• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/igb/
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2009 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39
40/**
41 *  igb_get_bus_info_pcie - Get PCIe bus information
42 *  @hw: pointer to the HW structure
43 *
44 *  Determines and stores the system bus information for a particular
45 *  network interface.  The following bus information is determined and stored:
46 *  bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49{
50	struct e1000_bus_info *bus = &hw->bus;
51	s32 ret_val;
52	u32 reg;
53	u16 pcie_link_status;
54
55	bus->type = e1000_bus_type_pci_express;
56
57	ret_val = igb_read_pcie_cap_reg(hw,
58					PCI_EXP_LNKSTA,
59					&pcie_link_status);
60	if (ret_val) {
61		bus->width = e1000_bus_width_unknown;
62		bus->speed = e1000_bus_speed_unknown;
63	} else {
64		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
65		case PCI_EXP_LNKSTA_CLS_2_5GB:
66			bus->speed = e1000_bus_speed_2500;
67			break;
68		case PCI_EXP_LNKSTA_CLS_5_0GB:
69			bus->speed = e1000_bus_speed_5000;
70			break;
71		default:
72			bus->speed = e1000_bus_speed_unknown;
73			break;
74		}
75
76		bus->width = (enum e1000_bus_width)((pcie_link_status &
77						     PCI_EXP_LNKSTA_NLW) >>
78						     PCI_EXP_LNKSTA_NLW_SHIFT);
79	}
80
81	reg = rd32(E1000_STATUS);
82	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
83
84	return 0;
85}
86
87/**
88 *  igb_clear_vfta - Clear VLAN filter table
89 *  @hw: pointer to the HW structure
90 *
91 *  Clears the register array which contains the VLAN filter table by
92 *  setting all the values to 0.
93 **/
94void igb_clear_vfta(struct e1000_hw *hw)
95{
96	u32 offset;
97
98	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
99		array_wr32(E1000_VFTA, offset, 0);
100		wrfl();
101	}
102}
103
104/**
105 *  igb_write_vfta - Write value to VLAN filter table
106 *  @hw: pointer to the HW structure
107 *  @offset: register offset in VLAN filter table
108 *  @value: register value written to VLAN filter table
109 *
110 *  Writes value at the given offset in the register array which stores
111 *  the VLAN filter table.
112 **/
113static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
114{
115	array_wr32(E1000_VFTA, offset, value);
116	wrfl();
117}
118
119/**
120 *  igb_init_rx_addrs - Initialize receive address's
121 *  @hw: pointer to the HW structure
122 *  @rar_count: receive address registers
123 *
124 *  Setups the receive address registers by setting the base receive address
125 *  register to the devices MAC address and clearing all the other receive
126 *  address registers to 0.
127 **/
128void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
129{
130	u32 i;
131	u8 mac_addr[ETH_ALEN] = {0};
132
133	/* Setup the receive address */
134	hw_dbg("Programming MAC Address into RAR[0]\n");
135
136	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
137
138	/* Zero out the other (rar_entry_count - 1) receive addresses */
139	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
140	for (i = 1; i < rar_count; i++)
141		hw->mac.ops.rar_set(hw, mac_addr, i);
142}
143
144/**
145 *  igb_vfta_set - enable or disable vlan in VLAN filter table
146 *  @hw: pointer to the HW structure
147 *  @vid: VLAN id to add or remove
148 *  @add: if true add filter, if false remove
149 *
150 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
151 *  and if we are adding or removing the filter
152 **/
153s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
154{
155	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
156	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
157	u32 vfta = array_rd32(E1000_VFTA, index);
158	s32 ret_val = 0;
159
160	/* bit was set/cleared before we started */
161	if ((!!(vfta & mask)) == add) {
162		ret_val = -E1000_ERR_CONFIG;
163	} else {
164		if (add)
165			vfta |= mask;
166		else
167			vfta &= ~mask;
168	}
169
170	igb_write_vfta(hw, index, vfta);
171
172	return ret_val;
173}
174
175/**
176 *  igb_check_alt_mac_addr - Check for alternate MAC addr
177 *  @hw: pointer to the HW structure
178 *
179 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
180 *  can be setup by pre-boot software and must be treated like a permanent
181 *  address and must override the actual permanent MAC address.  If an
182 *  alternate MAC address is fopund it is saved in the hw struct and
183 *  prgrammed into RAR0 and the cuntion returns success, otherwise the
184 *  fucntion returns an error.
185 **/
186s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
187{
188	u32 i;
189	s32 ret_val = 0;
190	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
191	u8 alt_mac_addr[ETH_ALEN];
192
193	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
194				 &nvm_alt_mac_addr_offset);
195	if (ret_val) {
196		hw_dbg("NVM Read Error\n");
197		goto out;
198	}
199
200	if (nvm_alt_mac_addr_offset == 0xFFFF) {
201		/* There is no Alternate MAC Address */
202		goto out;
203	}
204
205	if (hw->bus.func == E1000_FUNC_1)
206		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
207	for (i = 0; i < ETH_ALEN; i += 2) {
208		offset = nvm_alt_mac_addr_offset + (i >> 1);
209		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
210		if (ret_val) {
211			hw_dbg("NVM Read Error\n");
212			goto out;
213		}
214
215		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
216		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
217	}
218
219	/* if multicast bit is set, the alternate address will not be used */
220	if (alt_mac_addr[0] & 0x01) {
221		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
222		goto out;
223	}
224
225	/*
226	 * We have a valid alternate MAC address, and we want to treat it the
227	 * same as the normal permanent MAC address stored by the HW into the
228	 * RAR. Do this by mapping this address into RAR0.
229	 */
230	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
231
232out:
233	return ret_val;
234}
235
236/**
237 *  igb_rar_set - Set receive address register
238 *  @hw: pointer to the HW structure
239 *  @addr: pointer to the receive address
240 *  @index: receive address array register
241 *
242 *  Sets the receive address array register at index to the address passed
243 *  in by addr.
244 **/
245void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
246{
247	u32 rar_low, rar_high;
248
249	/*
250	 * HW expects these in little endian so we reverse the byte order
251	 * from network order (big endian) to little endian
252	 */
253	rar_low = ((u32) addr[0] |
254		   ((u32) addr[1] << 8) |
255		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
256
257	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
258
259	/* If MAC address zero, no need to set the AV bit */
260	if (rar_low || rar_high)
261		rar_high |= E1000_RAH_AV;
262
263	/*
264	 * Some bridges will combine consecutive 32-bit writes into
265	 * a single burst write, which will malfunction on some parts.
266	 * The flushes avoid this.
267	 */
268	wr32(E1000_RAL(index), rar_low);
269	wrfl();
270	wr32(E1000_RAH(index), rar_high);
271	wrfl();
272}
273
274/**
275 *  igb_mta_set - Set multicast filter table address
276 *  @hw: pointer to the HW structure
277 *  @hash_value: determines the MTA register and bit to set
278 *
279 *  The multicast table address is a register array of 32-bit registers.
280 *  The hash_value is used to determine what register the bit is in, the
281 *  current value is read, the new bit is OR'd in and the new value is
282 *  written back into the register.
283 **/
284void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
285{
286	u32 hash_bit, hash_reg, mta;
287
288	/*
289	 * The MTA is a register array of 32-bit registers. It is
290	 * treated like an array of (32*mta_reg_count) bits.  We want to
291	 * set bit BitArray[hash_value]. So we figure out what register
292	 * the bit is in, read it, OR in the new bit, then write
293	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
294	 * mask to bits 31:5 of the hash value which gives us the
295	 * register we're modifying.  The hash bit within that register
296	 * is determined by the lower 5 bits of the hash value.
297	 */
298	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
299	hash_bit = hash_value & 0x1F;
300
301	mta = array_rd32(E1000_MTA, hash_reg);
302
303	mta |= (1 << hash_bit);
304
305	array_wr32(E1000_MTA, hash_reg, mta);
306	wrfl();
307}
308
309/**
310 *  igb_hash_mc_addr - Generate a multicast hash value
311 *  @hw: pointer to the HW structure
312 *  @mc_addr: pointer to a multicast address
313 *
314 *  Generates a multicast address hash value which is used to determine
315 *  the multicast filter table array address and new table value.  See
316 *  igb_mta_set()
317 **/
318static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
319{
320	u32 hash_value, hash_mask;
321	u8 bit_shift = 0;
322
323	/* Register count multiplied by bits per register */
324	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
325
326	/*
327	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
328	 * where 0xFF would still fall within the hash mask.
329	 */
330	while (hash_mask >> bit_shift != 0xFF)
331		bit_shift++;
332
333	/*
334	 * The portion of the address that is used for the hash table
335	 * is determined by the mc_filter_type setting.
336	 * The algorithm is such that there is a total of 8 bits of shifting.
337	 * The bit_shift for a mc_filter_type of 0 represents the number of
338	 * left-shifts where the MSB of mc_addr[5] would still fall within
339	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
340	 * of 8 bits of shifting, then mc_addr[4] will shift right the
341	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
342	 * cases are a variation of this algorithm...essentially raising the
343	 * number of bits to shift mc_addr[5] left, while still keeping the
344	 * 8-bit shifting total.
345	 *
346	 * For example, given the following Destination MAC Address and an
347	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
348	 * we can see that the bit_shift for case 0 is 4.  These are the hash
349	 * values resulting from each mc_filter_type...
350	 * [0] [1] [2] [3] [4] [5]
351	 * 01  AA  00  12  34  56
352	 * LSB                 MSB
353	 *
354	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
355	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
356	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
357	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
358	 */
359	switch (hw->mac.mc_filter_type) {
360	default:
361	case 0:
362		break;
363	case 1:
364		bit_shift += 1;
365		break;
366	case 2:
367		bit_shift += 2;
368		break;
369	case 3:
370		bit_shift += 4;
371		break;
372	}
373
374	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
375				  (((u16) mc_addr[5]) << bit_shift)));
376
377	return hash_value;
378}
379
380/**
381 *  igb_update_mc_addr_list - Update Multicast addresses
382 *  @hw: pointer to the HW structure
383 *  @mc_addr_list: array of multicast addresses to program
384 *  @mc_addr_count: number of multicast addresses to program
385 *
386 *  Updates entire Multicast Table Array.
387 *  The caller must have a packed mc_addr_list of multicast addresses.
388 **/
389void igb_update_mc_addr_list(struct e1000_hw *hw,
390                             u8 *mc_addr_list, u32 mc_addr_count)
391{
392	u32 hash_value, hash_bit, hash_reg;
393	int i;
394
395	/* clear mta_shadow */
396	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
397
398	/* update mta_shadow from mc_addr_list */
399	for (i = 0; (u32) i < mc_addr_count; i++) {
400		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
401
402		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
403		hash_bit = hash_value & 0x1F;
404
405		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
406		mc_addr_list += (ETH_ALEN);
407	}
408
409	/* replace the entire MTA table */
410	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
411		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
412	wrfl();
413}
414
415/**
416 *  igb_clear_hw_cntrs_base - Clear base hardware counters
417 *  @hw: pointer to the HW structure
418 *
419 *  Clears the base hardware counters by reading the counter registers.
420 **/
421void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
422{
423	rd32(E1000_CRCERRS);
424	rd32(E1000_SYMERRS);
425	rd32(E1000_MPC);
426	rd32(E1000_SCC);
427	rd32(E1000_ECOL);
428	rd32(E1000_MCC);
429	rd32(E1000_LATECOL);
430	rd32(E1000_COLC);
431	rd32(E1000_DC);
432	rd32(E1000_SEC);
433	rd32(E1000_RLEC);
434	rd32(E1000_XONRXC);
435	rd32(E1000_XONTXC);
436	rd32(E1000_XOFFRXC);
437	rd32(E1000_XOFFTXC);
438	rd32(E1000_FCRUC);
439	rd32(E1000_GPRC);
440	rd32(E1000_BPRC);
441	rd32(E1000_MPRC);
442	rd32(E1000_GPTC);
443	rd32(E1000_GORCL);
444	rd32(E1000_GORCH);
445	rd32(E1000_GOTCL);
446	rd32(E1000_GOTCH);
447	rd32(E1000_RNBC);
448	rd32(E1000_RUC);
449	rd32(E1000_RFC);
450	rd32(E1000_ROC);
451	rd32(E1000_RJC);
452	rd32(E1000_TORL);
453	rd32(E1000_TORH);
454	rd32(E1000_TOTL);
455	rd32(E1000_TOTH);
456	rd32(E1000_TPR);
457	rd32(E1000_TPT);
458	rd32(E1000_MPTC);
459	rd32(E1000_BPTC);
460}
461
462/**
463 *  igb_check_for_copper_link - Check for link (Copper)
464 *  @hw: pointer to the HW structure
465 *
466 *  Checks to see of the link status of the hardware has changed.  If a
467 *  change in link status has been detected, then we read the PHY registers
468 *  to get the current speed/duplex if link exists.
469 **/
470s32 igb_check_for_copper_link(struct e1000_hw *hw)
471{
472	struct e1000_mac_info *mac = &hw->mac;
473	s32 ret_val;
474	bool link;
475
476	/*
477	 * We only want to go out to the PHY registers to see if Auto-Neg
478	 * has completed and/or if our link status has changed.  The
479	 * get_link_status flag is set upon receiving a Link Status
480	 * Change or Rx Sequence Error interrupt.
481	 */
482	if (!mac->get_link_status) {
483		ret_val = 0;
484		goto out;
485	}
486
487	/*
488	 * First we want to see if the MII Status Register reports
489	 * link.  If so, then we want to get the current speed/duplex
490	 * of the PHY.
491	 */
492	ret_val = igb_phy_has_link(hw, 1, 0, &link);
493	if (ret_val)
494		goto out;
495
496	if (!link)
497		goto out; /* No link detected */
498
499	mac->get_link_status = false;
500
501	/*
502	 * Check if there was DownShift, must be checked
503	 * immediately after link-up
504	 */
505	igb_check_downshift(hw);
506
507	/*
508	 * If we are forcing speed/duplex, then we simply return since
509	 * we have already determined whether we have link or not.
510	 */
511	if (!mac->autoneg) {
512		ret_val = -E1000_ERR_CONFIG;
513		goto out;
514	}
515
516	/*
517	 * Auto-Neg is enabled.  Auto Speed Detection takes care
518	 * of MAC speed/duplex configuration.  So we only need to
519	 * configure Collision Distance in the MAC.
520	 */
521	igb_config_collision_dist(hw);
522
523	/*
524	 * Configure Flow Control now that Auto-Neg has completed.
525	 * First, we need to restore the desired flow control
526	 * settings because we may have had to re-autoneg with a
527	 * different link partner.
528	 */
529	ret_val = igb_config_fc_after_link_up(hw);
530	if (ret_val)
531		hw_dbg("Error configuring flow control\n");
532
533out:
534	return ret_val;
535}
536
537/**
538 *  igb_setup_link - Setup flow control and link settings
539 *  @hw: pointer to the HW structure
540 *
541 *  Determines which flow control settings to use, then configures flow
542 *  control.  Calls the appropriate media-specific link configuration
543 *  function.  Assuming the adapter has a valid link partner, a valid link
544 *  should be established.  Assumes the hardware has previously been reset
545 *  and the transmitter and receiver are not enabled.
546 **/
547s32 igb_setup_link(struct e1000_hw *hw)
548{
549	s32 ret_val = 0;
550
551	/*
552	 * In the case of the phy reset being blocked, we already have a link.
553	 * We do not need to set it up again.
554	 */
555	if (igb_check_reset_block(hw))
556		goto out;
557
558	/*
559	 * If requested flow control is set to default, set flow control
560	 * based on the EEPROM flow control settings.
561	 */
562	if (hw->fc.requested_mode == e1000_fc_default) {
563		ret_val = igb_set_default_fc(hw);
564		if (ret_val)
565			goto out;
566	}
567
568	/*
569	 * We want to save off the original Flow Control configuration just
570	 * in case we get disconnected and then reconnected into a different
571	 * hub or switch with different Flow Control capabilities.
572	 */
573	hw->fc.current_mode = hw->fc.requested_mode;
574
575	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
576
577	/* Call the necessary media_type subroutine to configure the link. */
578	ret_val = hw->mac.ops.setup_physical_interface(hw);
579	if (ret_val)
580		goto out;
581
582	/*
583	 * Initialize the flow control address, type, and PAUSE timer
584	 * registers to their default values.  This is done even if flow
585	 * control is disabled, because it does not hurt anything to
586	 * initialize these registers.
587	 */
588	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
589	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
590	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
591	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
592
593	wr32(E1000_FCTTV, hw->fc.pause_time);
594
595	ret_val = igb_set_fc_watermarks(hw);
596
597out:
598	return ret_val;
599}
600
601/**
602 *  igb_config_collision_dist - Configure collision distance
603 *  @hw: pointer to the HW structure
604 *
605 *  Configures the collision distance to the default value and is used
606 *  during link setup. Currently no func pointer exists and all
607 *  implementations are handled in the generic version of this function.
608 **/
609void igb_config_collision_dist(struct e1000_hw *hw)
610{
611	u32 tctl;
612
613	tctl = rd32(E1000_TCTL);
614
615	tctl &= ~E1000_TCTL_COLD;
616	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
617
618	wr32(E1000_TCTL, tctl);
619	wrfl();
620}
621
622/**
623 *  igb_set_fc_watermarks - Set flow control high/low watermarks
624 *  @hw: pointer to the HW structure
625 *
626 *  Sets the flow control high/low threshold (watermark) registers.  If
627 *  flow control XON frame transmission is enabled, then set XON frame
628 *  tansmission as well.
629 **/
630static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
631{
632	s32 ret_val = 0;
633	u32 fcrtl = 0, fcrth = 0;
634
635	/*
636	 * Set the flow control receive threshold registers.  Normally,
637	 * these registers will be set to a default threshold that may be
638	 * adjusted later by the driver's runtime code.  However, if the
639	 * ability to transmit pause frames is not enabled, then these
640	 * registers will be set to 0.
641	 */
642	if (hw->fc.current_mode & e1000_fc_tx_pause) {
643		/*
644		 * We need to set up the Receive Threshold high and low water
645		 * marks as well as (optionally) enabling the transmission of
646		 * XON frames.
647		 */
648		fcrtl = hw->fc.low_water;
649		if (hw->fc.send_xon)
650			fcrtl |= E1000_FCRTL_XONE;
651
652		fcrth = hw->fc.high_water;
653	}
654	wr32(E1000_FCRTL, fcrtl);
655	wr32(E1000_FCRTH, fcrth);
656
657	return ret_val;
658}
659
660/**
661 *  igb_set_default_fc - Set flow control default values
662 *  @hw: pointer to the HW structure
663 *
664 *  Read the EEPROM for the default values for flow control and store the
665 *  values.
666 **/
667static s32 igb_set_default_fc(struct e1000_hw *hw)
668{
669	s32 ret_val = 0;
670	u16 nvm_data;
671
672	/*
673	 * Read and store word 0x0F of the EEPROM. This word contains bits
674	 * that determine the hardware's default PAUSE (flow control) mode,
675	 * a bit that determines whether the HW defaults to enabling or
676	 * disabling auto-negotiation, and the direction of the
677	 * SW defined pins. If there is no SW over-ride of the flow
678	 * control setting, then the variable hw->fc will
679	 * be initialized based on a value in the EEPROM.
680	 */
681	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
682
683	if (ret_val) {
684		hw_dbg("NVM Read Error\n");
685		goto out;
686	}
687
688	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
689		hw->fc.requested_mode = e1000_fc_none;
690	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
691		 NVM_WORD0F_ASM_DIR)
692		hw->fc.requested_mode = e1000_fc_tx_pause;
693	else
694		hw->fc.requested_mode = e1000_fc_full;
695
696out:
697	return ret_val;
698}
699
700/**
701 *  igb_force_mac_fc - Force the MAC's flow control settings
702 *  @hw: pointer to the HW structure
703 *
704 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
705 *  device control register to reflect the adapter settings.  TFCE and RFCE
706 *  need to be explicitly set by software when a copper PHY is used because
707 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
708 *  also configure these bits when link is forced on a fiber connection.
709 **/
710s32 igb_force_mac_fc(struct e1000_hw *hw)
711{
712	u32 ctrl;
713	s32 ret_val = 0;
714
715	ctrl = rd32(E1000_CTRL);
716
717	/*
718	 * Because we didn't get link via the internal auto-negotiation
719	 * mechanism (we either forced link or we got link via PHY
720	 * auto-neg), we have to manually enable/disable transmit an
721	 * receive flow control.
722	 *
723	 * The "Case" statement below enables/disable flow control
724	 * according to the "hw->fc.current_mode" parameter.
725	 *
726	 * The possible values of the "fc" parameter are:
727	 *      0:  Flow control is completely disabled
728	 *      1:  Rx flow control is enabled (we can receive pause
729	 *          frames but not send pause frames).
730	 *      2:  Tx flow control is enabled (we can send pause frames
731	 *          frames but we do not receive pause frames).
732	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
733	 *  other:  No other values should be possible at this point.
734	 */
735	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
736
737	switch (hw->fc.current_mode) {
738	case e1000_fc_none:
739		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
740		break;
741	case e1000_fc_rx_pause:
742		ctrl &= (~E1000_CTRL_TFCE);
743		ctrl |= E1000_CTRL_RFCE;
744		break;
745	case e1000_fc_tx_pause:
746		ctrl &= (~E1000_CTRL_RFCE);
747		ctrl |= E1000_CTRL_TFCE;
748		break;
749	case e1000_fc_full:
750		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
751		break;
752	default:
753		hw_dbg("Flow control param set incorrectly\n");
754		ret_val = -E1000_ERR_CONFIG;
755		goto out;
756	}
757
758	wr32(E1000_CTRL, ctrl);
759
760out:
761	return ret_val;
762}
763
764/**
765 *  igb_config_fc_after_link_up - Configures flow control after link
766 *  @hw: pointer to the HW structure
767 *
768 *  Checks the status of auto-negotiation after link up to ensure that the
769 *  speed and duplex were not forced.  If the link needed to be forced, then
770 *  flow control needs to be forced also.  If auto-negotiation is enabled
771 *  and did not fail, then we configure flow control based on our link
772 *  partner.
773 **/
774s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
775{
776	struct e1000_mac_info *mac = &hw->mac;
777	s32 ret_val = 0;
778	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
779	u16 speed, duplex;
780
781	/*
782	 * Check for the case where we have fiber media and auto-neg failed
783	 * so we had to force link.  In this case, we need to force the
784	 * configuration of the MAC to match the "fc" parameter.
785	 */
786	if (mac->autoneg_failed) {
787		if (hw->phy.media_type == e1000_media_type_internal_serdes)
788			ret_val = igb_force_mac_fc(hw);
789	} else {
790		if (hw->phy.media_type == e1000_media_type_copper)
791			ret_val = igb_force_mac_fc(hw);
792	}
793
794	if (ret_val) {
795		hw_dbg("Error forcing flow control settings\n");
796		goto out;
797	}
798
799	/*
800	 * Check for the case where we have copper media and auto-neg is
801	 * enabled.  In this case, we need to check and see if Auto-Neg
802	 * has completed, and if so, how the PHY and link partner has
803	 * flow control configured.
804	 */
805	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
806		/*
807		 * Read the MII Status Register and check to see if AutoNeg
808		 * has completed.  We read this twice because this reg has
809		 * some "sticky" (latched) bits.
810		 */
811		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
812						   &mii_status_reg);
813		if (ret_val)
814			goto out;
815		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
816						   &mii_status_reg);
817		if (ret_val)
818			goto out;
819
820		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
821			hw_dbg("Copper PHY and Auto Neg "
822				 "has not completed.\n");
823			goto out;
824		}
825
826		/*
827		 * The AutoNeg process has completed, so we now need to
828		 * read both the Auto Negotiation Advertisement
829		 * Register (Address 4) and the Auto_Negotiation Base
830		 * Page Ability Register (Address 5) to determine how
831		 * flow control was negotiated.
832		 */
833		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
834					    &mii_nway_adv_reg);
835		if (ret_val)
836			goto out;
837		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
838					    &mii_nway_lp_ability_reg);
839		if (ret_val)
840			goto out;
841
842		/*
843		 * Two bits in the Auto Negotiation Advertisement Register
844		 * (Address 4) and two bits in the Auto Negotiation Base
845		 * Page Ability Register (Address 5) determine flow control
846		 * for both the PHY and the link partner.  The following
847		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
848		 * 1999, describes these PAUSE resolution bits and how flow
849		 * control is determined based upon these settings.
850		 * NOTE:  DC = Don't Care
851		 *
852		 *   LOCAL DEVICE  |   LINK PARTNER
853		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
854		 *-------|---------|-------|---------|--------------------
855		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
856		 *   0   |    1    |   0   |   DC    | e1000_fc_none
857		 *   0   |    1    |   1   |    0    | e1000_fc_none
858		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
859		 *   1   |    0    |   0   |   DC    | e1000_fc_none
860		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
861		 *   1   |    1    |   0   |    0    | e1000_fc_none
862		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
863		 *
864		 * Are both PAUSE bits set to 1?  If so, this implies
865		 * Symmetric Flow Control is enabled at both ends.  The
866		 * ASM_DIR bits are irrelevant per the spec.
867		 *
868		 * For Symmetric Flow Control:
869		 *
870		 *   LOCAL DEVICE  |   LINK PARTNER
871		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
872		 *-------|---------|-------|---------|--------------------
873		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
874		 *
875		 */
876		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
877		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
878			/*
879			 * Now we need to check if the user selected RX ONLY
880			 * of pause frames.  In this case, we had to advertise
881			 * FULL flow control because we could not advertise RX
882			 * ONLY. Hence, we must now check to see if we need to
883			 * turn OFF  the TRANSMISSION of PAUSE frames.
884			 */
885			if (hw->fc.requested_mode == e1000_fc_full) {
886				hw->fc.current_mode = e1000_fc_full;
887				hw_dbg("Flow Control = FULL.\r\n");
888			} else {
889				hw->fc.current_mode = e1000_fc_rx_pause;
890				hw_dbg("Flow Control = "
891				       "RX PAUSE frames only.\r\n");
892			}
893		}
894		/*
895		 * For receiving PAUSE frames ONLY.
896		 *
897		 *   LOCAL DEVICE  |   LINK PARTNER
898		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
899		 *-------|---------|-------|---------|--------------------
900		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
901		 */
902		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
903			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
904			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
905			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
906			hw->fc.current_mode = e1000_fc_tx_pause;
907			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
908		}
909		/*
910		 * For transmitting PAUSE frames ONLY.
911		 *
912		 *   LOCAL DEVICE  |   LINK PARTNER
913		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
914		 *-------|---------|-------|---------|--------------------
915		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
916		 */
917		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
918			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
919			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
920			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
921			hw->fc.current_mode = e1000_fc_rx_pause;
922			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
923		}
924		/*
925		 * Per the IEEE spec, at this point flow control should be
926		 * disabled.  However, we want to consider that we could
927		 * be connected to a legacy switch that doesn't advertise
928		 * desired flow control, but can be forced on the link
929		 * partner.  So if we advertised no flow control, that is
930		 * what we will resolve to.  If we advertised some kind of
931		 * receive capability (Rx Pause Only or Full Flow Control)
932		 * and the link partner advertised none, we will configure
933		 * ourselves to enable Rx Flow Control only.  We can do
934		 * this safely for two reasons:  If the link partner really
935		 * didn't want flow control enabled, and we enable Rx, no
936		 * harm done since we won't be receiving any PAUSE frames
937		 * anyway.  If the intent on the link partner was to have
938		 * flow control enabled, then by us enabling RX only, we
939		 * can at least receive pause frames and process them.
940		 * This is a good idea because in most cases, since we are
941		 * predominantly a server NIC, more times than not we will
942		 * be asked to delay transmission of packets than asking
943		 * our link partner to pause transmission of frames.
944		 */
945		else if ((hw->fc.requested_mode == e1000_fc_none ||
946			  hw->fc.requested_mode == e1000_fc_tx_pause) ||
947			 hw->fc.strict_ieee) {
948			hw->fc.current_mode = e1000_fc_none;
949			hw_dbg("Flow Control = NONE.\r\n");
950		} else {
951			hw->fc.current_mode = e1000_fc_rx_pause;
952			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
953		}
954
955		/*
956		 * Now we need to do one last check...  If we auto-
957		 * negotiated to HALF DUPLEX, flow control should not be
958		 * enabled per IEEE 802.3 spec.
959		 */
960		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
961		if (ret_val) {
962			hw_dbg("Error getting link speed and duplex\n");
963			goto out;
964		}
965
966		if (duplex == HALF_DUPLEX)
967			hw->fc.current_mode = e1000_fc_none;
968
969		/*
970		 * Now we call a subroutine to actually force the MAC
971		 * controller to use the correct flow control settings.
972		 */
973		ret_val = igb_force_mac_fc(hw);
974		if (ret_val) {
975			hw_dbg("Error forcing flow control settings\n");
976			goto out;
977		}
978	}
979
980out:
981	return ret_val;
982}
983
984/**
985 *  igb_get_speed_and_duplex_copper - Retreive current speed/duplex
986 *  @hw: pointer to the HW structure
987 *  @speed: stores the current speed
988 *  @duplex: stores the current duplex
989 *
990 *  Read the status register for the current speed/duplex and store the current
991 *  speed and duplex for copper connections.
992 **/
993s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
994				      u16 *duplex)
995{
996	u32 status;
997
998	status = rd32(E1000_STATUS);
999	if (status & E1000_STATUS_SPEED_1000) {
1000		*speed = SPEED_1000;
1001		hw_dbg("1000 Mbs, ");
1002	} else if (status & E1000_STATUS_SPEED_100) {
1003		*speed = SPEED_100;
1004		hw_dbg("100 Mbs, ");
1005	} else {
1006		*speed = SPEED_10;
1007		hw_dbg("10 Mbs, ");
1008	}
1009
1010	if (status & E1000_STATUS_FD) {
1011		*duplex = FULL_DUPLEX;
1012		hw_dbg("Full Duplex\n");
1013	} else {
1014		*duplex = HALF_DUPLEX;
1015		hw_dbg("Half Duplex\n");
1016	}
1017
1018	return 0;
1019}
1020
1021/**
1022 *  igb_get_hw_semaphore - Acquire hardware semaphore
1023 *  @hw: pointer to the HW structure
1024 *
1025 *  Acquire the HW semaphore to access the PHY or NVM
1026 **/
1027s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1028{
1029	u32 swsm;
1030	s32 ret_val = 0;
1031	s32 timeout = hw->nvm.word_size + 1;
1032	s32 i = 0;
1033
1034	/* Get the SW semaphore */
1035	while (i < timeout) {
1036		swsm = rd32(E1000_SWSM);
1037		if (!(swsm & E1000_SWSM_SMBI))
1038			break;
1039
1040		udelay(50);
1041		i++;
1042	}
1043
1044	if (i == timeout) {
1045		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1046		ret_val = -E1000_ERR_NVM;
1047		goto out;
1048	}
1049
1050	/* Get the FW semaphore. */
1051	for (i = 0; i < timeout; i++) {
1052		swsm = rd32(E1000_SWSM);
1053		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1054
1055		/* Semaphore acquired if bit latched */
1056		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1057			break;
1058
1059		udelay(50);
1060	}
1061
1062	if (i == timeout) {
1063		/* Release semaphores */
1064		igb_put_hw_semaphore(hw);
1065		hw_dbg("Driver can't access the NVM\n");
1066		ret_val = -E1000_ERR_NVM;
1067		goto out;
1068	}
1069
1070out:
1071	return ret_val;
1072}
1073
1074/**
1075 *  igb_put_hw_semaphore - Release hardware semaphore
1076 *  @hw: pointer to the HW structure
1077 *
1078 *  Release hardware semaphore used to access the PHY or NVM
1079 **/
1080void igb_put_hw_semaphore(struct e1000_hw *hw)
1081{
1082	u32 swsm;
1083
1084	swsm = rd32(E1000_SWSM);
1085
1086	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1087
1088	wr32(E1000_SWSM, swsm);
1089}
1090
1091/**
1092 *  igb_get_auto_rd_done - Check for auto read completion
1093 *  @hw: pointer to the HW structure
1094 *
1095 *  Check EEPROM for Auto Read done bit.
1096 **/
1097s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1098{
1099	s32 i = 0;
1100	s32 ret_val = 0;
1101
1102
1103	while (i < AUTO_READ_DONE_TIMEOUT) {
1104		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1105			break;
1106		msleep(1);
1107		i++;
1108	}
1109
1110	if (i == AUTO_READ_DONE_TIMEOUT) {
1111		hw_dbg("Auto read by HW from NVM has not completed.\n");
1112		ret_val = -E1000_ERR_RESET;
1113		goto out;
1114	}
1115
1116out:
1117	return ret_val;
1118}
1119
1120/**
1121 *  igb_valid_led_default - Verify a valid default LED config
1122 *  @hw: pointer to the HW structure
1123 *  @data: pointer to the NVM (EEPROM)
1124 *
1125 *  Read the EEPROM for the current default LED configuration.  If the
1126 *  LED configuration is not valid, set to a valid LED configuration.
1127 **/
1128static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1129{
1130	s32 ret_val;
1131
1132	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1133	if (ret_val) {
1134		hw_dbg("NVM Read Error\n");
1135		goto out;
1136	}
1137
1138	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1139		switch(hw->phy.media_type) {
1140		case e1000_media_type_internal_serdes:
1141			*data = ID_LED_DEFAULT_82575_SERDES;
1142			break;
1143		case e1000_media_type_copper:
1144		default:
1145			*data = ID_LED_DEFAULT;
1146			break;
1147		}
1148	}
1149out:
1150	return ret_val;
1151}
1152
1153/**
1154 *  igb_id_led_init -
1155 *  @hw: pointer to the HW structure
1156 *
1157 **/
1158s32 igb_id_led_init(struct e1000_hw *hw)
1159{
1160	struct e1000_mac_info *mac = &hw->mac;
1161	s32 ret_val;
1162	const u32 ledctl_mask = 0x000000FF;
1163	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1164	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1165	u16 data, i, temp;
1166	const u16 led_mask = 0x0F;
1167
1168	ret_val = igb_valid_led_default(hw, &data);
1169	if (ret_val)
1170		goto out;
1171
1172	mac->ledctl_default = rd32(E1000_LEDCTL);
1173	mac->ledctl_mode1 = mac->ledctl_default;
1174	mac->ledctl_mode2 = mac->ledctl_default;
1175
1176	for (i = 0; i < 4; i++) {
1177		temp = (data >> (i << 2)) & led_mask;
1178		switch (temp) {
1179		case ID_LED_ON1_DEF2:
1180		case ID_LED_ON1_ON2:
1181		case ID_LED_ON1_OFF2:
1182			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1183			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1184			break;
1185		case ID_LED_OFF1_DEF2:
1186		case ID_LED_OFF1_ON2:
1187		case ID_LED_OFF1_OFF2:
1188			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1189			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1190			break;
1191		default:
1192			/* Do nothing */
1193			break;
1194		}
1195		switch (temp) {
1196		case ID_LED_DEF1_ON2:
1197		case ID_LED_ON1_ON2:
1198		case ID_LED_OFF1_ON2:
1199			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1200			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1201			break;
1202		case ID_LED_DEF1_OFF2:
1203		case ID_LED_ON1_OFF2:
1204		case ID_LED_OFF1_OFF2:
1205			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1206			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1207			break;
1208		default:
1209			/* Do nothing */
1210			break;
1211		}
1212	}
1213
1214out:
1215	return ret_val;
1216}
1217
1218/**
1219 *  igb_cleanup_led - Set LED config to default operation
1220 *  @hw: pointer to the HW structure
1221 *
1222 *  Remove the current LED configuration and set the LED configuration
1223 *  to the default value, saved from the EEPROM.
1224 **/
1225s32 igb_cleanup_led(struct e1000_hw *hw)
1226{
1227	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1228	return 0;
1229}
1230
1231/**
1232 *  igb_blink_led - Blink LED
1233 *  @hw: pointer to the HW structure
1234 *
1235 *  Blink the led's which are set to be on.
1236 **/
1237s32 igb_blink_led(struct e1000_hw *hw)
1238{
1239	u32 ledctl_blink = 0;
1240	u32 i;
1241
1242	/*
1243	 * set the blink bit for each LED that's "on" (0x0E)
1244	 * in ledctl_mode2
1245	 */
1246	ledctl_blink = hw->mac.ledctl_mode2;
1247	for (i = 0; i < 4; i++)
1248		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1249		    E1000_LEDCTL_MODE_LED_ON)
1250			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1251					 (i * 8));
1252
1253	wr32(E1000_LEDCTL, ledctl_blink);
1254
1255	return 0;
1256}
1257
1258/**
1259 *  igb_led_off - Turn LED off
1260 *  @hw: pointer to the HW structure
1261 *
1262 *  Turn LED off.
1263 **/
1264s32 igb_led_off(struct e1000_hw *hw)
1265{
1266	switch (hw->phy.media_type) {
1267	case e1000_media_type_copper:
1268		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1269		break;
1270	default:
1271		break;
1272	}
1273
1274	return 0;
1275}
1276
1277/**
1278 *  igb_disable_pcie_master - Disables PCI-express master access
1279 *  @hw: pointer to the HW structure
1280 *
1281 *  Returns 0 (0) if successful, else returns -10
1282 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1283 *  the master requests to be disabled.
1284 *
1285 *  Disables PCI-Express master access and verifies there are no pending
1286 *  requests.
1287 **/
1288s32 igb_disable_pcie_master(struct e1000_hw *hw)
1289{
1290	u32 ctrl;
1291	s32 timeout = MASTER_DISABLE_TIMEOUT;
1292	s32 ret_val = 0;
1293
1294	if (hw->bus.type != e1000_bus_type_pci_express)
1295		goto out;
1296
1297	ctrl = rd32(E1000_CTRL);
1298	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1299	wr32(E1000_CTRL, ctrl);
1300
1301	while (timeout) {
1302		if (!(rd32(E1000_STATUS) &
1303		      E1000_STATUS_GIO_MASTER_ENABLE))
1304			break;
1305		udelay(100);
1306		timeout--;
1307	}
1308
1309	if (!timeout) {
1310		hw_dbg("Master requests are pending.\n");
1311		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1312		goto out;
1313	}
1314
1315out:
1316	return ret_val;
1317}
1318
1319/**
1320 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1321 *  @hw: pointer to the HW structure
1322 *
1323 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1324 *  set, which is forced to MDI mode only.
1325 **/
1326s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1327{
1328	s32 ret_val = 0;
1329
1330	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1331		hw_dbg("Invalid MDI setting detected\n");
1332		hw->phy.mdix = 1;
1333		ret_val = -E1000_ERR_CONFIG;
1334		goto out;
1335	}
1336
1337out:
1338	return ret_val;
1339}
1340
1341/**
1342 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1343 *  @hw: pointer to the HW structure
1344 *  @reg: 32bit register offset such as E1000_SCTL
1345 *  @offset: register offset to write to
1346 *  @data: data to write at register offset
1347 *
1348 *  Writes an address/data control type register.  There are several of these
1349 *  and they all have the format address << 8 | data and bit 31 is polled for
1350 *  completion.
1351 **/
1352s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1353			      u32 offset, u8 data)
1354{
1355	u32 i, regvalue = 0;
1356	s32 ret_val = 0;
1357
1358	/* Set up the address and data */
1359	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1360	wr32(reg, regvalue);
1361
1362	/* Poll the ready bit to see if the MDI read completed */
1363	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1364		udelay(5);
1365		regvalue = rd32(reg);
1366		if (regvalue & E1000_GEN_CTL_READY)
1367			break;
1368	}
1369	if (!(regvalue & E1000_GEN_CTL_READY)) {
1370		hw_dbg("Reg %08x did not indicate ready\n", reg);
1371		ret_val = -E1000_ERR_PHY;
1372		goto out;
1373	}
1374
1375out:
1376	return ret_val;
1377}
1378
1379/**
1380 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1381 *  @hw: pointer to the HW structure
1382 *
1383 *  Verifies the hardware needs to leave interface enabled so that frames can
1384 *  be directed to and from the management interface.
1385 **/
1386bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1387{
1388	u32 manc;
1389	u32 fwsm, factps;
1390	bool ret_val = false;
1391
1392	if (!hw->mac.asf_firmware_present)
1393		goto out;
1394
1395	manc = rd32(E1000_MANC);
1396
1397	if (!(manc & E1000_MANC_RCV_TCO_EN))
1398		goto out;
1399
1400	if (hw->mac.arc_subsystem_valid) {
1401		fwsm = rd32(E1000_FWSM);
1402		factps = rd32(E1000_FACTPS);
1403
1404		if (!(factps & E1000_FACTPS_MNGCG) &&
1405		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1406		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1407			ret_val = true;
1408			goto out;
1409		}
1410	} else {
1411		if ((manc & E1000_MANC_SMBUS_EN) &&
1412		    !(manc & E1000_MANC_ASF_EN)) {
1413			ret_val = true;
1414			goto out;
1415		}
1416	}
1417
1418out:
1419	return ret_val;
1420}
1421