1983	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
1984
1985	if (!ret_val)
1986		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
1987		                      ? e1000_rev_polarity_reversed
1988		                      : e1000_rev_polarity_normal;
1989
1990	return ret_val;
1991}
1992
1993/**
1994 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
1995 *  @hw: pointer to the HW structure
1996 *
1997 *  Calls the PHY setup function to force speed and duplex.  Clears the
1998 *  auto-crossover to force MDI manually.  Waits for link and returns
1999 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2000 **/
2001s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2002{
2003	struct e1000_phy_info *phy = &hw->phy;
2004	s32 ret_val;
2005	u16 phy_data;
2006	bool link;
2007
2008
2009	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2010	if (ret_val)
2011		goto out;
2012
2013	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2014
2015	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2016	if (ret_val)
2017		goto out;
2018
2019	/*
2020	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2021	 * forced whenever speed and duplex are forced.
2022	 */
2023	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2024	if (ret_val)
2025		goto out;
2026
2027	phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2028	phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2029
2030	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2031	if (ret_val)
2032		goto out;
2033
2034	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2035
2036	udelay(1);
2037
2038	if (phy->autoneg_wait_to_complete) {
2039		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2040
2041		ret_val = igb_phy_has_link(hw,
2042		                           PHY_FORCE_LIMIT,
2043		                           100000,
2044		                           &link);
2045		if (ret_val)
2046			goto out;
2047
2048		if (!link)
2049			hw_dbg("Link taking longer than expected.\n");
2050
2051		/* Try once more */
2052		ret_val = igb_phy_has_link(hw,
2053		                           PHY_FORCE_LIMIT,
2054		                           100000,
2055		                           &link);
2056		if (ret_val)
2057			goto out;
2058	}
2059
2060out:
2061	return ret_val;
2062}
2063
2064/**
2065 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2066 *  @hw: pointer to the HW structure
2067 *
2068 *  Read PHY status to determine if link is up.  If link is up, then
2069 *  set/determine 10base-T extended distance and polarity correction.  Read
2070 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2071 *  determine on the cable length, local and remote receiver.
2072 **/
2073s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2074{
2075	struct e1000_phy_info *phy = &hw->phy;
2076	s32 ret_val;
2077	u16 data;
2078	bool link;
2079
2080
2081	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2082	if (ret_val)
2083		goto out;
2084
2085	if (!link) {
2086		hw_dbg("Phy info is only valid if link is up\n");
2087		ret_val = -E1000_ERR_CONFIG;
2088		goto out;
2089	}
2090
2091	phy->polarity_correction = true;
2092
2093	ret_val = igb_check_polarity_82580(hw);
2094	if (ret_val)
2095		goto out;
2096
2097	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2098	if (ret_val)
2099		goto out;
2100
2101	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2102
2103	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2104	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2105		ret_val = hw->phy.ops.get_cable_length(hw);
2106		if (ret_val)
2107			goto out;
2108
2109		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2110		if (ret_val)
2111			goto out;
2112
2113		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2114		                ? e1000_1000t_rx_status_ok
2115		                : e1000_1000t_rx_status_not_ok;
2116
2117		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2118		                 ? e1000_1000t_rx_status_ok
2119		                 : e1000_1000t_rx_status_not_ok;
2120	} else {
2121		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2122		phy->local_rx = e1000_1000t_rx_status_undefined;
2123		phy->remote_rx = e1000_1000t_rx_status_undefined;
2124	}
2125
2126out:
2127	return ret_val;
2128}
2129
2130/**
2131 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2132 *  @hw: pointer to the HW structure
2133 *
2134 * Reads the diagnostic status register and verifies result is valid before
2135 * placing it in the phy_cable_length field.
2136 **/
2137s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2138{
2139	struct e1000_phy_info *phy = &hw->phy;
2140	s32 ret_val;
2141	u16 phy_data, length;
2142
2143
2144	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2145	if (ret_val)
2146		goto out;
2147
2148	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2149	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2150
2151	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2152		ret_val = -E1000_ERR_PHY;
2153
2154	phy->cable_length = length;
2155
2156out:
2157	return ret_val;
2158}
2159