• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/e1000e/
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/delay.h>
30
31#include "e1000.h"
32
33static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39					  u16 *data, bool read);
40static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42                                          u16 *data, bool read);
43
44/* Cable length tables */
45static const u16 e1000_m88_cable_length_table[] =
46	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48		ARRAY_SIZE(e1000_m88_cable_length_table)
49
50static const u16 e1000_igp_2_cable_length_table[] =
51	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58	  124};
59#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60		ARRAY_SIZE(e1000_igp_2_cable_length_table)
61
62#define BM_PHY_REG_PAGE(offset) \
63	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64#define BM_PHY_REG_NUM(offset) \
65	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67		~MAX_PHY_REG_ADDRESS)))
68
69#define HV_INTC_FC_PAGE_START             768
70#define I82578_ADDR_REG                   29
71#define I82577_ADDR_REG                   16
72#define I82577_CFG_REG                    22
73#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
74#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
75#define I82577_CTRL_REG                   23
76
77/* 82577 specific PHY registers */
78#define I82577_PHY_CTRL_2            18
79#define I82577_PHY_STATUS_2          26
80#define I82577_PHY_DIAG_STATUS       31
81
82/* I82577 PHY Status 2 */
83#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
84#define I82577_PHY_STATUS2_MDIX           0x0800
85#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
86#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87
88/* I82577 PHY Control 2 */
89#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
90#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
91
92/* I82577 PHY Diagnostics Status */
93#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
94#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95
96/* BM PHY Copper Specific Control 1 */
97#define BM_CS_CTRL1                       16
98
99#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
100#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
101#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
102
103/**
104 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 *  @hw: pointer to the HW structure
106 *
107 *  Read the PHY management control register and check whether a PHY reset
108 *  is blocked.  If a reset is not blocked return 0, otherwise
109 *  return E1000_BLK_PHY_RESET (12).
110 **/
111s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112{
113	u32 manc;
114
115	manc = er32(MANC);
116
117	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118	       E1000_BLK_PHY_RESET : 0;
119}
120
121/**
122 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
123 *  @hw: pointer to the HW structure
124 *
125 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
126 *  revision in the hardware structure.
127 **/
128s32 e1000e_get_phy_id(struct e1000_hw *hw)
129{
130	struct e1000_phy_info *phy = &hw->phy;
131	s32 ret_val = 0;
132	u16 phy_id;
133	u16 retry_count = 0;
134
135	if (!(phy->ops.read_reg))
136		goto out;
137
138	while (retry_count < 2) {
139		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140		if (ret_val)
141			goto out;
142
143		phy->id = (u32)(phy_id << 16);
144		udelay(20);
145		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146		if (ret_val)
147			goto out;
148
149		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151
152		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153			goto out;
154
155		retry_count++;
156	}
157out:
158	return ret_val;
159}
160
161/**
162 *  e1000e_phy_reset_dsp - Reset PHY DSP
163 *  @hw: pointer to the HW structure
164 *
165 *  Reset the digital signal processor.
166 **/
167s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
168{
169	s32 ret_val;
170
171	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172	if (ret_val)
173		return ret_val;
174
175	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
176}
177
178/**
179 *  e1000e_read_phy_reg_mdic - Read MDI control register
180 *  @hw: pointer to the HW structure
181 *  @offset: register offset to be read
182 *  @data: pointer to the read data
183 *
184 *  Reads the MDI control register in the PHY at offset and stores the
185 *  information read to data.
186 **/
187s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
188{
189	struct e1000_phy_info *phy = &hw->phy;
190	u32 i, mdic = 0;
191
192	if (offset > MAX_PHY_REG_ADDRESS) {
193		e_dbg("PHY Address %d is out of range\n", offset);
194		return -E1000_ERR_PARAM;
195	}
196
197	/*
198	 * Set up Op-code, Phy Address, and register offset in the MDI
199	 * Control register.  The MAC will take care of interfacing with the
200	 * PHY to retrieve the desired data.
201	 */
202	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203		(phy->addr << E1000_MDIC_PHY_SHIFT) |
204		(E1000_MDIC_OP_READ));
205
206	ew32(MDIC, mdic);
207
208	/*
209	 * Poll the ready bit to see if the MDI read completed
210	 * Increasing the time out as testing showed failures with
211	 * the lower time out
212	 */
213	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214		udelay(50);
215		mdic = er32(MDIC);
216		if (mdic & E1000_MDIC_READY)
217			break;
218	}
219	if (!(mdic & E1000_MDIC_READY)) {
220		e_dbg("MDI Read did not complete\n");
221		return -E1000_ERR_PHY;
222	}
223	if (mdic & E1000_MDIC_ERROR) {
224		e_dbg("MDI Error\n");
225		return -E1000_ERR_PHY;
226	}
227	*data = (u16) mdic;
228
229	return 0;
230}
231
232/**
233 *  e1000e_write_phy_reg_mdic - Write MDI control register
234 *  @hw: pointer to the HW structure
235 *  @offset: register offset to write to
236 *  @data: data to write to register at offset
237 *
238 *  Writes data to MDI control register in the PHY at offset.
239 **/
240s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
241{
242	struct e1000_phy_info *phy = &hw->phy;
243	u32 i, mdic = 0;
244
245	if (offset > MAX_PHY_REG_ADDRESS) {
246		e_dbg("PHY Address %d is out of range\n", offset);
247		return -E1000_ERR_PARAM;
248	}
249
250	/*
251	 * Set up Op-code, Phy Address, and register offset in the MDI
252	 * Control register.  The MAC will take care of interfacing with the
253	 * PHY to retrieve the desired data.
254	 */
255	mdic = (((u32)data) |
256		(offset << E1000_MDIC_REG_SHIFT) |
257		(phy->addr << E1000_MDIC_PHY_SHIFT) |
258		(E1000_MDIC_OP_WRITE));
259
260	ew32(MDIC, mdic);
261
262	/*
263	 * Poll the ready bit to see if the MDI read completed
264	 * Increasing the time out as testing showed failures with
265	 * the lower time out
266	 */
267	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
268		udelay(50);
269		mdic = er32(MDIC);
270		if (mdic & E1000_MDIC_READY)
271			break;
272	}
273	if (!(mdic & E1000_MDIC_READY)) {
274		e_dbg("MDI Write did not complete\n");
275		return -E1000_ERR_PHY;
276	}
277	if (mdic & E1000_MDIC_ERROR) {
278		e_dbg("MDI Error\n");
279		return -E1000_ERR_PHY;
280	}
281
282	return 0;
283}
284
285/**
286 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
287 *  @hw: pointer to the HW structure
288 *  @offset: register offset to be read
289 *  @data: pointer to the read data
290 *
291 *  Acquires semaphore, if necessary, then reads the PHY register at offset
292 *  and storing the retrieved information in data.  Release any acquired
293 *  semaphores before exiting.
294 **/
295s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
296{
297	s32 ret_val;
298
299	ret_val = hw->phy.ops.acquire(hw);
300	if (ret_val)
301		return ret_val;
302
303	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
304					   data);
305
306	hw->phy.ops.release(hw);
307
308	return ret_val;
309}
310
311/**
312 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
313 *  @hw: pointer to the HW structure
314 *  @offset: register offset to write to
315 *  @data: data to write at register offset
316 *
317 *  Acquires semaphore, if necessary, then writes the data to PHY register
318 *  at the offset.  Release any acquired semaphores before exiting.
319 **/
320s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
321{
322	s32 ret_val;
323
324	ret_val = hw->phy.ops.acquire(hw);
325	if (ret_val)
326		return ret_val;
327
328	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
329					    data);
330
331	hw->phy.ops.release(hw);
332
333	return ret_val;
334}
335
336/**
337 *  __e1000e_read_phy_reg_igp - Read igp PHY register
338 *  @hw: pointer to the HW structure
339 *  @offset: register offset to be read
340 *  @data: pointer to the read data
341 *  @locked: semaphore has already been acquired or not
342 *
343 *  Acquires semaphore, if necessary, then reads the PHY register at offset
344 *  and stores the retrieved information in data.  Release any acquired
345 *  semaphores before exiting.
346 **/
347static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
348                                    bool locked)
349{
350	s32 ret_val = 0;
351
352	if (!locked) {
353		if (!(hw->phy.ops.acquire))
354			goto out;
355
356		ret_val = hw->phy.ops.acquire(hw);
357		if (ret_val)
358			goto out;
359	}
360
361	if (offset > MAX_PHY_MULTI_PAGE_REG) {
362		ret_val = e1000e_write_phy_reg_mdic(hw,
363						    IGP01E1000_PHY_PAGE_SELECT,
364						    (u16)offset);
365		if (ret_val)
366			goto release;
367	}
368
369	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
370	                                  data);
371
372release:
373	if (!locked)
374		hw->phy.ops.release(hw);
375out:
376	return ret_val;
377}
378
379/**
380 *  e1000e_read_phy_reg_igp - Read igp PHY register
381 *  @hw: pointer to the HW structure
382 *  @offset: register offset to be read
383 *  @data: pointer to the read data
384 *
385 *  Acquires semaphore then reads the PHY register at offset and stores the
386 *  retrieved information in data.
387 *  Release the acquired semaphore before exiting.
388 **/
389s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
390{
391	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
392}
393
394/**
395 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
396 *  @hw: pointer to the HW structure
397 *  @offset: register offset to be read
398 *  @data: pointer to the read data
399 *
400 *  Reads the PHY register at offset and stores the retrieved information
401 *  in data.  Assumes semaphore already acquired.
402 **/
403s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
404{
405	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
406}
407
408/**
409 *  e1000e_write_phy_reg_igp - Write igp PHY register
410 *  @hw: pointer to the HW structure
411 *  @offset: register offset to write to
412 *  @data: data to write at register offset
413 *  @locked: semaphore has already been acquired or not
414 *
415 *  Acquires semaphore, if necessary, then writes the data to PHY register
416 *  at the offset.  Release any acquired semaphores before exiting.
417 **/
418static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
419                                     bool locked)
420{
421	s32 ret_val = 0;
422
423	if (!locked) {
424		if (!(hw->phy.ops.acquire))
425			goto out;
426
427		ret_val = hw->phy.ops.acquire(hw);
428		if (ret_val)
429			goto out;
430	}
431
432	if (offset > MAX_PHY_MULTI_PAGE_REG) {
433		ret_val = e1000e_write_phy_reg_mdic(hw,
434						    IGP01E1000_PHY_PAGE_SELECT,
435						    (u16)offset);
436		if (ret_val)
437			goto release;
438	}
439
440	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441					    data);
442
443release:
444	if (!locked)
445		hw->phy.ops.release(hw);
446
447out:
448	return ret_val;
449}
450
451/**
452 *  e1000e_write_phy_reg_igp - Write igp PHY register
453 *  @hw: pointer to the HW structure
454 *  @offset: register offset to write to
455 *  @data: data to write at register offset
456 *
457 *  Acquires semaphore then writes the data to PHY register
458 *  at the offset.  Release any acquired semaphores before exiting.
459 **/
460s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
461{
462	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
463}
464
465/**
466 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
467 *  @hw: pointer to the HW structure
468 *  @offset: register offset to write to
469 *  @data: data to write at register offset
470 *
471 *  Writes the data to PHY register at the offset.
472 *  Assumes semaphore already acquired.
473 **/
474s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
475{
476	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
477}
478
479/**
480 *  __e1000_read_kmrn_reg - Read kumeran register
481 *  @hw: pointer to the HW structure
482 *  @offset: register offset to be read
483 *  @data: pointer to the read data
484 *  @locked: semaphore has already been acquired or not
485 *
486 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
487 *  using the kumeran interface.  The information retrieved is stored in data.
488 *  Release any acquired semaphores before exiting.
489 **/
490static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
491                                 bool locked)
492{
493	u32 kmrnctrlsta;
494	s32 ret_val = 0;
495
496	if (!locked) {
497		if (!(hw->phy.ops.acquire))
498			goto out;
499
500		ret_val = hw->phy.ops.acquire(hw);
501		if (ret_val)
502			goto out;
503	}
504
505	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
506		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
507	ew32(KMRNCTRLSTA, kmrnctrlsta);
508
509	udelay(2);
510
511	kmrnctrlsta = er32(KMRNCTRLSTA);
512	*data = (u16)kmrnctrlsta;
513
514	if (!locked)
515		hw->phy.ops.release(hw);
516
517out:
518	return ret_val;
519}
520
521/**
522 *  e1000e_read_kmrn_reg -  Read kumeran register
523 *  @hw: pointer to the HW structure
524 *  @offset: register offset to be read
525 *  @data: pointer to the read data
526 *
527 *  Acquires semaphore then reads the PHY register at offset using the
528 *  kumeran interface.  The information retrieved is stored in data.
529 *  Release the acquired semaphore before exiting.
530 **/
531s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
532{
533	return __e1000_read_kmrn_reg(hw, offset, data, false);
534}
535
536/**
537 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
538 *  @hw: pointer to the HW structure
539 *  @offset: register offset to be read
540 *  @data: pointer to the read data
541 *
542 *  Reads the PHY register at offset using the kumeran interface.  The
543 *  information retrieved is stored in data.
544 *  Assumes semaphore already acquired.
545 **/
546s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
547{
548	return __e1000_read_kmrn_reg(hw, offset, data, true);
549}
550
551/**
552 *  __e1000_write_kmrn_reg - Write kumeran register
553 *  @hw: pointer to the HW structure
554 *  @offset: register offset to write to
555 *  @data: data to write at register offset
556 *  @locked: semaphore has already been acquired or not
557 *
558 *  Acquires semaphore, if necessary.  Then write the data to PHY register
559 *  at the offset using the kumeran interface.  Release any acquired semaphores
560 *  before exiting.
561 **/
562static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
563                                  bool locked)
564{
565	u32 kmrnctrlsta;
566	s32 ret_val = 0;
567
568	if (!locked) {
569		if (!(hw->phy.ops.acquire))
570			goto out;
571
572		ret_val = hw->phy.ops.acquire(hw);
573		if (ret_val)
574			goto out;
575	}
576
577	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
578		       E1000_KMRNCTRLSTA_OFFSET) | data;
579	ew32(KMRNCTRLSTA, kmrnctrlsta);
580
581	udelay(2);
582
583	if (!locked)
584		hw->phy.ops.release(hw);
585
586out:
587	return ret_val;
588}
589
590/**
591 *  e1000e_write_kmrn_reg -  Write kumeran register
592 *  @hw: pointer to the HW structure
593 *  @offset: register offset to write to
594 *  @data: data to write at register offset
595 *
596 *  Acquires semaphore then writes the data to the PHY register at the offset
597 *  using the kumeran interface.  Release the acquired semaphore before exiting.
598 **/
599s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
600{
601	return __e1000_write_kmrn_reg(hw, offset, data, false);
602}
603
604/**
605 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
606 *  @hw: pointer to the HW structure
607 *  @offset: register offset to write to
608 *  @data: data to write at register offset
609 *
610 *  Write the data to PHY register at the offset using the kumeran interface.
611 *  Assumes semaphore already acquired.
612 **/
613s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
614{
615	return __e1000_write_kmrn_reg(hw, offset, data, true);
616}
617
618/**
619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
620 *  @hw: pointer to the HW structure
621 *
622 *  Sets up Carrier-sense on Transmit and downshift values.
623 **/
624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
625{
626	struct e1000_phy_info *phy = &hw->phy;
627	s32 ret_val;
628	u16 phy_data;
629
630	/* Enable CRS on TX. This must be set for half-duplex operation. */
631	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
632	if (ret_val)
633		goto out;
634
635	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
636
637	/* Enable downshift */
638	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
639
640	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
641
642out:
643	return ret_val;
644}
645
646/**
647 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
648 *  @hw: pointer to the HW structure
649 *
650 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
651 *  and downshift values are set also.
652 **/
653s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
654{
655	struct e1000_phy_info *phy = &hw->phy;
656	s32 ret_val;
657	u16 phy_data;
658
659	/* Enable CRS on Tx. This must be set for half-duplex operation. */
660	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
661	if (ret_val)
662		return ret_val;
663
664	/* For BM PHY this bit is downshift enable */
665	if (phy->type != e1000_phy_bm)
666		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
667
668	/*
669	 * Options:
670	 *   MDI/MDI-X = 0 (default)
671	 *   0 - Auto for all speeds
672	 *   1 - MDI mode
673	 *   2 - MDI-X mode
674	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
675	 */
676	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
677
678	switch (phy->mdix) {
679	case 1:
680		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
681		break;
682	case 2:
683		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
684		break;
685	case 3:
686		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
687		break;
688	case 0:
689	default:
690		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
691		break;
692	}
693
694	/*
695	 * Options:
696	 *   disable_polarity_correction = 0 (default)
697	 *       Automatic Correction for Reversed Cable Polarity
698	 *   0 - Disabled
699	 *   1 - Enabled
700	 */
701	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
702	if (phy->disable_polarity_correction == 1)
703		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
704
705	/* Enable downshift on BM (disabled by default) */
706	if (phy->type == e1000_phy_bm)
707		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
708
709	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
710	if (ret_val)
711		return ret_val;
712
713	if ((phy->type == e1000_phy_m88) &&
714	    (phy->revision < E1000_REVISION_4) &&
715	    (phy->id != BME1000_E_PHY_ID_R2)) {
716		/*
717		 * Force TX_CLK in the Extended PHY Specific Control Register
718		 * to 25MHz clock.
719		 */
720		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
721		if (ret_val)
722			return ret_val;
723
724		phy_data |= M88E1000_EPSCR_TX_CLK_25;
725
726		if ((phy->revision == 2) &&
727		    (phy->id == M88E1111_I_PHY_ID)) {
728			/* 82573L PHY - set the downshift counter to 5x. */
729			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
730			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
731		} else {
732			/* Configure Master and Slave downshift values */
733			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
734				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
735			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
736				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
737		}
738		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
739		if (ret_val)
740			return ret_val;
741	}
742
743	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
744		/* Set PHY page 0, register 29 to 0x0003 */
745		ret_val = e1e_wphy(hw, 29, 0x0003);
746		if (ret_val)
747			return ret_val;
748
749		/* Set PHY page 0, register 30 to 0x0000 */
750		ret_val = e1e_wphy(hw, 30, 0x0000);
751		if (ret_val)
752			return ret_val;
753	}
754
755	/* Commit the changes. */
756	ret_val = e1000e_commit_phy(hw);
757	if (ret_val) {
758		e_dbg("Error committing the PHY changes\n");
759		return ret_val;
760	}
761
762	if (phy->type == e1000_phy_82578) {
763		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
764		                            &phy_data);
765		if (ret_val)
766			return ret_val;
767
768		/* 82578 PHY - set the downshift count to 1x. */
769		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
770		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
771		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
772		                             phy_data);
773		if (ret_val)
774			return ret_val;
775	}
776
777	return 0;
778}
779
780/**
781 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
782 *  @hw: pointer to the HW structure
783 *
784 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
785 *  igp PHY's.
786 **/
787s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
788{
789	struct e1000_phy_info *phy = &hw->phy;
790	s32 ret_val;
791	u16 data;
792
793	ret_val = e1000_phy_hw_reset(hw);
794	if (ret_val) {
795		e_dbg("Error resetting the PHY.\n");
796		return ret_val;
797	}
798
799	/*
800	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
801	 * timeout issues when LFS is enabled.
802	 */
803	msleep(100);
804
805	/* disable lplu d0 during driver init */
806	ret_val = e1000_set_d0_lplu_state(hw, false);
807	if (ret_val) {
808		e_dbg("Error Disabling LPLU D0\n");
809		return ret_val;
810	}
811	/* Configure mdi-mdix settings */
812	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
813	if (ret_val)
814		return ret_val;
815
816	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
817
818	switch (phy->mdix) {
819	case 1:
820		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
821		break;
822	case 2:
823		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
824		break;
825	case 0:
826	default:
827		data |= IGP01E1000_PSCR_AUTO_MDIX;
828		break;
829	}
830	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
831	if (ret_val)
832		return ret_val;
833
834	/* set auto-master slave resolution settings */
835	if (hw->mac.autoneg) {
836		/*
837		 * when autonegotiation advertisement is only 1000Mbps then we
838		 * should disable SmartSpeed and enable Auto MasterSlave
839		 * resolution as hardware default.
840		 */
841		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
842			/* Disable SmartSpeed */
843			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
844					   &data);
845			if (ret_val)
846				return ret_val;
847
848			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
849			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
850					   data);
851			if (ret_val)
852				return ret_val;
853
854			/* Set auto Master/Slave resolution process */
855			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
856			if (ret_val)
857				return ret_val;
858
859			data &= ~CR_1000T_MS_ENABLE;
860			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
861			if (ret_val)
862				return ret_val;
863		}
864
865		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
866		if (ret_val)
867			return ret_val;
868
869		/* load defaults for future use */
870		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
871			((data & CR_1000T_MS_VALUE) ?
872			e1000_ms_force_master :
873			e1000_ms_force_slave) :
874			e1000_ms_auto;
875
876		switch (phy->ms_type) {
877		case e1000_ms_force_master:
878			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
879			break;
880		case e1000_ms_force_slave:
881			data |= CR_1000T_MS_ENABLE;
882			data &= ~(CR_1000T_MS_VALUE);
883			break;
884		case e1000_ms_auto:
885			data &= ~CR_1000T_MS_ENABLE;
886		default:
887			break;
888		}
889		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
890	}
891
892	return ret_val;
893}
894
895/**
896 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
897 *  @hw: pointer to the HW structure
898 *
899 *  Reads the MII auto-neg advertisement register and/or the 1000T control
900 *  register and if the PHY is already setup for auto-negotiation, then
901 *  return successful.  Otherwise, setup advertisement and flow control to
902 *  the appropriate values for the wanted auto-negotiation.
903 **/
904static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
905{
906	struct e1000_phy_info *phy = &hw->phy;
907	s32 ret_val;
908	u16 mii_autoneg_adv_reg;
909	u16 mii_1000t_ctrl_reg = 0;
910
911	phy->autoneg_advertised &= phy->autoneg_mask;
912
913	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
914	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
915	if (ret_val)
916		return ret_val;
917
918	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
919		/* Read the MII 1000Base-T Control Register (Address 9). */
920		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
921		if (ret_val)
922			return ret_val;
923	}
924
925	/*
926	 * Need to parse both autoneg_advertised and fc and set up
927	 * the appropriate PHY registers.  First we will parse for
928	 * autoneg_advertised software override.  Since we can advertise
929	 * a plethora of combinations, we need to check each bit
930	 * individually.
931	 */
932
933	/*
934	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
935	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
936	 * the  1000Base-T Control Register (Address 9).
937	 */
938	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
939				 NWAY_AR_100TX_HD_CAPS |
940				 NWAY_AR_10T_FD_CAPS   |
941				 NWAY_AR_10T_HD_CAPS);
942	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
943
944	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
945
946	/* Do we want to advertise 10 Mb Half Duplex? */
947	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
948		e_dbg("Advertise 10mb Half duplex\n");
949		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
950	}
951
952	/* Do we want to advertise 10 Mb Full Duplex? */
953	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
954		e_dbg("Advertise 10mb Full duplex\n");
955		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
956	}
957
958	/* Do we want to advertise 100 Mb Half Duplex? */
959	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
960		e_dbg("Advertise 100mb Half duplex\n");
961		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
962	}
963
964	/* Do we want to advertise 100 Mb Full Duplex? */
965	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
966		e_dbg("Advertise 100mb Full duplex\n");
967		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
968	}
969
970	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
971	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
972		e_dbg("Advertise 1000mb Half duplex request denied!\n");
973
974	/* Do we want to advertise 1000 Mb Full Duplex? */
975	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
976		e_dbg("Advertise 1000mb Full duplex\n");
977		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
978	}
979
980	/*
981	 * Check for a software override of the flow control settings, and
982	 * setup the PHY advertisement registers accordingly.  If
983	 * auto-negotiation is enabled, then software will have to set the
984	 * "PAUSE" bits to the correct value in the Auto-Negotiation
985	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
986	 * negotiation.
987	 *
988	 * The possible values of the "fc" parameter are:
989	 *      0:  Flow control is completely disabled
990	 *      1:  Rx flow control is enabled (we can receive pause frames
991	 *	  but not send pause frames).
992	 *      2:  Tx flow control is enabled (we can send pause frames
993	 *	  but we do not support receiving pause frames).
994	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
995	 *  other:  No software override.  The flow control configuration
996	 *	  in the EEPROM is used.
997	 */
998	switch (hw->fc.current_mode) {
999	case e1000_fc_none:
1000		/*
1001		 * Flow control (Rx & Tx) is completely disabled by a
1002		 * software over-ride.
1003		 */
1004		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1005		break;
1006	case e1000_fc_rx_pause:
1007		/*
1008		 * Rx Flow control is enabled, and Tx Flow control is
1009		 * disabled, by a software over-ride.
1010		 *
1011		 * Since there really isn't a way to advertise that we are
1012		 * capable of Rx Pause ONLY, we will advertise that we
1013		 * support both symmetric and asymmetric Rx PAUSE.  Later
1014		 * (in e1000e_config_fc_after_link_up) we will disable the
1015		 * hw's ability to send PAUSE frames.
1016		 */
1017		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1018		break;
1019	case e1000_fc_tx_pause:
1020		/*
1021		 * Tx Flow control is enabled, and Rx Flow control is
1022		 * disabled, by a software over-ride.
1023		 */
1024		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1025		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1026		break;
1027	case e1000_fc_full:
1028		/*
1029		 * Flow control (both Rx and Tx) is enabled by a software
1030		 * over-ride.
1031		 */
1032		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1033		break;
1034	default:
1035		e_dbg("Flow control param set incorrectly\n");
1036		ret_val = -E1000_ERR_CONFIG;
1037		return ret_val;
1038	}
1039
1040	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1041	if (ret_val)
1042		return ret_val;
1043
1044	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1045
1046	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1047		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1048	}
1049
1050	return ret_val;
1051}
1052
1053/**
1054 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1055 *  @hw: pointer to the HW structure
1056 *
1057 *  Performs initial bounds checking on autoneg advertisement parameter, then
1058 *  configure to advertise the full capability.  Setup the PHY to autoneg
1059 *  and restart the negotiation process between the link partner.  If
1060 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1061 **/
1062static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1063{
1064	struct e1000_phy_info *phy = &hw->phy;
1065	s32 ret_val;
1066	u16 phy_ctrl;
1067
1068	/*
1069	 * Perform some bounds checking on the autoneg advertisement
1070	 * parameter.
1071	 */
1072	phy->autoneg_advertised &= phy->autoneg_mask;
1073
1074	/*
1075	 * If autoneg_advertised is zero, we assume it was not defaulted
1076	 * by the calling code so we set to advertise full capability.
1077	 */
1078	if (phy->autoneg_advertised == 0)
1079		phy->autoneg_advertised = phy->autoneg_mask;
1080
1081	e_dbg("Reconfiguring auto-neg advertisement params\n");
1082	ret_val = e1000_phy_setup_autoneg(hw);
1083	if (ret_val) {
1084		e_dbg("Error Setting up Auto-Negotiation\n");
1085		return ret_val;
1086	}
1087	e_dbg("Restarting Auto-Neg\n");
1088
1089	/*
1090	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1091	 * the Auto Neg Restart bit in the PHY control register.
1092	 */
1093	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1094	if (ret_val)
1095		return ret_val;
1096
1097	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1098	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1099	if (ret_val)
1100		return ret_val;
1101
1102	/*
1103	 * Does the user want to wait for Auto-Neg to complete here, or
1104	 * check at a later time (for example, callback routine).
1105	 */
1106	if (phy->autoneg_wait_to_complete) {
1107		ret_val = e1000_wait_autoneg(hw);
1108		if (ret_val) {
1109			e_dbg("Error while waiting for "
1110				 "autoneg to complete\n");
1111			return ret_val;
1112		}
1113	}
1114
1115	hw->mac.get_link_status = 1;
1116
1117	return ret_val;
1118}
1119
1120/**
1121 *  e1000e_setup_copper_link - Configure copper link settings
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  Calls the appropriate function to configure the link for auto-neg or forced
1125 *  speed and duplex.  Then we check for link, once link is established calls
1126 *  to configure collision distance and flow control are called.  If link is
1127 *  not established, we return -E1000_ERR_PHY (-2).
1128 **/
1129s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1130{
1131	s32 ret_val;
1132	bool link;
1133
1134	if (hw->mac.autoneg) {
1135		/*
1136		 * Setup autoneg and flow control advertisement and perform
1137		 * autonegotiation.
1138		 */
1139		ret_val = e1000_copper_link_autoneg(hw);
1140		if (ret_val)
1141			return ret_val;
1142	} else {
1143		/*
1144		 * PHY will be set to 10H, 10F, 100H or 100F
1145		 * depending on user settings.
1146		 */
1147		e_dbg("Forcing Speed and Duplex\n");
1148		ret_val = e1000_phy_force_speed_duplex(hw);
1149		if (ret_val) {
1150			e_dbg("Error Forcing Speed and Duplex\n");
1151			return ret_val;
1152		}
1153	}
1154
1155	/*
1156	 * Check link status. Wait up to 100 microseconds for link to become
1157	 * valid.
1158	 */
1159	ret_val = e1000e_phy_has_link_generic(hw,
1160					     COPPER_LINK_UP_LIMIT,
1161					     10,
1162					     &link);
1163	if (ret_val)
1164		return ret_val;
1165
1166	if (link) {
1167		e_dbg("Valid link established!!!\n");
1168		e1000e_config_collision_dist(hw);
1169		ret_val = e1000e_config_fc_after_link_up(hw);
1170	} else {
1171		e_dbg("Unable to establish link!!!\n");
1172	}
1173
1174	return ret_val;
1175}
1176
1177/**
1178 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1179 *  @hw: pointer to the HW structure
1180 *
1181 *  Calls the PHY setup function to force speed and duplex.  Clears the
1182 *  auto-crossover to force MDI manually.  Waits for link and returns
1183 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1184 **/
1185s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1186{
1187	struct e1000_phy_info *phy = &hw->phy;
1188	s32 ret_val;
1189	u16 phy_data;
1190	bool link;
1191
1192	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1193	if (ret_val)
1194		return ret_val;
1195
1196	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1197
1198	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1199	if (ret_val)
1200		return ret_val;
1201
1202	/*
1203	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1204	 * forced whenever speed and duplex are forced.
1205	 */
1206	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1212
1213	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	e_dbg("IGP PSCR: %X\n", phy_data);
1218
1219	udelay(1);
1220
1221	if (phy->autoneg_wait_to_complete) {
1222		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1223
1224		ret_val = e1000e_phy_has_link_generic(hw,
1225						     PHY_FORCE_LIMIT,
1226						     100000,
1227						     &link);
1228		if (ret_val)
1229			return ret_val;
1230
1231		if (!link)
1232			e_dbg("Link taking longer than expected.\n");
1233
1234		/* Try once more */
1235		ret_val = e1000e_phy_has_link_generic(hw,
1236						     PHY_FORCE_LIMIT,
1237						     100000,
1238						     &link);
1239		if (ret_val)
1240			return ret_val;
1241	}
1242
1243	return ret_val;
1244}
1245
1246/**
1247 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1248 *  @hw: pointer to the HW structure
1249 *
1250 *  Calls the PHY setup function to force speed and duplex.  Clears the
1251 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1252 *  changes.  If time expires while waiting for link up, we reset the DSP.
1253 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1254 *  successful completion, else return corresponding error code.
1255 **/
1256s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1257{
1258	struct e1000_phy_info *phy = &hw->phy;
1259	s32 ret_val;
1260	u16 phy_data;
1261	bool link;
1262
1263	/*
1264	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1265	 * forced whenever speed and duplex are forced.
1266	 */
1267	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1268	if (ret_val)
1269		return ret_val;
1270
1271	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1272	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1273	if (ret_val)
1274		return ret_val;
1275
1276	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1277
1278	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1279	if (ret_val)
1280		return ret_val;
1281
1282	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1283
1284	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1285	if (ret_val)
1286		return ret_val;
1287
1288	/* Reset the phy to commit changes. */
1289	ret_val = e1000e_commit_phy(hw);
1290	if (ret_val)
1291		return ret_val;
1292
1293	if (phy->autoneg_wait_to_complete) {
1294		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1295
1296		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1297						     100000, &link);
1298		if (ret_val)
1299			return ret_val;
1300
1301		if (!link) {
1302			if (hw->phy.type != e1000_phy_m88) {
1303				e_dbg("Link taking longer than expected.\n");
1304			} else {
1305				/*
1306				 * We didn't get link.
1307				 * Reset the DSP and cross our fingers.
1308				 */
1309				ret_val = e1e_wphy(hw,
1310						M88E1000_PHY_PAGE_SELECT,
1311						0x001d);
1312				if (ret_val)
1313					return ret_val;
1314				ret_val = e1000e_phy_reset_dsp(hw);
1315				if (ret_val)
1316					return ret_val;
1317			}
1318		}
1319
1320		/* Try once more */
1321		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1322						     100000, &link);
1323		if (ret_val)
1324			return ret_val;
1325	}
1326
1327	if (hw->phy.type != e1000_phy_m88)
1328		return 0;
1329
1330	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1331	if (ret_val)
1332		return ret_val;
1333
1334	/*
1335	 * Resetting the phy means we need to re-force TX_CLK in the
1336	 * Extended PHY Specific Control Register to 25MHz clock from
1337	 * the reset value of 2.5MHz.
1338	 */
1339	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1340	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1341	if (ret_val)
1342		return ret_val;
1343
1344	/*
1345	 * In addition, we must re-enable CRS on Tx for both half and full
1346	 * duplex.
1347	 */
1348	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1349	if (ret_val)
1350		return ret_val;
1351
1352	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1353	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1354
1355	return ret_val;
1356}
1357
1358/**
1359 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1360 *  @hw: pointer to the HW structure
1361 *
1362 *  Forces the speed and duplex settings of the PHY.
1363 *  This is a function pointer entry point only called by
1364 *  PHY setup routines.
1365 **/
1366s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1367{
1368	struct e1000_phy_info *phy = &hw->phy;
1369	s32 ret_val;
1370	u16 data;
1371	bool link;
1372
1373	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1374	if (ret_val)
1375		goto out;
1376
1377	e1000e_phy_force_speed_duplex_setup(hw, &data);
1378
1379	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1380	if (ret_val)
1381		goto out;
1382
1383	/* Disable MDI-X support for 10/100 */
1384	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1385	if (ret_val)
1386		goto out;
1387
1388	data &= ~IFE_PMC_AUTO_MDIX;
1389	data &= ~IFE_PMC_FORCE_MDIX;
1390
1391	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1392	if (ret_val)
1393		goto out;
1394
1395	e_dbg("IFE PMC: %X\n", data);
1396
1397	udelay(1);
1398
1399	if (phy->autoneg_wait_to_complete) {
1400		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1401
1402		ret_val = e1000e_phy_has_link_generic(hw,
1403		                                     PHY_FORCE_LIMIT,
1404		                                     100000,
1405		                                     &link);
1406		if (ret_val)
1407			goto out;
1408
1409		if (!link)
1410			e_dbg("Link taking longer than expected.\n");
1411
1412		/* Try once more */
1413		ret_val = e1000e_phy_has_link_generic(hw,
1414		                                     PHY_FORCE_LIMIT,
1415		                                     100000,
1416		                                     &link);
1417		if (ret_val)
1418			goto out;
1419	}
1420
1421out:
1422	return ret_val;
1423}
1424
1425/**
1426 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 *  @hw: pointer to the HW structure
1428 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1429 *
1430 *  Forces speed and duplex on the PHY by doing the following: disable flow
1431 *  control, force speed/duplex on the MAC, disable auto speed detection,
1432 *  disable auto-negotiation, configure duplex, configure speed, configure
1433 *  the collision distance, write configuration to CTRL register.  The
1434 *  caller must write to the PHY_CONTROL register for these settings to
1435 *  take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439	struct e1000_mac_info *mac = &hw->mac;
1440	u32 ctrl;
1441
1442	/* Turn off flow control when forcing speed/duplex */
1443	hw->fc.current_mode = e1000_fc_none;
1444
1445	/* Force speed/duplex on the mac */
1446	ctrl = er32(CTRL);
1447	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448	ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450	/* Disable Auto Speed Detection */
1451	ctrl &= ~E1000_CTRL_ASDE;
1452
1453	/* Disable autoneg on the phy */
1454	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1455
1456	/* Forcing Full or Half Duplex? */
1457	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458		ctrl &= ~E1000_CTRL_FD;
1459		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1460		e_dbg("Half Duplex\n");
1461	} else {
1462		ctrl |= E1000_CTRL_FD;
1463		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1464		e_dbg("Full Duplex\n");
1465	}
1466
1467	/* Forcing 10mb or 100mb? */
1468	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469		ctrl |= E1000_CTRL_SPD_100;
1470		*phy_ctrl |= MII_CR_SPEED_100;
1471		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1472		e_dbg("Forcing 100mb\n");
1473	} else {
1474		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475		*phy_ctrl |= MII_CR_SPEED_10;
1476		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1477		e_dbg("Forcing 10mb\n");
1478	}
1479
1480	e1000e_config_collision_dist(hw);
1481
1482	ew32(CTRL, ctrl);
1483}
1484
1485/**
1486 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1487 *  @hw: pointer to the HW structure
1488 *  @active: boolean used to enable/disable lplu
1489 *
1490 *  Success returns 0, Failure returns 1
1491 *
1492 *  The low power link up (lplu) state is set to the power management level D3
1493 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1494 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1495 *  is used during Dx states where the power conservation is most important.
1496 *  During driver activity, SmartSpeed should be enabled so performance is
1497 *  maintained.
1498 **/
1499s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1500{
1501	struct e1000_phy_info *phy = &hw->phy;
1502	s32 ret_val;
1503	u16 data;
1504
1505	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1506	if (ret_val)
1507		return ret_val;
1508
1509	if (!active) {
1510		data &= ~IGP02E1000_PM_D3_LPLU;
1511		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1512		if (ret_val)
1513			return ret_val;
1514		/*
1515		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1516		 * during Dx states where the power conservation is most
1517		 * important.  During driver activity we should enable
1518		 * SmartSpeed, so performance is maintained.
1519		 */
1520		if (phy->smart_speed == e1000_smart_speed_on) {
1521			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1522					   &data);
1523			if (ret_val)
1524				return ret_val;
1525
1526			data |= IGP01E1000_PSCFR_SMART_SPEED;
1527			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528					   data);
1529			if (ret_val)
1530				return ret_val;
1531		} else if (phy->smart_speed == e1000_smart_speed_off) {
1532			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533					   &data);
1534			if (ret_val)
1535				return ret_val;
1536
1537			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539					   data);
1540			if (ret_val)
1541				return ret_val;
1542		}
1543	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1544		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1545		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1546		data |= IGP02E1000_PM_D3_LPLU;
1547		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1548		if (ret_val)
1549			return ret_val;
1550
1551		/* When LPLU is enabled, we should disable SmartSpeed */
1552		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1553		if (ret_val)
1554			return ret_val;
1555
1556		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1557		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1558	}
1559
1560	return ret_val;
1561}
1562
1563/**
1564 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1565 *  @hw: pointer to the HW structure
1566 *
1567 *  Success returns 0, Failure returns 1
1568 *
1569 *  A downshift is detected by querying the PHY link health.
1570 **/
1571s32 e1000e_check_downshift(struct e1000_hw *hw)
1572{
1573	struct e1000_phy_info *phy = &hw->phy;
1574	s32 ret_val;
1575	u16 phy_data, offset, mask;
1576
1577	switch (phy->type) {
1578	case e1000_phy_m88:
1579	case e1000_phy_gg82563:
1580	case e1000_phy_bm:
1581	case e1000_phy_82578:
1582		offset	= M88E1000_PHY_SPEC_STATUS;
1583		mask	= M88E1000_PSSR_DOWNSHIFT;
1584		break;
1585	case e1000_phy_igp_2:
1586	case e1000_phy_igp_3:
1587		offset	= IGP01E1000_PHY_LINK_HEALTH;
1588		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1589		break;
1590	default:
1591		/* speed downshift not supported */
1592		phy->speed_downgraded = false;
1593		return 0;
1594	}
1595
1596	ret_val = e1e_rphy(hw, offset, &phy_data);
1597
1598	if (!ret_val)
1599		phy->speed_downgraded = (phy_data & mask);
1600
1601	return ret_val;
1602}
1603
1604/**
1605 *  e1000_check_polarity_m88 - Checks the polarity.
1606 *  @hw: pointer to the HW structure
1607 *
1608 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1609 *
1610 *  Polarity is determined based on the PHY specific status register.
1611 **/
1612s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1613{
1614	struct e1000_phy_info *phy = &hw->phy;
1615	s32 ret_val;
1616	u16 data;
1617
1618	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1619
1620	if (!ret_val)
1621		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1622				      ? e1000_rev_polarity_reversed
1623				      : e1000_rev_polarity_normal;
1624
1625	return ret_val;
1626}
1627
1628/**
1629 *  e1000_check_polarity_igp - Checks the polarity.
1630 *  @hw: pointer to the HW structure
1631 *
1632 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1633 *
1634 *  Polarity is determined based on the PHY port status register, and the
1635 *  current speed (since there is no polarity at 100Mbps).
1636 **/
1637s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1638{
1639	struct e1000_phy_info *phy = &hw->phy;
1640	s32 ret_val;
1641	u16 data, offset, mask;
1642
1643	/*
1644	 * Polarity is determined based on the speed of
1645	 * our connection.
1646	 */
1647	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648	if (ret_val)
1649		return ret_val;
1650
1651	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1653		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1654		mask	= IGP01E1000_PHY_POLARITY_MASK;
1655	} else {
1656		/*
1657		 * This really only applies to 10Mbps since
1658		 * there is no polarity for 100Mbps (always 0).
1659		 */
1660		offset	= IGP01E1000_PHY_PORT_STATUS;
1661		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1662	}
1663
1664	ret_val = e1e_rphy(hw, offset, &data);
1665
1666	if (!ret_val)
1667		phy->cable_polarity = (data & mask)
1668				      ? e1000_rev_polarity_reversed
1669				      : e1000_rev_polarity_normal;
1670
1671	return ret_val;
1672}
1673
1674/**
1675 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1676 *  @hw: pointer to the HW structure
1677 *
1678 *  Polarity is determined on the polarity reversal feature being enabled.
1679 **/
1680s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1681{
1682	struct e1000_phy_info *phy = &hw->phy;
1683	s32 ret_val;
1684	u16 phy_data, offset, mask;
1685
1686	/*
1687	 * Polarity is determined based on the reversal feature being enabled.
1688	 */
1689	if (phy->polarity_correction) {
1690		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1691		mask = IFE_PESC_POLARITY_REVERSED;
1692	} else {
1693		offset = IFE_PHY_SPECIAL_CONTROL;
1694		mask = IFE_PSC_FORCE_POLARITY;
1695	}
1696
1697	ret_val = e1e_rphy(hw, offset, &phy_data);
1698
1699	if (!ret_val)
1700		phy->cable_polarity = (phy_data & mask)
1701		                       ? e1000_rev_polarity_reversed
1702		                       : e1000_rev_polarity_normal;
1703
1704	return ret_val;
1705}
1706
1707/**
1708 *  e1000_wait_autoneg - Wait for auto-neg completion
1709 *  @hw: pointer to the HW structure
1710 *
1711 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1712 *  limit to expire, which ever happens first.
1713 **/
1714static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1715{
1716	s32 ret_val = 0;
1717	u16 i, phy_status;
1718
1719	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1720	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1721		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1722		if (ret_val)
1723			break;
1724		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1725		if (ret_val)
1726			break;
1727		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1728			break;
1729		msleep(100);
1730	}
1731
1732	/*
1733	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734	 * has completed.
1735	 */
1736	return ret_val;
1737}
1738
1739/**
1740 *  e1000e_phy_has_link_generic - Polls PHY for link
1741 *  @hw: pointer to the HW structure
1742 *  @iterations: number of times to poll for link
1743 *  @usec_interval: delay between polling attempts
1744 *  @success: pointer to whether polling was successful or not
1745 *
1746 *  Polls the PHY status register for link, 'iterations' number of times.
1747 **/
1748s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749			       u32 usec_interval, bool *success)
1750{
1751	s32 ret_val = 0;
1752	u16 i, phy_status;
1753
1754	for (i = 0; i < iterations; i++) {
1755		/*
1756		 * Some PHYs require the PHY_STATUS register to be read
1757		 * twice due to the link bit being sticky.  No harm doing
1758		 * it across the board.
1759		 */
1760		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1761		if (ret_val)
1762			/*
1763			 * If the first read fails, another entity may have
1764			 * ownership of the resources, wait and try again to
1765			 * see if they have relinquished the resources yet.
1766			 */
1767			udelay(usec_interval);
1768		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1769		if (ret_val)
1770			break;
1771		if (phy_status & MII_SR_LINK_STATUS)
1772			break;
1773		if (usec_interval >= 1000)
1774			mdelay(usec_interval/1000);
1775		else
1776			udelay(usec_interval);
1777	}
1778
1779	*success = (i < iterations);
1780
1781	return ret_val;
1782}
1783
1784/**
1785 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Reads the PHY specific status register to retrieve the cable length
1789 *  information.  The cable length is determined by averaging the minimum and
1790 *  maximum values to get the "average" cable length.  The m88 PHY has four
1791 *  possible cable length values, which are:
1792 *	Register Value		Cable Length
1793 *	0			< 50 meters
1794 *	1			50 - 80 meters
1795 *	2			80 - 110 meters
1796 *	3			110 - 140 meters
1797 *	4			> 140 meters
1798 **/
1799s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1800{
1801	struct e1000_phy_info *phy = &hw->phy;
1802	s32 ret_val;
1803	u16 phy_data, index;
1804
1805	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1806	if (ret_val)
1807		goto out;
1808
1809	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1810	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1811	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1812		ret_val = -E1000_ERR_PHY;
1813		goto out;
1814	}
1815
1816	phy->min_cable_length = e1000_m88_cable_length_table[index];
1817	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1818
1819	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1820
1821out:
1822	return ret_val;
1823}
1824
1825/**
1826 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827 *  @hw: pointer to the HW structure
1828 *
1829 *  The automatic gain control (agc) normalizes the amplitude of the
1830 *  received signal, adjusting for the attenuation produced by the
1831 *  cable.  By reading the AGC registers, which represent the
1832 *  combination of coarse and fine gain value, the value can be put
1833 *  into a lookup table to obtain the approximate cable length
1834 *  for each channel.
1835 **/
1836s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1837{
1838	struct e1000_phy_info *phy = &hw->phy;
1839	s32 ret_val;
1840	u16 phy_data, i, agc_value = 0;
1841	u16 cur_agc_index, max_agc_index = 0;
1842	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1843	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1844							 {IGP02E1000_PHY_AGC_A,
1845							  IGP02E1000_PHY_AGC_B,
1846							  IGP02E1000_PHY_AGC_C,
1847							  IGP02E1000_PHY_AGC_D};
1848
1849	/* Read the AGC registers for all channels */
1850	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1851		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1852		if (ret_val)
1853			return ret_val;
1854
1855		/*
1856		 * Getting bits 15:9, which represent the combination of
1857		 * coarse and fine gain values.  The result is a number
1858		 * that can be put into the lookup table to obtain the
1859		 * approximate cable length.
1860		 */
1861		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1862				IGP02E1000_AGC_LENGTH_MASK;
1863
1864		/* Array index bound check. */
1865		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1866		    (cur_agc_index == 0))
1867			return -E1000_ERR_PHY;
1868
1869		/* Remove min & max AGC values from calculation. */
1870		if (e1000_igp_2_cable_length_table[min_agc_index] >
1871		    e1000_igp_2_cable_length_table[cur_agc_index])
1872			min_agc_index = cur_agc_index;
1873		if (e1000_igp_2_cable_length_table[max_agc_index] <
1874		    e1000_igp_2_cable_length_table[cur_agc_index])
1875			max_agc_index = cur_agc_index;
1876
1877		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1878	}
1879
1880	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1881		      e1000_igp_2_cable_length_table[max_agc_index]);
1882	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1883
1884	/* Calculate cable length with the error range of +/- 10 meters. */
1885	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1886				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1887	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1888
1889	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1890
1891	return ret_val;
1892}
1893
1894/**
1895 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1896 *  @hw: pointer to the HW structure
1897 *
1898 *  Valid for only copper links.  Read the PHY status register (sticky read)
1899 *  to verify that link is up.  Read the PHY special control register to
1900 *  determine the polarity and 10base-T extended distance.  Read the PHY
1901 *  special status register to determine MDI/MDIx and current speed.  If
1902 *  speed is 1000, then determine cable length, local and remote receiver.
1903 **/
1904s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1905{
1906	struct e1000_phy_info *phy = &hw->phy;
1907	s32  ret_val;
1908	u16 phy_data;
1909	bool link;
1910
1911	if (phy->media_type != e1000_media_type_copper) {
1912		e_dbg("Phy info is only valid for copper media\n");
1913		return -E1000_ERR_CONFIG;
1914	}
1915
1916	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1917	if (ret_val)
1918		return ret_val;
1919
1920	if (!link) {
1921		e_dbg("Phy info is only valid if link is up\n");
1922		return -E1000_ERR_CONFIG;
1923	}
1924
1925	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1926	if (ret_val)
1927		return ret_val;
1928
1929	phy->polarity_correction = (phy_data &
1930				    M88E1000_PSCR_POLARITY_REVERSAL);
1931
1932	ret_val = e1000_check_polarity_m88(hw);
1933	if (ret_val)
1934		return ret_val;
1935
1936	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1937	if (ret_val)
1938		return ret_val;
1939
1940	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1941
1942	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1943		ret_val = e1000_get_cable_length(hw);
1944		if (ret_val)
1945			return ret_val;
1946
1947		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1948		if (ret_val)
1949			return ret_val;
1950
1951		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1952				? e1000_1000t_rx_status_ok
1953				: e1000_1000t_rx_status_not_ok;
1954
1955		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1956				 ? e1000_1000t_rx_status_ok
1957				 : e1000_1000t_rx_status_not_ok;
1958	} else {
1959		/* Set values to "undefined" */
1960		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1961		phy->local_rx = e1000_1000t_rx_status_undefined;
1962		phy->remote_rx = e1000_1000t_rx_status_undefined;
1963	}
1964
1965	return ret_val;
1966}
1967
1968/**
1969 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1970 *  @hw: pointer to the HW structure
1971 *
1972 *  Read PHY status to determine if link is up.  If link is up, then
1973 *  set/determine 10base-T extended distance and polarity correction.  Read
1974 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1975 *  determine on the cable length, local and remote receiver.
1976 **/
1977s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1978{
1979	struct e1000_phy_info *phy = &hw->phy;
1980	s32 ret_val;
1981	u16 data;
1982	bool link;
1983
1984	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1985	if (ret_val)
1986		return ret_val;
1987
1988	if (!link) {
1989		e_dbg("Phy info is only valid if link is up\n");
1990		return -E1000_ERR_CONFIG;
1991	}
1992
1993	phy->polarity_correction = true;
1994
1995	ret_val = e1000_check_polarity_igp(hw);
1996	if (ret_val)
1997		return ret_val;
1998
1999	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2000	if (ret_val)
2001		return ret_val;
2002
2003	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2004
2005	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2006	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2007		ret_val = e1000_get_cable_length(hw);
2008		if (ret_val)
2009			return ret_val;
2010
2011		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2012		if (ret_val)
2013			return ret_val;
2014
2015		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2016				? e1000_1000t_rx_status_ok
2017				: e1000_1000t_rx_status_not_ok;
2018
2019		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2020				 ? e1000_1000t_rx_status_ok
2021				 : e1000_1000t_rx_status_not_ok;
2022	} else {
2023		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2024		phy->local_rx = e1000_1000t_rx_status_undefined;
2025		phy->remote_rx = e1000_1000t_rx_status_undefined;
2026	}
2027
2028	return ret_val;
2029}
2030
2031/**
2032 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2033 *  @hw: pointer to the HW structure
2034 *
2035 *  Populates "phy" structure with various feature states.
2036 **/
2037s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2038{
2039	struct e1000_phy_info *phy = &hw->phy;
2040	s32 ret_val;
2041	u16 data;
2042	bool link;
2043
2044	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2045	if (ret_val)
2046		goto out;
2047
2048	if (!link) {
2049		e_dbg("Phy info is only valid if link is up\n");
2050		ret_val = -E1000_ERR_CONFIG;
2051		goto out;
2052	}
2053
2054	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2055	if (ret_val)
2056		goto out;
2057	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2058	                           ? false : true;
2059
2060	if (phy->polarity_correction) {
2061		ret_val = e1000_check_polarity_ife(hw);
2062		if (ret_val)
2063			goto out;
2064	} else {
2065		/* Polarity is forced */
2066		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2067		                      ? e1000_rev_polarity_reversed
2068		                      : e1000_rev_polarity_normal;
2069	}
2070
2071	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2072	if (ret_val)
2073		goto out;
2074
2075	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2076
2077	/* The following parameters are undefined for 10/100 operation. */
2078	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2079	phy->local_rx = e1000_1000t_rx_status_undefined;
2080	phy->remote_rx = e1000_1000t_rx_status_undefined;
2081
2082out:
2083	return ret_val;
2084}
2085
2086/**
2087 *  e1000e_phy_sw_reset - PHY software reset
2088 *  @hw: pointer to the HW structure
2089 *
2090 *  Does a software reset of the PHY by reading the PHY control register and
2091 *  setting/write the control register reset bit to the PHY.
2092 **/
2093s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2094{
2095	s32 ret_val;
2096	u16 phy_ctrl;
2097
2098	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2099	if (ret_val)
2100		return ret_val;
2101
2102	phy_ctrl |= MII_CR_RESET;
2103	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2104	if (ret_val)
2105		return ret_val;
2106
2107	udelay(1);
2108
2109	return ret_val;
2110}
2111
2112/**
2113 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2114 *  @hw: pointer to the HW structure
2115 *
2116 *  Verify the reset block is not blocking us from resetting.  Acquire
2117 *  semaphore (if necessary) and read/set/write the device control reset
2118 *  bit in the PHY.  Wait the appropriate delay time for the device to
2119 *  reset and release the semaphore (if necessary).
2120 **/
2121s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2122{
2123	struct e1000_phy_info *phy = &hw->phy;
2124	s32 ret_val;
2125	u32 ctrl;
2126
2127	ret_val = e1000_check_reset_block(hw);
2128	if (ret_val)
2129		return 0;
2130
2131	ret_val = phy->ops.acquire(hw);
2132	if (ret_val)
2133		return ret_val;
2134
2135	ctrl = er32(CTRL);
2136	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2137	e1e_flush();
2138
2139	udelay(phy->reset_delay_us);
2140
2141	ew32(CTRL, ctrl);
2142	e1e_flush();
2143
2144	udelay(150);
2145
2146	phy->ops.release(hw);
2147
2148	return e1000_get_phy_cfg_done(hw);
2149}
2150
2151/**
2152 *  e1000e_get_cfg_done - Generic configuration done
2153 *  @hw: pointer to the HW structure
2154 *
2155 *  Generic function to wait 10 milli-seconds for configuration to complete
2156 *  and return success.
2157 **/
2158s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2159{
2160	mdelay(10);
2161	return 0;
2162}
2163
2164/**
2165 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2166 *  @hw: pointer to the HW structure
2167 *
2168 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2169 **/
2170s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2171{
2172	e_dbg("Running IGP 3 PHY init script\n");
2173
2174	/* PHY init IGP 3 */
2175	/* Enable rise/fall, 10-mode work in class-A */
2176	e1e_wphy(hw, 0x2F5B, 0x9018);
2177	/* Remove all caps from Replica path filter */
2178	e1e_wphy(hw, 0x2F52, 0x0000);
2179	/* Bias trimming for ADC, AFE and Driver (Default) */
2180	e1e_wphy(hw, 0x2FB1, 0x8B24);
2181	/* Increase Hybrid poly bias */
2182	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2183	/* Add 4% to Tx amplitude in Gig mode */
2184	e1e_wphy(hw, 0x2010, 0x10B0);
2185	/* Disable trimming (TTT) */
2186	e1e_wphy(hw, 0x2011, 0x0000);
2187	/* Poly DC correction to 94.6% + 2% for all channels */
2188	e1e_wphy(hw, 0x20DD, 0x249A);
2189	/* ABS DC correction to 95.9% */
2190	e1e_wphy(hw, 0x20DE, 0x00D3);
2191	/* BG temp curve trim */
2192	e1e_wphy(hw, 0x28B4, 0x04CE);
2193	/* Increasing ADC OPAMP stage 1 currents to max */
2194	e1e_wphy(hw, 0x2F70, 0x29E4);
2195	/* Force 1000 ( required for enabling PHY regs configuration) */
2196	e1e_wphy(hw, 0x0000, 0x0140);
2197	/* Set upd_freq to 6 */
2198	e1e_wphy(hw, 0x1F30, 0x1606);
2199	/* Disable NPDFE */
2200	e1e_wphy(hw, 0x1F31, 0xB814);
2201	/* Disable adaptive fixed FFE (Default) */
2202	e1e_wphy(hw, 0x1F35, 0x002A);
2203	/* Enable FFE hysteresis */
2204	e1e_wphy(hw, 0x1F3E, 0x0067);
2205	/* Fixed FFE for short cable lengths */
2206	e1e_wphy(hw, 0x1F54, 0x0065);
2207	/* Fixed FFE for medium cable lengths */
2208	e1e_wphy(hw, 0x1F55, 0x002A);
2209	/* Fixed FFE for long cable lengths */
2210	e1e_wphy(hw, 0x1F56, 0x002A);
2211	/* Enable Adaptive Clip Threshold */
2212	e1e_wphy(hw, 0x1F72, 0x3FB0);
2213	/* AHT reset limit to 1 */
2214	e1e_wphy(hw, 0x1F76, 0xC0FF);
2215	/* Set AHT master delay to 127 msec */
2216	e1e_wphy(hw, 0x1F77, 0x1DEC);
2217	/* Set scan bits for AHT */
2218	e1e_wphy(hw, 0x1F78, 0xF9EF);
2219	/* Set AHT Preset bits */
2220	e1e_wphy(hw, 0x1F79, 0x0210);
2221	/* Change integ_factor of channel A to 3 */
2222	e1e_wphy(hw, 0x1895, 0x0003);
2223	/* Change prop_factor of channels BCD to 8 */
2224	e1e_wphy(hw, 0x1796, 0x0008);
2225	/* Change cg_icount + enable integbp for channels BCD */
2226	e1e_wphy(hw, 0x1798, 0xD008);
2227	/*
2228	 * Change cg_icount + enable integbp + change prop_factor_master
2229	 * to 8 for channel A
2230	 */
2231	e1e_wphy(hw, 0x1898, 0xD918);
2232	/* Disable AHT in Slave mode on channel A */
2233	e1e_wphy(hw, 0x187A, 0x0800);
2234	/*
2235	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2236	 * Enable SPD+B2B
2237	 */
2238	e1e_wphy(hw, 0x0019, 0x008D);
2239	/* Enable restart AN on an1000_dis change */
2240	e1e_wphy(hw, 0x001B, 0x2080);
2241	/* Enable wh_fifo read clock in 10/100 modes */
2242	e1e_wphy(hw, 0x0014, 0x0045);
2243	/* Restart AN, Speed selection is 1000 */
2244	e1e_wphy(hw, 0x0000, 0x1340);
2245
2246	return 0;
2247}
2248
2249/* Internal function pointers */
2250
2251/**
2252 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2253 *  @hw: pointer to the HW structure
2254 *
2255 *  Return success if silicon family did not implement a family specific
2256 *  get_cfg_done function.
2257 **/
2258static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2259{
2260	if (hw->phy.ops.get_cfg_done)
2261		return hw->phy.ops.get_cfg_done(hw);
2262
2263	return 0;
2264}
2265
2266/**
2267 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2268 *  @hw: pointer to the HW structure
2269 *
2270 *  When the silicon family has not implemented a forced speed/duplex
2271 *  function for the PHY, simply return 0.
2272 **/
2273static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2274{
2275	if (hw->phy.ops.force_speed_duplex)
2276		return hw->phy.ops.force_speed_duplex(hw);
2277
2278	return 0;
2279}
2280
2281/**
2282 *  e1000e_get_phy_type_from_id - Get PHY type from id
2283 *  @phy_id: phy_id read from the phy
2284 *
2285 *  Returns the phy type from the id.
2286 **/
2287enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2288{
2289	enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291	switch (phy_id) {
2292	case M88E1000_I_PHY_ID:
2293	case M88E1000_E_PHY_ID:
2294	case M88E1111_I_PHY_ID:
2295	case M88E1011_I_PHY_ID:
2296		phy_type = e1000_phy_m88;
2297		break;
2298	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2299		phy_type = e1000_phy_igp_2;
2300		break;
2301	case GG82563_E_PHY_ID:
2302		phy_type = e1000_phy_gg82563;
2303		break;
2304	case IGP03E1000_E_PHY_ID:
2305		phy_type = e1000_phy_igp_3;
2306		break;
2307	case IFE_E_PHY_ID:
2308	case IFE_PLUS_E_PHY_ID:
2309	case IFE_C_E_PHY_ID:
2310		phy_type = e1000_phy_ife;
2311		break;
2312	case BME1000_E_PHY_ID:
2313	case BME1000_E_PHY_ID_R2:
2314		phy_type = e1000_phy_bm;
2315		break;
2316	case I82578_E_PHY_ID:
2317		phy_type = e1000_phy_82578;
2318		break;
2319	case I82577_E_PHY_ID:
2320		phy_type = e1000_phy_82577;
2321		break;
2322	case I82579_E_PHY_ID:
2323		phy_type = e1000_phy_82579;
2324		break;
2325	default:
2326		phy_type = e1000_phy_unknown;
2327		break;
2328	}
2329	return phy_type;
2330}
2331
2332/**
2333 *  e1000e_determine_phy_address - Determines PHY address.
2334 *  @hw: pointer to the HW structure
2335 *
2336 *  This uses a trial and error method to loop through possible PHY
2337 *  addresses. It tests each by reading the PHY ID registers and
2338 *  checking for a match.
2339 **/
2340s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2341{
2342	s32 ret_val = -E1000_ERR_PHY_TYPE;
2343	u32 phy_addr = 0;
2344	u32 i;
2345	enum e1000_phy_type phy_type = e1000_phy_unknown;
2346
2347	hw->phy.id = phy_type;
2348
2349	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2350		hw->phy.addr = phy_addr;
2351		i = 0;
2352
2353		do {
2354			e1000e_get_phy_id(hw);
2355			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2356
2357			/*
2358			 * If phy_type is valid, break - we found our
2359			 * PHY address
2360			 */
2361			if (phy_type  != e1000_phy_unknown) {
2362				ret_val = 0;
2363				goto out;
2364			}
2365			msleep(1);
2366			i++;
2367		} while (i < 10);
2368	}
2369
2370out:
2371	return ret_val;
2372}
2373
2374/**
2375 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2376 *  @page: page to access
2377 *
2378 *  Returns the phy address for the page requested.
2379 **/
2380static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2381{
2382	u32 phy_addr = 2;
2383
2384	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2385		phy_addr = 1;
2386
2387	return phy_addr;
2388}
2389
2390/**
2391 *  e1000e_write_phy_reg_bm - Write BM PHY register
2392 *  @hw: pointer to the HW structure
2393 *  @offset: register offset to write to
2394 *  @data: data to write at register offset
2395 *
2396 *  Acquires semaphore, if necessary, then writes the data to PHY register
2397 *  at the offset.  Release any acquired semaphores before exiting.
2398 **/
2399s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2400{
2401	s32 ret_val;
2402	u32 page_select = 0;
2403	u32 page = offset >> IGP_PAGE_SHIFT;
2404	u32 page_shift = 0;
2405
2406	ret_val = hw->phy.ops.acquire(hw);
2407	if (ret_val)
2408		return ret_val;
2409
2410	/* Page 800 works differently than the rest so it has its own func */
2411	if (page == BM_WUC_PAGE) {
2412		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2413							 false);
2414		goto out;
2415	}
2416
2417	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2418
2419	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2420		/*
2421		 * Page select is register 31 for phy address 1 and 22 for
2422		 * phy address 2 and 3. Page select is shifted only for
2423		 * phy address 1.
2424		 */
2425		if (hw->phy.addr == 1) {
2426			page_shift = IGP_PAGE_SHIFT;
2427			page_select = IGP01E1000_PHY_PAGE_SELECT;
2428		} else {
2429			page_shift = 0;
2430			page_select = BM_PHY_PAGE_SELECT;
2431		}
2432
2433		/* Page is shifted left, PHY expects (page x 32) */
2434		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2435		                                    (page << page_shift));
2436		if (ret_val)
2437			goto out;
2438	}
2439
2440	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2441	                                    data);
2442
2443out:
2444	hw->phy.ops.release(hw);
2445	return ret_val;
2446}
2447
2448/**
2449 *  e1000e_read_phy_reg_bm - Read BM PHY register
2450 *  @hw: pointer to the HW structure
2451 *  @offset: register offset to be read
2452 *  @data: pointer to the read data
2453 *
2454 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2455 *  and storing the retrieved information in data.  Release any acquired
2456 *  semaphores before exiting.
2457 **/
2458s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2459{
2460	s32 ret_val;
2461	u32 page_select = 0;
2462	u32 page = offset >> IGP_PAGE_SHIFT;
2463	u32 page_shift = 0;
2464
2465	ret_val = hw->phy.ops.acquire(hw);
2466	if (ret_val)
2467		return ret_val;
2468
2469	/* Page 800 works differently than the rest so it has its own func */
2470	if (page == BM_WUC_PAGE) {
2471		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2472							 true);
2473		goto out;
2474	}
2475
2476	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2477
2478	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2479		/*
2480		 * Page select is register 31 for phy address 1 and 22 for
2481		 * phy address 2 and 3. Page select is shifted only for
2482		 * phy address 1.
2483		 */
2484		if (hw->phy.addr == 1) {
2485			page_shift = IGP_PAGE_SHIFT;
2486			page_select = IGP01E1000_PHY_PAGE_SELECT;
2487		} else {
2488			page_shift = 0;
2489			page_select = BM_PHY_PAGE_SELECT;
2490		}
2491
2492		/* Page is shifted left, PHY expects (page x 32) */
2493		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2494		                                    (page << page_shift));
2495		if (ret_val)
2496			goto out;
2497	}
2498
2499	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2500	                                   data);
2501out:
2502	hw->phy.ops.release(hw);
2503	return ret_val;
2504}
2505
2506/**
2507 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2508 *  @hw: pointer to the HW structure
2509 *  @offset: register offset to be read
2510 *  @data: pointer to the read data
2511 *
2512 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2513 *  and storing the retrieved information in data.  Release any acquired
2514 *  semaphores before exiting.
2515 **/
2516s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2517{
2518	s32 ret_val;
2519	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2520
2521	ret_val = hw->phy.ops.acquire(hw);
2522	if (ret_val)
2523		return ret_val;
2524
2525	/* Page 800 works differently than the rest so it has its own func */
2526	if (page == BM_WUC_PAGE) {
2527		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2528							 true);
2529		goto out;
2530	}
2531
2532	hw->phy.addr = 1;
2533
2534	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2535
2536		/* Page is shifted left, PHY expects (page x 32) */
2537		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2538						    page);
2539
2540		if (ret_val)
2541			goto out;
2542	}
2543
2544	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2545					   data);
2546out:
2547	hw->phy.ops.release(hw);
2548	return ret_val;
2549}
2550
2551/**
2552 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2553 *  @hw: pointer to the HW structure
2554 *  @offset: register offset to write to
2555 *  @data: data to write at register offset
2556 *
2557 *  Acquires semaphore, if necessary, then writes the data to PHY register
2558 *  at the offset.  Release any acquired semaphores before exiting.
2559 **/
2560s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2561{
2562	s32 ret_val;
2563	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2564
2565	ret_val = hw->phy.ops.acquire(hw);
2566	if (ret_val)
2567		return ret_val;
2568
2569	/* Page 800 works differently than the rest so it has its own func */
2570	if (page == BM_WUC_PAGE) {
2571		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2572							 false);
2573		goto out;
2574	}
2575
2576	hw->phy.addr = 1;
2577
2578	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2579		/* Page is shifted left, PHY expects (page x 32) */
2580		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2581						    page);
2582
2583		if (ret_val)
2584			goto out;
2585	}
2586
2587	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2588					    data);
2589
2590out:
2591	hw->phy.ops.release(hw);
2592	return ret_val;
2593}
2594
2595/**
2596 *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2597 *  @hw: pointer to the HW structure
2598 *  @offset: register offset to be read or written
2599 *  @data: pointer to the data to read or write
2600 *  @read: determines if operation is read or write
2601 *
2602 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2603 *  and storing the retrieved information in data.  Release any acquired
2604 *  semaphores before exiting. Note that procedure to read the wakeup
2605 *  registers are different. It works as such:
2606 *  1) Set page 769, register 17, bit 2 = 1
2607 *  2) Set page to 800 for host (801 if we were manageability)
2608 *  3) Write the address using the address opcode (0x11)
2609 *  4) Read or write the data using the data opcode (0x12)
2610 *  5) Restore 769_17.2 to its original value
2611 *
2612 *  Assumes semaphore already acquired.
2613 **/
2614static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2615					  u16 *data, bool read)
2616{
2617	s32 ret_val;
2618	u16 reg = BM_PHY_REG_NUM(offset);
2619	u16 phy_reg = 0;
2620
2621	/* Gig must be disabled for MDIO accesses to page 800 */
2622	if ((hw->mac.type == e1000_pchlan) &&
2623	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2624		e_dbg("Attempting to access page 800 while gig enabled.\n");
2625
2626	/* All operations in this function are phy address 1 */
2627	hw->phy.addr = 1;
2628
2629	/* Set page 769 */
2630	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2631	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2632
2633	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2634	if (ret_val) {
2635		e_dbg("Could not read PHY page 769\n");
2636		goto out;
2637	}
2638
2639	/* First clear bit 4 to avoid a power state change */
2640	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2641	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2642	if (ret_val) {
2643		e_dbg("Could not clear PHY page 769 bit 4\n");
2644		goto out;
2645	}
2646
2647	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
2648	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2649	                                    phy_reg | BM_WUC_ENABLE_BIT);
2650	if (ret_val) {
2651		e_dbg("Could not write PHY page 769 bit 2\n");
2652		goto out;
2653	}
2654
2655	/* Select page 800 */
2656	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2657	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2658
2659	/* Write the page 800 offset value using opcode 0x11 */
2660	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2661	if (ret_val) {
2662		e_dbg("Could not write address opcode to page 800\n");
2663		goto out;
2664	}
2665
2666	if (read) {
2667	        /* Read the page 800 value using opcode 0x12 */
2668		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2669		                                   data);
2670	} else {
2671	        /* Write the page 800 value using opcode 0x12 */
2672		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2673						    *data);
2674	}
2675
2676	if (ret_val) {
2677		e_dbg("Could not access data value from page 800\n");
2678		goto out;
2679	}
2680
2681	/*
2682	 * Restore 769_17.2 to its original value
2683	 * Set page 769
2684	 */
2685	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2686	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2687
2688	/* Clear 769_17.2 */
2689	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2690	if (ret_val) {
2691		e_dbg("Could not clear PHY page 769 bit 2\n");
2692		goto out;
2693	}
2694
2695out:
2696	return ret_val;
2697}
2698
2699/**
2700 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2701 * @hw: pointer to the HW structure
2702 *
2703 * In the case of a PHY power down to save power, or to turn off link during a
2704 * driver unload, or wake on lan is not enabled, restore the link to previous
2705 * settings.
2706 **/
2707void e1000_power_up_phy_copper(struct e1000_hw *hw)
2708{
2709	u16 mii_reg = 0;
2710
2711	/* The PHY will retain its settings across a power down/up cycle */
2712	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2713	mii_reg &= ~MII_CR_POWER_DOWN;
2714	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2715}
2716
2717/**
2718 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2719 * @hw: pointer to the HW structure
2720 *
2721 * In the case of a PHY power down to save power, or to turn off link during a
2722 * driver unload, or wake on lan is not enabled, restore the link to previous
2723 * settings.
2724 **/
2725void e1000_power_down_phy_copper(struct e1000_hw *hw)
2726{
2727	u16 mii_reg = 0;
2728
2729	/* The PHY will retain its settings across a power down/up cycle */
2730	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2731	mii_reg |= MII_CR_POWER_DOWN;
2732	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2733	msleep(1);
2734}
2735
2736/**
2737 *  e1000e_commit_phy - Soft PHY reset
2738 *  @hw: pointer to the HW structure
2739 *
2740 *  Performs a soft PHY reset on those that apply. This is a function pointer
2741 *  entry point called by drivers.
2742 **/
2743s32 e1000e_commit_phy(struct e1000_hw *hw)
2744{
2745	if (hw->phy.ops.commit)
2746		return hw->phy.ops.commit(hw);
2747
2748	return 0;
2749}
2750
2751/**
2752 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2753 *  @hw: pointer to the HW structure
2754 *  @active: boolean used to enable/disable lplu
2755 *
2756 *  Success returns 0, Failure returns 1
2757 *
2758 *  The low power link up (lplu) state is set to the power management level D0
2759 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2760 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2761 *  is used during Dx states where the power conservation is most important.
2762 *  During driver activity, SmartSpeed should be enabled so performance is
2763 *  maintained.  This is a function pointer entry point called by drivers.
2764 **/
2765static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2766{
2767	if (hw->phy.ops.set_d0_lplu_state)
2768		return hw->phy.ops.set_d0_lplu_state(hw, active);
2769
2770	return 0;
2771}
2772
2773/**
2774 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2775 *  @hw: pointer to the HW structure
2776 *  @offset: register offset to be read
2777 *  @data: pointer to the read data
2778 *  @locked: semaphore has already been acquired or not
2779 *
2780 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2781 *  and stores the retrieved information in data.  Release any acquired
2782 *  semaphore before exiting.
2783 **/
2784static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2785                                   bool locked)
2786{
2787	s32 ret_val;
2788	u16 page = BM_PHY_REG_PAGE(offset);
2789	u16 reg = BM_PHY_REG_NUM(offset);
2790
2791	if (!locked) {
2792		ret_val = hw->phy.ops.acquire(hw);
2793		if (ret_val)
2794			return ret_val;
2795	}
2796
2797	/* Page 800 works differently than the rest so it has its own func */
2798	if (page == BM_WUC_PAGE) {
2799		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2800		                                         data, true);
2801		goto out;
2802	}
2803
2804	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2805		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2806		                                         data, true);
2807		goto out;
2808	}
2809
2810	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2811
2812	if (page == HV_INTC_FC_PAGE_START)
2813		page = 0;
2814
2815	if (reg > MAX_PHY_MULTI_PAGE_REG) {
2816		u32 phy_addr = hw->phy.addr;
2817
2818		hw->phy.addr = 1;
2819
2820		/* Page is shifted left, PHY expects (page x 32) */
2821		ret_val = e1000e_write_phy_reg_mdic(hw,
2822					     IGP01E1000_PHY_PAGE_SELECT,
2823					     (page << IGP_PAGE_SHIFT));
2824		hw->phy.addr = phy_addr;
2825
2826		if (ret_val)
2827			goto out;
2828	}
2829
2830	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2831	                                  data);
2832out:
2833	if (!locked)
2834		hw->phy.ops.release(hw);
2835
2836	return ret_val;
2837}
2838
2839/**
2840 *  e1000_read_phy_reg_hv -  Read HV PHY register
2841 *  @hw: pointer to the HW structure
2842 *  @offset: register offset to be read
2843 *  @data: pointer to the read data
2844 *
2845 *  Acquires semaphore then reads the PHY register at offset and stores
2846 *  the retrieved information in data.  Release the acquired semaphore
2847 *  before exiting.
2848 **/
2849s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2850{
2851	return __e1000_read_phy_reg_hv(hw, offset, data, false);
2852}
2853
2854/**
2855 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2856 *  @hw: pointer to the HW structure
2857 *  @offset: register offset to be read
2858 *  @data: pointer to the read data
2859 *
2860 *  Reads the PHY register at offset and stores the retrieved information
2861 *  in data.  Assumes semaphore already acquired.
2862 **/
2863s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2864{
2865	return __e1000_read_phy_reg_hv(hw, offset, data, true);
2866}
2867
2868/**
2869 *  __e1000_write_phy_reg_hv - Write HV PHY register
2870 *  @hw: pointer to the HW structure
2871 *  @offset: register offset to write to
2872 *  @data: data to write at register offset
2873 *  @locked: semaphore has already been acquired or not
2874 *
2875 *  Acquires semaphore, if necessary, then writes the data to PHY register
2876 *  at the offset.  Release any acquired semaphores before exiting.
2877 **/
2878static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2879                                    bool locked)
2880{
2881	s32 ret_val;
2882	u16 page = BM_PHY_REG_PAGE(offset);
2883	u16 reg = BM_PHY_REG_NUM(offset);
2884
2885	if (!locked) {
2886		ret_val = hw->phy.ops.acquire(hw);
2887		if (ret_val)
2888			return ret_val;
2889	}
2890
2891	/* Page 800 works differently than the rest so it has its own func */
2892	if (page == BM_WUC_PAGE) {
2893		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2894		                                         &data, false);
2895		goto out;
2896	}
2897
2898	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2899		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2900		                                         &data, false);
2901		goto out;
2902	}
2903
2904	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2905
2906	if (page == HV_INTC_FC_PAGE_START)
2907		page = 0;
2908
2909	if ((hw->phy.type == e1000_phy_82578) &&
2910	    (hw->phy.revision >= 1) &&
2911	    (hw->phy.addr == 2) &&
2912	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2913	    (data & (1 << 11))) {
2914		u16 data2 = 0x7EFF;
2915		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2916		                                         &data2, false);
2917		if (ret_val)
2918			goto out;
2919	}
2920
2921	if (reg > MAX_PHY_MULTI_PAGE_REG) {
2922		u32 phy_addr = hw->phy.addr;
2923
2924		hw->phy.addr = 1;
2925
2926		/* Page is shifted left, PHY expects (page x 32) */
2927		ret_val = e1000e_write_phy_reg_mdic(hw,
2928					     IGP01E1000_PHY_PAGE_SELECT,
2929					     (page << IGP_PAGE_SHIFT));
2930		hw->phy.addr = phy_addr;
2931
2932		if (ret_val)
2933			goto out;
2934	}
2935
2936	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2937	                                  data);
2938
2939out:
2940	if (!locked)
2941		hw->phy.ops.release(hw);
2942
2943	return ret_val;
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_hv - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Acquires semaphore then writes the data to PHY register at the offset.
2953 *  Release the acquired semaphores before exiting.
2954 **/
2955s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957	return __e1000_write_phy_reg_hv(hw, offset, data, false);
2958}
2959
2960/**
2961 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2962 *  @hw: pointer to the HW structure
2963 *  @offset: register offset to write to
2964 *  @data: data to write at register offset
2965 *
2966 *  Writes the data to PHY register at the offset.  Assumes semaphore
2967 *  already acquired.
2968 **/
2969s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2970{
2971	return __e1000_write_phy_reg_hv(hw, offset, data, true);
2972}
2973
2974/**
2975 *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2976 *  @page: page to be accessed
2977 **/
2978static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979{
2980	u32 phy_addr = 2;
2981
2982	if (page >= HV_INTC_FC_PAGE_START)
2983		phy_addr = 1;
2984
2985	return phy_addr;
2986}
2987
2988/**
2989 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990 *  @hw: pointer to the HW structure
2991 *  @offset: register offset to be read or written
2992 *  @data: pointer to the data to be read or written
2993 *  @read: determines if operation is read or written
2994 *
2995 *  Reads the PHY register at offset and stores the retreived information
2996 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997 *  to read these regs uses the address port and data port to read/write.
2998 **/
2999static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3000                                          u16 *data, bool read)
3001{
3002	s32 ret_val;
3003	u32 addr_reg = 0;
3004	u32 data_reg = 0;
3005
3006	/* This takes care of the difference with desktop vs mobile phy */
3007	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3008	           I82578_ADDR_REG : I82577_ADDR_REG;
3009	data_reg = addr_reg + 1;
3010
3011	/* All operations in this function are phy address 2 */
3012	hw->phy.addr = 2;
3013
3014	/* masking with 0x3F to remove the page from offset */
3015	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3016	if (ret_val) {
3017		e_dbg("Could not write PHY the HV address register\n");
3018		goto out;
3019	}
3020
3021	/* Read or write the data value next */
3022	if (read)
3023		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3024	else
3025		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3026
3027	if (ret_val) {
3028		e_dbg("Could not read data value from HV data register\n");
3029		goto out;
3030	}
3031
3032out:
3033	return ret_val;
3034}
3035
3036s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3037{
3038	s32 ret_val = 0;
3039	u16 data;
3040
3041	if (hw->phy.type != e1000_phy_82578)
3042		goto out;
3043
3044	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3045	if (data & PHY_CONTROL_LB)
3046		goto out;
3047
3048	/* check if link is up and at 1Gbps */
3049	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3050	if (ret_val)
3051		goto out;
3052
3053	data &= BM_CS_STATUS_LINK_UP |
3054	        BM_CS_STATUS_RESOLVED |
3055	        BM_CS_STATUS_SPEED_MASK;
3056
3057	if (data != (BM_CS_STATUS_LINK_UP |
3058	             BM_CS_STATUS_RESOLVED |
3059	             BM_CS_STATUS_SPEED_1000))
3060		goto out;
3061
3062	mdelay(200);
3063
3064	/* flush the packets in the fifo buffer */
3065	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3066	                                HV_MUX_DATA_CTRL_GEN_TO_MAC |
3067	                                HV_MUX_DATA_CTRL_FORCE_SPEED);
3068	if (ret_val)
3069		goto out;
3070
3071	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3072	                                HV_MUX_DATA_CTRL_GEN_TO_MAC);
3073
3074out:
3075	return ret_val;
3076}
3077
3078/**
3079 *  e1000_check_polarity_82577 - Checks the polarity.
3080 *  @hw: pointer to the HW structure
3081 *
3082 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3083 *
3084 *  Polarity is determined based on the PHY specific status register.
3085 **/
3086s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3087{
3088	struct e1000_phy_info *phy = &hw->phy;
3089	s32 ret_val;
3090	u16 data;
3091
3092	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3093
3094	if (!ret_val)
3095		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3096		                      ? e1000_rev_polarity_reversed
3097		                      : e1000_rev_polarity_normal;
3098
3099	return ret_val;
3100}
3101
3102/**
3103 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3104 *  @hw: pointer to the HW structure
3105 *
3106 *  Calls the PHY setup function to force speed and duplex.
3107 **/
3108s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3109{
3110	struct e1000_phy_info *phy = &hw->phy;
3111	s32 ret_val;
3112	u16 phy_data;
3113	bool link;
3114
3115	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3116	if (ret_val)
3117		goto out;
3118
3119	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3120
3121	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3122	if (ret_val)
3123		goto out;
3124
3125	udelay(1);
3126
3127	if (phy->autoneg_wait_to_complete) {
3128		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3129
3130		ret_val = e1000e_phy_has_link_generic(hw,
3131		                                     PHY_FORCE_LIMIT,
3132		                                     100000,
3133		                                     &link);
3134		if (ret_val)
3135			goto out;
3136
3137		if (!link)
3138			e_dbg("Link taking longer than expected.\n");
3139
3140		/* Try once more */
3141		ret_val = e1000e_phy_has_link_generic(hw,
3142		                                     PHY_FORCE_LIMIT,
3143		                                     100000,
3144		                                     &link);
3145		if (ret_val)
3146			goto out;
3147	}
3148
3149out:
3150	return ret_val;
3151}
3152
3153/**
3154 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3155 *  @hw: pointer to the HW structure
3156 *
3157 *  Read PHY status to determine if link is up.  If link is up, then
3158 *  set/determine 10base-T extended distance and polarity correction.  Read
3159 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3160 *  determine on the cable length, local and remote receiver.
3161 **/
3162s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3163{
3164	struct e1000_phy_info *phy = &hw->phy;
3165	s32 ret_val;
3166	u16 data;
3167	bool link;
3168
3169	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3170	if (ret_val)
3171		goto out;
3172
3173	if (!link) {
3174		e_dbg("Phy info is only valid if link is up\n");
3175		ret_val = -E1000_ERR_CONFIG;
3176		goto out;
3177	}
3178
3179	phy->polarity_correction = true;
3180
3181	ret_val = e1000_check_polarity_82577(hw);
3182	if (ret_val)
3183		goto out;
3184
3185	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3186	if (ret_val)
3187		goto out;
3188
3189	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3190
3191	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3192	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3193		ret_val = hw->phy.ops.get_cable_length(hw);
3194		if (ret_val)
3195			goto out;
3196
3197		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3198		if (ret_val)
3199			goto out;
3200
3201		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3202		                ? e1000_1000t_rx_status_ok
3203		                : e1000_1000t_rx_status_not_ok;
3204
3205		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3206		                 ? e1000_1000t_rx_status_ok
3207		                 : e1000_1000t_rx_status_not_ok;
3208	} else {
3209		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3210		phy->local_rx = e1000_1000t_rx_status_undefined;
3211		phy->remote_rx = e1000_1000t_rx_status_undefined;
3212	}
3213
3214out:
3215	return ret_val;
3216}
3217
3218/**
3219 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3220 *  @hw: pointer to the HW structure
3221 *
3222 * Reads the diagnostic status register and verifies result is valid before
3223 * placing it in the phy_cable_length field.
3224 **/
3225s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3226{
3227	struct e1000_phy_info *phy = &hw->phy;
3228	s32 ret_val;
3229	u16 phy_data, length;
3230
3231	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3232	if (ret_val)
3233		goto out;
3234
3235	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3236	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3237
3238	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3239		ret_val = -E1000_ERR_PHY;
3240
3241	phy->cable_length = length;
3242
3243out:
3244	return ret_val;
3245}
3246