• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/e1000e/
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50			      (ID_LED_OFF1_ON2  <<  8) | \
51			      (ID_LED_DEF1_DEF2 <<  4) | \
52			      (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63				      u16 words, u16 *data);
64static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70static s32 e1000_led_on_82574(struct e1000_hw *hw);
71static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73
74/**
75 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
76 *  @hw: pointer to the HW structure
77 **/
78static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79{
80	struct e1000_phy_info *phy = &hw->phy;
81	s32 ret_val;
82
83	if (hw->phy.media_type != e1000_media_type_copper) {
84		phy->type = e1000_phy_none;
85		return 0;
86	}
87
88	phy->addr			 = 1;
89	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90	phy->reset_delay_us		 = 100;
91
92	phy->ops.power_up		 = e1000_power_up_phy_copper;
93	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
94
95	switch (hw->mac.type) {
96	case e1000_82571:
97	case e1000_82572:
98		phy->type		 = e1000_phy_igp_2;
99		break;
100	case e1000_82573:
101		phy->type		 = e1000_phy_m88;
102		break;
103	case e1000_82574:
104	case e1000_82583:
105		phy->type		 = e1000_phy_bm;
106		break;
107	default:
108		return -E1000_ERR_PHY;
109		break;
110	}
111
112	/* This can only be done after all function pointers are setup. */
113	ret_val = e1000_get_phy_id_82571(hw);
114
115	/* Verify phy id */
116	switch (hw->mac.type) {
117	case e1000_82571:
118	case e1000_82572:
119		if (phy->id != IGP01E1000_I_PHY_ID)
120			return -E1000_ERR_PHY;
121		break;
122	case e1000_82573:
123		if (phy->id != M88E1111_I_PHY_ID)
124			return -E1000_ERR_PHY;
125		break;
126	case e1000_82574:
127	case e1000_82583:
128		if (phy->id != BME1000_E_PHY_ID_R2)
129			return -E1000_ERR_PHY;
130		break;
131	default:
132		return -E1000_ERR_PHY;
133		break;
134	}
135
136	return 0;
137}
138
139/**
140 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 *  @hw: pointer to the HW structure
142 **/
143static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144{
145	struct e1000_nvm_info *nvm = &hw->nvm;
146	u32 eecd = er32(EECD);
147	u16 size;
148
149	nvm->opcode_bits = 8;
150	nvm->delay_usec = 1;
151	switch (nvm->override) {
152	case e1000_nvm_override_spi_large:
153		nvm->page_size = 32;
154		nvm->address_bits = 16;
155		break;
156	case e1000_nvm_override_spi_small:
157		nvm->page_size = 8;
158		nvm->address_bits = 8;
159		break;
160	default:
161		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163		break;
164	}
165
166	switch (hw->mac.type) {
167	case e1000_82573:
168	case e1000_82574:
169	case e1000_82583:
170		if (((eecd >> 15) & 0x3) == 0x3) {
171			nvm->type = e1000_nvm_flash_hw;
172			nvm->word_size = 2048;
173			/*
174			 * Autonomous Flash update bit must be cleared due
175			 * to Flash update issue.
176			 */
177			eecd &= ~E1000_EECD_AUPDEN;
178			ew32(EECD, eecd);
179			break;
180		}
181		/* Fall Through */
182	default:
183		nvm->type = e1000_nvm_eeprom_spi;
184		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185				  E1000_EECD_SIZE_EX_SHIFT);
186		/*
187		 * Added to a constant, "size" becomes the left-shift value
188		 * for setting word_size.
189		 */
190		size += NVM_WORD_SIZE_BASE_SHIFT;
191
192		/* EEPROM access above 16k is unsupported */
193		if (size > 14)
194			size = 14;
195		nvm->word_size	= 1 << size;
196		break;
197	}
198
199	return 0;
200}
201
202/**
203 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
204 *  @hw: pointer to the HW structure
205 **/
206static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207{
208	struct e1000_hw *hw = &adapter->hw;
209	struct e1000_mac_info *mac = &hw->mac;
210	struct e1000_mac_operations *func = &mac->ops;
211	u32 swsm = 0;
212	u32 swsm2 = 0;
213	bool force_clear_smbi = false;
214
215	/* Set media type */
216	switch (adapter->pdev->device) {
217	case E1000_DEV_ID_82571EB_FIBER:
218	case E1000_DEV_ID_82572EI_FIBER:
219	case E1000_DEV_ID_82571EB_QUAD_FIBER:
220		hw->phy.media_type = e1000_media_type_fiber;
221		break;
222	case E1000_DEV_ID_82571EB_SERDES:
223	case E1000_DEV_ID_82572EI_SERDES:
224	case E1000_DEV_ID_82571EB_SERDES_DUAL:
225	case E1000_DEV_ID_82571EB_SERDES_QUAD:
226		hw->phy.media_type = e1000_media_type_internal_serdes;
227		break;
228	default:
229		hw->phy.media_type = e1000_media_type_copper;
230		break;
231	}
232
233	/* Set mta register count */
234	mac->mta_reg_count = 128;
235	/* Set rar entry count */
236	mac->rar_entry_count = E1000_RAR_ENTRIES;
237	/* Adaptive IFS supported */
238	mac->adaptive_ifs = true;
239
240	/* check for link */
241	switch (hw->phy.media_type) {
242	case e1000_media_type_copper:
243		func->setup_physical_interface = e1000_setup_copper_link_82571;
244		func->check_for_link = e1000e_check_for_copper_link;
245		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
246		break;
247	case e1000_media_type_fiber:
248		func->setup_physical_interface =
249			e1000_setup_fiber_serdes_link_82571;
250		func->check_for_link = e1000e_check_for_fiber_link;
251		func->get_link_up_info =
252			e1000e_get_speed_and_duplex_fiber_serdes;
253		break;
254	case e1000_media_type_internal_serdes:
255		func->setup_physical_interface =
256			e1000_setup_fiber_serdes_link_82571;
257		func->check_for_link = e1000_check_for_serdes_link_82571;
258		func->get_link_up_info =
259			e1000e_get_speed_and_duplex_fiber_serdes;
260		break;
261	default:
262		return -E1000_ERR_CONFIG;
263		break;
264	}
265
266	switch (hw->mac.type) {
267	case e1000_82573:
268		func->set_lan_id = e1000_set_lan_id_single_port;
269		func->check_mng_mode = e1000e_check_mng_mode_generic;
270		func->led_on = e1000e_led_on_generic;
271
272		/* FWSM register */
273		mac->has_fwsm = true;
274		/*
275		 * ARC supported; valid only if manageability features are
276		 * enabled.
277		 */
278		mac->arc_subsystem_valid =
279			(er32(FWSM) & E1000_FWSM_MODE_MASK)
280			? true : false;
281		break;
282	case e1000_82574:
283	case e1000_82583:
284		func->set_lan_id = e1000_set_lan_id_single_port;
285		func->check_mng_mode = e1000_check_mng_mode_82574;
286		func->led_on = e1000_led_on_82574;
287		break;
288	default:
289		func->check_mng_mode = e1000e_check_mng_mode_generic;
290		func->led_on = e1000e_led_on_generic;
291
292		/* FWSM register */
293		mac->has_fwsm = true;
294		break;
295	}
296
297	/*
298	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
299	 * first NVM or PHY acess. This should be done for single-port
300	 * devices, and for one port only on dual-port devices so that
301	 * for those devices we can still use the SMBI lock to synchronize
302	 * inter-port accesses to the PHY & NVM.
303	 */
304	switch (hw->mac.type) {
305	case e1000_82571:
306	case e1000_82572:
307		swsm2 = er32(SWSM2);
308
309		if (!(swsm2 & E1000_SWSM2_LOCK)) {
310			/* Only do this for the first interface on this card */
311			ew32(SWSM2,
312			    swsm2 | E1000_SWSM2_LOCK);
313			force_clear_smbi = true;
314		} else
315			force_clear_smbi = false;
316		break;
317	default:
318		force_clear_smbi = true;
319		break;
320	}
321
322	if (force_clear_smbi) {
323		/* Make sure SWSM.SMBI is clear */
324		swsm = er32(SWSM);
325		if (swsm & E1000_SWSM_SMBI) {
326			/* This bit should not be set on a first interface, and
327			 * indicates that the bootagent or EFI code has
328			 * improperly left this bit enabled
329			 */
330			e_dbg("Please update your 82571 Bootagent\n");
331		}
332		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
333	}
334
335	/*
336	 * Initialize device specific counter of SMBI acquisition
337	 * timeouts.
338	 */
339	 hw->dev_spec.e82571.smb_counter = 0;
340
341	return 0;
342}
343
344static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
345{
346	struct e1000_hw *hw = &adapter->hw;
347	static int global_quad_port_a; /* global port a indication */
348	struct pci_dev *pdev = adapter->pdev;
349	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
350	s32 rc;
351
352	rc = e1000_init_mac_params_82571(adapter);
353	if (rc)
354		return rc;
355
356	rc = e1000_init_nvm_params_82571(hw);
357	if (rc)
358		return rc;
359
360	rc = e1000_init_phy_params_82571(hw);
361	if (rc)
362		return rc;
363
364	/* tag quad port adapters first, it's used below */
365	switch (pdev->device) {
366	case E1000_DEV_ID_82571EB_QUAD_COPPER:
367	case E1000_DEV_ID_82571EB_QUAD_FIBER:
368	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
369	case E1000_DEV_ID_82571PT_QUAD_COPPER:
370		adapter->flags |= FLAG_IS_QUAD_PORT;
371		/* mark the first port */
372		if (global_quad_port_a == 0)
373			adapter->flags |= FLAG_IS_QUAD_PORT_A;
374		/* Reset for multiple quad port adapters */
375		global_quad_port_a++;
376		if (global_quad_port_a == 4)
377			global_quad_port_a = 0;
378		break;
379	default:
380		break;
381	}
382
383	switch (adapter->hw.mac.type) {
384	case e1000_82571:
385		/* these dual ports don't have WoL on port B at all */
386		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
387		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
388		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
389		    (is_port_b))
390			adapter->flags &= ~FLAG_HAS_WOL;
391		/* quad ports only support WoL on port A */
392		if (adapter->flags & FLAG_IS_QUAD_PORT &&
393		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
394			adapter->flags &= ~FLAG_HAS_WOL;
395		/* Does not support WoL on any port */
396		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
397			adapter->flags &= ~FLAG_HAS_WOL;
398		break;
399	case e1000_82573:
400	case e1000_82574:
401	case e1000_82583:
402		/* Disable ASPM L0s due to hardware errata */
403		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
404
405		if (pdev->device == E1000_DEV_ID_82573L) {
406			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
407			adapter->max_hw_frame_size = DEFAULT_JUMBO;
408		}
409		break;
410	default:
411		break;
412	}
413
414	return 0;
415}
416
417/**
418 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
419 *  @hw: pointer to the HW structure
420 *
421 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
422 *  revision in the hardware structure.
423 **/
424static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
425{
426	struct e1000_phy_info *phy = &hw->phy;
427	s32 ret_val;
428	u16 phy_id = 0;
429
430	switch (hw->mac.type) {
431	case e1000_82571:
432	case e1000_82572:
433		/*
434		 * The 82571 firmware may still be configuring the PHY.
435		 * In this case, we cannot access the PHY until the
436		 * configuration is done.  So we explicitly set the
437		 * PHY ID.
438		 */
439		phy->id = IGP01E1000_I_PHY_ID;
440		break;
441	case e1000_82573:
442		return e1000e_get_phy_id(hw);
443		break;
444	case e1000_82574:
445	case e1000_82583:
446		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
447		if (ret_val)
448			return ret_val;
449
450		phy->id = (u32)(phy_id << 16);
451		udelay(20);
452		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
453		if (ret_val)
454			return ret_val;
455
456		phy->id |= (u32)(phy_id);
457		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
458		break;
459	default:
460		return -E1000_ERR_PHY;
461		break;
462	}
463
464	return 0;
465}
466
467/**
468 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
469 *  @hw: pointer to the HW structure
470 *
471 *  Acquire the HW semaphore to access the PHY or NVM
472 **/
473static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
474{
475	u32 swsm;
476	s32 sw_timeout = hw->nvm.word_size + 1;
477	s32 fw_timeout = hw->nvm.word_size + 1;
478	s32 i = 0;
479
480	/*
481	 * If we have timedout 3 times on trying to acquire
482	 * the inter-port SMBI semaphore, there is old code
483	 * operating on the other port, and it is not
484	 * releasing SMBI. Modify the number of times that
485	 * we try for the semaphore to interwork with this
486	 * older code.
487	 */
488	if (hw->dev_spec.e82571.smb_counter > 2)
489		sw_timeout = 1;
490
491	/* Get the SW semaphore */
492	while (i < sw_timeout) {
493		swsm = er32(SWSM);
494		if (!(swsm & E1000_SWSM_SMBI))
495			break;
496
497		udelay(50);
498		i++;
499	}
500
501	if (i == sw_timeout) {
502		e_dbg("Driver can't access device - SMBI bit is set.\n");
503		hw->dev_spec.e82571.smb_counter++;
504	}
505	/* Get the FW semaphore. */
506	for (i = 0; i < fw_timeout; i++) {
507		swsm = er32(SWSM);
508		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
509
510		/* Semaphore acquired if bit latched */
511		if (er32(SWSM) & E1000_SWSM_SWESMBI)
512			break;
513
514		udelay(50);
515	}
516
517	if (i == fw_timeout) {
518		/* Release semaphores */
519		e1000_put_hw_semaphore_82571(hw);
520		e_dbg("Driver can't access the NVM\n");
521		return -E1000_ERR_NVM;
522	}
523
524	return 0;
525}
526
527/**
528 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
529 *  @hw: pointer to the HW structure
530 *
531 *  Release hardware semaphore used to access the PHY or NVM
532 **/
533static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
534{
535	u32 swsm;
536
537	swsm = er32(SWSM);
538	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
539	ew32(SWSM, swsm);
540}
541
542/**
543 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
544 *  @hw: pointer to the HW structure
545 *
546 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
547 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
548 *  for EEPROM access grant bit.  If the access grant bit is not set, release
549 *  hardware semaphore.
550 **/
551static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
552{
553	s32 ret_val;
554
555	ret_val = e1000_get_hw_semaphore_82571(hw);
556	if (ret_val)
557		return ret_val;
558
559	switch (hw->mac.type) {
560	case e1000_82573:
561	case e1000_82574:
562	case e1000_82583:
563		break;
564	default:
565		ret_val = e1000e_acquire_nvm(hw);
566		break;
567	}
568
569	if (ret_val)
570		e1000_put_hw_semaphore_82571(hw);
571
572	return ret_val;
573}
574
575/**
576 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
577 *  @hw: pointer to the HW structure
578 *
579 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
580 **/
581static void e1000_release_nvm_82571(struct e1000_hw *hw)
582{
583	e1000e_release_nvm(hw);
584	e1000_put_hw_semaphore_82571(hw);
585}
586
587/**
588 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
589 *  @hw: pointer to the HW structure
590 *  @offset: offset within the EEPROM to be written to
591 *  @words: number of words to write
592 *  @data: 16 bit word(s) to be written to the EEPROM
593 *
594 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
595 *
596 *  If e1000e_update_nvm_checksum is not called after this function, the
597 *  EEPROM will most likely contain an invalid checksum.
598 **/
599static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
600				 u16 *data)
601{
602	s32 ret_val;
603
604	switch (hw->mac.type) {
605	case e1000_82573:
606	case e1000_82574:
607	case e1000_82583:
608		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
609		break;
610	case e1000_82571:
611	case e1000_82572:
612		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
613		break;
614	default:
615		ret_val = -E1000_ERR_NVM;
616		break;
617	}
618
619	return ret_val;
620}
621
622/**
623 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
624 *  @hw: pointer to the HW structure
625 *
626 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
627 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
628 *  value to the EEPROM.
629 **/
630static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
631{
632	u32 eecd;
633	s32 ret_val;
634	u16 i;
635
636	ret_val = e1000e_update_nvm_checksum_generic(hw);
637	if (ret_val)
638		return ret_val;
639
640	/*
641	 * If our nvm is an EEPROM, then we're done
642	 * otherwise, commit the checksum to the flash NVM.
643	 */
644	if (hw->nvm.type != e1000_nvm_flash_hw)
645		return ret_val;
646
647	/* Check for pending operations. */
648	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
649		msleep(1);
650		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
651			break;
652	}
653
654	if (i == E1000_FLASH_UPDATES)
655		return -E1000_ERR_NVM;
656
657	/* Reset the firmware if using STM opcode. */
658	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
659		/*
660		 * The enabling of and the actual reset must be done
661		 * in two write cycles.
662		 */
663		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
664		e1e_flush();
665		ew32(HICR, E1000_HICR_FW_RESET);
666	}
667
668	/* Commit the write to flash */
669	eecd = er32(EECD) | E1000_EECD_FLUPD;
670	ew32(EECD, eecd);
671
672	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
673		msleep(1);
674		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
675			break;
676	}
677
678	if (i == E1000_FLASH_UPDATES)
679		return -E1000_ERR_NVM;
680
681	return 0;
682}
683
684/**
685 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
686 *  @hw: pointer to the HW structure
687 *
688 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
689 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
690 **/
691static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
692{
693	if (hw->nvm.type == e1000_nvm_flash_hw)
694		e1000_fix_nvm_checksum_82571(hw);
695
696	return e1000e_validate_nvm_checksum_generic(hw);
697}
698
699/**
700 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
701 *  @hw: pointer to the HW structure
702 *  @offset: offset within the EEPROM to be written to
703 *  @words: number of words to write
704 *  @data: 16 bit word(s) to be written to the EEPROM
705 *
706 *  After checking for invalid values, poll the EEPROM to ensure the previous
707 *  command has completed before trying to write the next word.  After write
708 *  poll for completion.
709 *
710 *  If e1000e_update_nvm_checksum is not called after this function, the
711 *  EEPROM will most likely contain an invalid checksum.
712 **/
713static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
714				      u16 words, u16 *data)
715{
716	struct e1000_nvm_info *nvm = &hw->nvm;
717	u32 i, eewr = 0;
718	s32 ret_val = 0;
719
720	/*
721	 * A check for invalid values:  offset too large, too many words,
722	 * and not enough words.
723	 */
724	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
725	    (words == 0)) {
726		e_dbg("nvm parameter(s) out of bounds\n");
727		return -E1000_ERR_NVM;
728	}
729
730	for (i = 0; i < words; i++) {
731		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
732		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
733		       E1000_NVM_RW_REG_START;
734
735		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
736		if (ret_val)
737			break;
738
739		ew32(EEWR, eewr);
740
741		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
742		if (ret_val)
743			break;
744	}
745
746	return ret_val;
747}
748
749/**
750 *  e1000_get_cfg_done_82571 - Poll for configuration done
751 *  @hw: pointer to the HW structure
752 *
753 *  Reads the management control register for the config done bit to be set.
754 **/
755static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
756{
757	s32 timeout = PHY_CFG_TIMEOUT;
758
759	while (timeout) {
760		if (er32(EEMNGCTL) &
761		    E1000_NVM_CFG_DONE_PORT_0)
762			break;
763		msleep(1);
764		timeout--;
765	}
766	if (!timeout) {
767		e_dbg("MNG configuration cycle has not completed.\n");
768		return -E1000_ERR_RESET;
769	}
770
771	return 0;
772}
773
774/**
775 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
776 *  @hw: pointer to the HW structure
777 *  @active: true to enable LPLU, false to disable
778 *
779 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
780 *  this function also disables smart speed and vice versa.  LPLU will not be
781 *  activated unless the device autonegotiation advertisement meets standards
782 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
783 *  pointer entry point only called by PHY setup routines.
784 **/
785static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
786{
787	struct e1000_phy_info *phy = &hw->phy;
788	s32 ret_val;
789	u16 data;
790
791	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
792	if (ret_val)
793		return ret_val;
794
795	if (active) {
796		data |= IGP02E1000_PM_D0_LPLU;
797		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
798		if (ret_val)
799			return ret_val;
800
801		/* When LPLU is enabled, we should disable SmartSpeed */
802		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
803		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
804		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
805		if (ret_val)
806			return ret_val;
807	} else {
808		data &= ~IGP02E1000_PM_D0_LPLU;
809		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
810		/*
811		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
812		 * during Dx states where the power conservation is most
813		 * important.  During driver activity we should enable
814		 * SmartSpeed, so performance is maintained.
815		 */
816		if (phy->smart_speed == e1000_smart_speed_on) {
817			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
818					   &data);
819			if (ret_val)
820				return ret_val;
821
822			data |= IGP01E1000_PSCFR_SMART_SPEED;
823			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
824					   data);
825			if (ret_val)
826				return ret_val;
827		} else if (phy->smart_speed == e1000_smart_speed_off) {
828			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
829					   &data);
830			if (ret_val)
831				return ret_val;
832
833			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
834			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
835					   data);
836			if (ret_val)
837				return ret_val;
838		}
839	}
840
841	return 0;
842}
843
844/**
845 *  e1000_reset_hw_82571 - Reset hardware
846 *  @hw: pointer to the HW structure
847 *
848 *  This resets the hardware into a known state.
849 **/
850static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
851{
852	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
853	s32 ret_val;
854	u16 i = 0;
855
856	/*
857	 * Prevent the PCI-E bus from sticking if there is no TLP connection
858	 * on the last TLP read/write transaction when MAC is reset.
859	 */
860	ret_val = e1000e_disable_pcie_master(hw);
861	if (ret_val)
862		e_dbg("PCI-E Master disable polling has failed.\n");
863
864	e_dbg("Masking off all interrupts\n");
865	ew32(IMC, 0xffffffff);
866
867	ew32(RCTL, 0);
868	ew32(TCTL, E1000_TCTL_PSP);
869	e1e_flush();
870
871	msleep(10);
872
873	/*
874	 * Must acquire the MDIO ownership before MAC reset.
875	 * Ownership defaults to firmware after a reset.
876	 */
877	switch (hw->mac.type) {
878	case e1000_82573:
879	case e1000_82574:
880	case e1000_82583:
881		extcnf_ctrl = er32(EXTCNF_CTRL);
882		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
883
884		do {
885			ew32(EXTCNF_CTRL, extcnf_ctrl);
886			extcnf_ctrl = er32(EXTCNF_CTRL);
887
888			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
889				break;
890
891			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
892
893			msleep(2);
894			i++;
895		} while (i < MDIO_OWNERSHIP_TIMEOUT);
896		break;
897	default:
898		break;
899	}
900
901	ctrl = er32(CTRL);
902
903	e_dbg("Issuing a global reset to MAC\n");
904	ew32(CTRL, ctrl | E1000_CTRL_RST);
905
906	if (hw->nvm.type == e1000_nvm_flash_hw) {
907		udelay(10);
908		ctrl_ext = er32(CTRL_EXT);
909		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
910		ew32(CTRL_EXT, ctrl_ext);
911		e1e_flush();
912	}
913
914	ret_val = e1000e_get_auto_rd_done(hw);
915	if (ret_val)
916		/* We don't want to continue accessing MAC registers. */
917		return ret_val;
918
919	/*
920	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
921	 * Need to wait for Phy configuration completion before accessing
922	 * NVM and Phy.
923	 */
924
925	switch (hw->mac.type) {
926	case e1000_82573:
927	case e1000_82574:
928	case e1000_82583:
929		msleep(25);
930		break;
931	default:
932		break;
933	}
934
935	/* Clear any pending interrupt events. */
936	ew32(IMC, 0xffffffff);
937	icr = er32(ICR);
938
939	if (hw->mac.type == e1000_82571) {
940		/* Install any alternate MAC address into RAR0 */
941		ret_val = e1000_check_alt_mac_addr_generic(hw);
942		if (ret_val)
943			return ret_val;
944
945		e1000e_set_laa_state_82571(hw, true);
946	}
947
948	/* Reinitialize the 82571 serdes link state machine */
949	if (hw->phy.media_type == e1000_media_type_internal_serdes)
950		hw->mac.serdes_link_state = e1000_serdes_link_down;
951
952	return 0;
953}
954
955/**
956 *  e1000_init_hw_82571 - Initialize hardware
957 *  @hw: pointer to the HW structure
958 *
959 *  This inits the hardware readying it for operation.
960 **/
961static s32 e1000_init_hw_82571(struct e1000_hw *hw)
962{
963	struct e1000_mac_info *mac = &hw->mac;
964	u32 reg_data;
965	s32 ret_val;
966	u16 i, rar_count = mac->rar_entry_count;
967
968	e1000_initialize_hw_bits_82571(hw);
969
970	/* Initialize identification LED */
971	ret_val = e1000e_id_led_init(hw);
972	if (ret_val)
973		e_dbg("Error initializing identification LED\n");
974		/* This is not fatal and we should not stop init due to this */
975
976	/* Disabling VLAN filtering */
977	e_dbg("Initializing the IEEE VLAN\n");
978	mac->ops.clear_vfta(hw);
979
980	/* Setup the receive address. */
981	if (e1000e_get_laa_state_82571(hw))
982		rar_count--;
983	e1000e_init_rx_addrs(hw, rar_count);
984
985	/* Zero out the Multicast HASH table */
986	e_dbg("Zeroing the MTA\n");
987	for (i = 0; i < mac->mta_reg_count; i++)
988		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
989
990	/* Setup link and flow control */
991	ret_val = e1000_setup_link_82571(hw);
992
993	/* Set the transmit descriptor write-back policy */
994	reg_data = er32(TXDCTL(0));
995	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
996		   E1000_TXDCTL_FULL_TX_DESC_WB |
997		   E1000_TXDCTL_COUNT_DESC;
998	ew32(TXDCTL(0), reg_data);
999
1000	/* ...for both queues. */
1001	switch (mac->type) {
1002	case e1000_82573:
1003		e1000e_enable_tx_pkt_filtering(hw);
1004		/* fall through */
1005	case e1000_82574:
1006	case e1000_82583:
1007		reg_data = er32(GCR);
1008		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1009		ew32(GCR, reg_data);
1010		break;
1011	default:
1012		reg_data = er32(TXDCTL(1));
1013		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1014			   E1000_TXDCTL_FULL_TX_DESC_WB |
1015			   E1000_TXDCTL_COUNT_DESC;
1016		ew32(TXDCTL(1), reg_data);
1017		break;
1018	}
1019
1020	/*
1021	 * Clear all of the statistics registers (clear on read).  It is
1022	 * important that we do this after we have tried to establish link
1023	 * because the symbol error count will increment wildly if there
1024	 * is no link.
1025	 */
1026	e1000_clear_hw_cntrs_82571(hw);
1027
1028	return ret_val;
1029}
1030
1031/**
1032 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1033 *  @hw: pointer to the HW structure
1034 *
1035 *  Initializes required hardware-dependent bits needed for normal operation.
1036 **/
1037static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1038{
1039	u32 reg;
1040
1041	/* Transmit Descriptor Control 0 */
1042	reg = er32(TXDCTL(0));
1043	reg |= (1 << 22);
1044	ew32(TXDCTL(0), reg);
1045
1046	/* Transmit Descriptor Control 1 */
1047	reg = er32(TXDCTL(1));
1048	reg |= (1 << 22);
1049	ew32(TXDCTL(1), reg);
1050
1051	/* Transmit Arbitration Control 0 */
1052	reg = er32(TARC(0));
1053	reg &= ~(0xF << 27); /* 30:27 */
1054	switch (hw->mac.type) {
1055	case e1000_82571:
1056	case e1000_82572:
1057		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1058		break;
1059	default:
1060		break;
1061	}
1062	ew32(TARC(0), reg);
1063
1064	/* Transmit Arbitration Control 1 */
1065	reg = er32(TARC(1));
1066	switch (hw->mac.type) {
1067	case e1000_82571:
1068	case e1000_82572:
1069		reg &= ~((1 << 29) | (1 << 30));
1070		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1071		if (er32(TCTL) & E1000_TCTL_MULR)
1072			reg &= ~(1 << 28);
1073		else
1074			reg |= (1 << 28);
1075		ew32(TARC(1), reg);
1076		break;
1077	default:
1078		break;
1079	}
1080
1081	/* Device Control */
1082	switch (hw->mac.type) {
1083	case e1000_82573:
1084	case e1000_82574:
1085	case e1000_82583:
1086		reg = er32(CTRL);
1087		reg &= ~(1 << 29);
1088		ew32(CTRL, reg);
1089		break;
1090	default:
1091		break;
1092	}
1093
1094	/* Extended Device Control */
1095	switch (hw->mac.type) {
1096	case e1000_82573:
1097	case e1000_82574:
1098	case e1000_82583:
1099		reg = er32(CTRL_EXT);
1100		reg &= ~(1 << 23);
1101		reg |= (1 << 22);
1102		ew32(CTRL_EXT, reg);
1103		break;
1104	default:
1105		break;
1106	}
1107
1108	if (hw->mac.type == e1000_82571) {
1109		reg = er32(PBA_ECC);
1110		reg |= E1000_PBA_ECC_CORR_EN;
1111		ew32(PBA_ECC, reg);
1112	}
1113
1114        if ((hw->mac.type == e1000_82571) ||
1115           (hw->mac.type == e1000_82572)) {
1116                reg = er32(CTRL_EXT);
1117                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1118                ew32(CTRL_EXT, reg);
1119        }
1120
1121
1122	/* PCI-Ex Control Registers */
1123	switch (hw->mac.type) {
1124	case e1000_82574:
1125	case e1000_82583:
1126		reg = er32(GCR);
1127		reg |= (1 << 22);
1128		ew32(GCR, reg);
1129
1130		reg = er32(GCR2);
1131		reg |= 1;
1132		ew32(GCR2, reg);
1133		break;
1134	default:
1135		break;
1136	}
1137}
1138
1139/**
1140 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1141 *  @hw: pointer to the HW structure
1142 *
1143 *  Clears the register array which contains the VLAN filter table by
1144 *  setting all the values to 0.
1145 **/
1146static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1147{
1148	u32 offset;
1149	u32 vfta_value = 0;
1150	u32 vfta_offset = 0;
1151	u32 vfta_bit_in_reg = 0;
1152
1153	switch (hw->mac.type) {
1154	case e1000_82573:
1155	case e1000_82574:
1156	case e1000_82583:
1157		if (hw->mng_cookie.vlan_id != 0) {
1158			/*
1159			 * The VFTA is a 4096b bit-field, each identifying
1160			 * a single VLAN ID.  The following operations
1161			 * determine which 32b entry (i.e. offset) into the
1162			 * array we want to set the VLAN ID (i.e. bit) of
1163			 * the manageability unit.
1164			 */
1165			vfta_offset = (hw->mng_cookie.vlan_id >>
1166				       E1000_VFTA_ENTRY_SHIFT) &
1167				      E1000_VFTA_ENTRY_MASK;
1168			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1169					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1170		}
1171		break;
1172	default:
1173		break;
1174	}
1175	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1176		/*
1177		 * If the offset we want to clear is the same offset of the
1178		 * manageability VLAN ID, then clear all bits except that of
1179		 * the manageability unit.
1180		 */
1181		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1182		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1183		e1e_flush();
1184	}
1185}
1186
1187/**
1188 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1189 *  @hw: pointer to the HW structure
1190 *
1191 *  Reads the NVM Initialization Control Word 2 and returns true
1192 *  (>0) if any manageability is enabled, else false (0).
1193 **/
1194static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1195{
1196	u16 data;
1197
1198	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1199	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1200}
1201
1202/**
1203 *  e1000_led_on_82574 - Turn LED on
1204 *  @hw: pointer to the HW structure
1205 *
1206 *  Turn LED on.
1207 **/
1208static s32 e1000_led_on_82574(struct e1000_hw *hw)
1209{
1210	u32 ctrl;
1211	u32 i;
1212
1213	ctrl = hw->mac.ledctl_mode2;
1214	if (!(E1000_STATUS_LU & er32(STATUS))) {
1215		/*
1216		 * If no link, then turn LED on by setting the invert bit
1217		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1218		 */
1219		for (i = 0; i < 4; i++)
1220			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1221			    E1000_LEDCTL_MODE_LED_ON)
1222				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1223	}
1224	ew32(LEDCTL, ctrl);
1225
1226	return 0;
1227}
1228
1229/**
1230 *  e1000_setup_link_82571 - Setup flow control and link settings
1231 *  @hw: pointer to the HW structure
1232 *
1233 *  Determines which flow control settings to use, then configures flow
1234 *  control.  Calls the appropriate media-specific link configuration
1235 *  function.  Assuming the adapter has a valid link partner, a valid link
1236 *  should be established.  Assumes the hardware has previously been reset
1237 *  and the transmitter and receiver are not enabled.
1238 **/
1239static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1240{
1241	/*
1242	 * 82573 does not have a word in the NVM to determine
1243	 * the default flow control setting, so we explicitly
1244	 * set it to full.
1245	 */
1246	switch (hw->mac.type) {
1247	case e1000_82573:
1248	case e1000_82574:
1249	case e1000_82583:
1250		if (hw->fc.requested_mode == e1000_fc_default)
1251			hw->fc.requested_mode = e1000_fc_full;
1252		break;
1253	default:
1254		break;
1255	}
1256
1257	return e1000e_setup_link(hw);
1258}
1259
1260/**
1261 *  e1000_setup_copper_link_82571 - Configure copper link settings
1262 *  @hw: pointer to the HW structure
1263 *
1264 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1265 *  for link, once link is established calls to configure collision distance
1266 *  and flow control are called.
1267 **/
1268static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1269{
1270	u32 ctrl;
1271	s32 ret_val;
1272
1273	ctrl = er32(CTRL);
1274	ctrl |= E1000_CTRL_SLU;
1275	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1276	ew32(CTRL, ctrl);
1277
1278	switch (hw->phy.type) {
1279	case e1000_phy_m88:
1280	case e1000_phy_bm:
1281		ret_val = e1000e_copper_link_setup_m88(hw);
1282		break;
1283	case e1000_phy_igp_2:
1284		ret_val = e1000e_copper_link_setup_igp(hw);
1285		break;
1286	default:
1287		return -E1000_ERR_PHY;
1288		break;
1289	}
1290
1291	if (ret_val)
1292		return ret_val;
1293
1294	ret_val = e1000e_setup_copper_link(hw);
1295
1296	return ret_val;
1297}
1298
1299/**
1300 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1301 *  @hw: pointer to the HW structure
1302 *
1303 *  Configures collision distance and flow control for fiber and serdes links.
1304 *  Upon successful setup, poll for link.
1305 **/
1306static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1307{
1308	switch (hw->mac.type) {
1309	case e1000_82571:
1310	case e1000_82572:
1311		/*
1312		 * If SerDes loopback mode is entered, there is no form
1313		 * of reset to take the adapter out of that mode.  So we
1314		 * have to explicitly take the adapter out of loopback
1315		 * mode.  This prevents drivers from twiddling their thumbs
1316		 * if another tool failed to take it out of loopback mode.
1317		 */
1318		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1319		break;
1320	default:
1321		break;
1322	}
1323
1324	return e1000e_setup_fiber_serdes_link(hw);
1325}
1326
1327/**
1328 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1329 *  @hw: pointer to the HW structure
1330 *
1331 *  Reports the link state as up or down.
1332 *
1333 *  If autonegotiation is supported by the link partner, the link state is
1334 *  determined by the result of autonegotiation. This is the most likely case.
1335 *  If autonegotiation is not supported by the link partner, and the link
1336 *  has a valid signal, force the link up.
1337 *
1338 *  The link state is represented internally here by 4 states:
1339 *
1340 *  1) down
1341 *  2) autoneg_progress
1342 *  3) autoneg_complete (the link successfully autonegotiated)
1343 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1344 *
1345 **/
1346static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1347{
1348	struct e1000_mac_info *mac = &hw->mac;
1349	u32 rxcw;
1350	u32 ctrl;
1351	u32 status;
1352	s32 ret_val = 0;
1353
1354	ctrl = er32(CTRL);
1355	status = er32(STATUS);
1356	rxcw = er32(RXCW);
1357
1358	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1359
1360		/* Receiver is synchronized with no invalid bits.  */
1361		switch (mac->serdes_link_state) {
1362		case e1000_serdes_link_autoneg_complete:
1363			if (!(status & E1000_STATUS_LU)) {
1364				/*
1365				 * We have lost link, retry autoneg before
1366				 * reporting link failure
1367				 */
1368				mac->serdes_link_state =
1369				    e1000_serdes_link_autoneg_progress;
1370				mac->serdes_has_link = false;
1371				e_dbg("AN_UP     -> AN_PROG\n");
1372			}
1373		break;
1374
1375		case e1000_serdes_link_forced_up:
1376			/*
1377			 * If we are receiving /C/ ordered sets, re-enable
1378			 * auto-negotiation in the TXCW register and disable
1379			 * forced link in the Device Control register in an
1380			 * attempt to auto-negotiate with our link partner.
1381			 */
1382			if (rxcw & E1000_RXCW_C) {
1383				/* Enable autoneg, and unforce link up */
1384				ew32(TXCW, mac->txcw);
1385				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1386				mac->serdes_link_state =
1387				    e1000_serdes_link_autoneg_progress;
1388				mac->serdes_has_link = false;
1389				e_dbg("FORCED_UP -> AN_PROG\n");
1390			}
1391			break;
1392
1393		case e1000_serdes_link_autoneg_progress:
1394			if (rxcw & E1000_RXCW_C) {
1395				/*
1396				 * We received /C/ ordered sets, meaning the
1397				 * link partner has autonegotiated, and we can
1398				 * trust the Link Up (LU) status bit.
1399				 */
1400				if (status & E1000_STATUS_LU) {
1401					mac->serdes_link_state =
1402					    e1000_serdes_link_autoneg_complete;
1403					e_dbg("AN_PROG   -> AN_UP\n");
1404					mac->serdes_has_link = true;
1405				} else {
1406					/* Autoneg completed, but failed. */
1407					mac->serdes_link_state =
1408					    e1000_serdes_link_down;
1409					e_dbg("AN_PROG   -> DOWN\n");
1410				}
1411			} else {
1412				/*
1413				 * The link partner did not autoneg.
1414				 * Force link up and full duplex, and change
1415				 * state to forced.
1416				 */
1417				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1418				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1419				ew32(CTRL, ctrl);
1420
1421				/* Configure Flow Control after link up. */
1422				ret_val = e1000e_config_fc_after_link_up(hw);
1423				if (ret_val) {
1424					e_dbg("Error config flow control\n");
1425					break;
1426				}
1427				mac->serdes_link_state =
1428				    e1000_serdes_link_forced_up;
1429				mac->serdes_has_link = true;
1430				e_dbg("AN_PROG   -> FORCED_UP\n");
1431			}
1432			break;
1433
1434		case e1000_serdes_link_down:
1435		default:
1436			/*
1437			 * The link was down but the receiver has now gained
1438			 * valid sync, so lets see if we can bring the link
1439			 * up.
1440			 */
1441			ew32(TXCW, mac->txcw);
1442			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1443			mac->serdes_link_state =
1444			    e1000_serdes_link_autoneg_progress;
1445			e_dbg("DOWN      -> AN_PROG\n");
1446			break;
1447		}
1448	} else {
1449		if (!(rxcw & E1000_RXCW_SYNCH)) {
1450			mac->serdes_has_link = false;
1451			mac->serdes_link_state = e1000_serdes_link_down;
1452			e_dbg("ANYSTATE  -> DOWN\n");
1453		} else {
1454			/*
1455			 * We have sync, and can tolerate one invalid (IV)
1456			 * codeword before declaring link down, so reread
1457			 * to look again.
1458			 */
1459			udelay(10);
1460			rxcw = er32(RXCW);
1461			if (rxcw & E1000_RXCW_IV) {
1462				mac->serdes_link_state = e1000_serdes_link_down;
1463				mac->serdes_has_link = false;
1464				e_dbg("ANYSTATE  -> DOWN\n");
1465			}
1466		}
1467	}
1468
1469	return ret_val;
1470}
1471
1472/**
1473 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1474 *  @hw: pointer to the HW structure
1475 *  @data: pointer to the NVM (EEPROM)
1476 *
1477 *  Read the EEPROM for the current default LED configuration.  If the
1478 *  LED configuration is not valid, set to a valid LED configuration.
1479 **/
1480static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1481{
1482	s32 ret_val;
1483
1484	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1485	if (ret_val) {
1486		e_dbg("NVM Read Error\n");
1487		return ret_val;
1488	}
1489
1490	switch (hw->mac.type) {
1491	case e1000_82573:
1492	case e1000_82574:
1493	case e1000_82583:
1494		if (*data == ID_LED_RESERVED_F746)
1495			*data = ID_LED_DEFAULT_82573;
1496		break;
1497	default:
1498		if (*data == ID_LED_RESERVED_0000 ||
1499		    *data == ID_LED_RESERVED_FFFF)
1500			*data = ID_LED_DEFAULT;
1501		break;
1502	}
1503
1504	return 0;
1505}
1506
1507/**
1508 *  e1000e_get_laa_state_82571 - Get locally administered address state
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Retrieve and return the current locally administered address state.
1512 **/
1513bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1514{
1515	if (hw->mac.type != e1000_82571)
1516		return false;
1517
1518	return hw->dev_spec.e82571.laa_is_present;
1519}
1520
1521/**
1522 *  e1000e_set_laa_state_82571 - Set locally administered address state
1523 *  @hw: pointer to the HW structure
1524 *  @state: enable/disable locally administered address
1525 *
1526 *  Enable/Disable the current locally administered address state.
1527 **/
1528void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1529{
1530	if (hw->mac.type != e1000_82571)
1531		return;
1532
1533	hw->dev_spec.e82571.laa_is_present = state;
1534
1535	if (state)
1536		/*
1537		 * Hold a copy of the LAA in RAR[14] This is done so that
1538		 * between the time RAR[0] gets clobbered and the time it
1539		 * gets fixed, the actual LAA is in one of the RARs and no
1540		 * incoming packets directed to this port are dropped.
1541		 * Eventually the LAA will be in RAR[0] and RAR[14].
1542		 */
1543		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1544}
1545
1546/**
1547 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1548 *  @hw: pointer to the HW structure
1549 *
1550 *  Verifies that the EEPROM has completed the update.  After updating the
1551 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1552 *  the checksum fix is not implemented, we need to set the bit and update
1553 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1554 *  we need to return bad checksum.
1555 **/
1556static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1557{
1558	struct e1000_nvm_info *nvm = &hw->nvm;
1559	s32 ret_val;
1560	u16 data;
1561
1562	if (nvm->type != e1000_nvm_flash_hw)
1563		return 0;
1564
1565	/*
1566	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1567	 * 10h-12h.  Checksum may need to be fixed.
1568	 */
1569	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1570	if (ret_val)
1571		return ret_val;
1572
1573	if (!(data & 0x10)) {
1574		/*
1575		 * Read 0x23 and check bit 15.  This bit is a 1
1576		 * when the checksum has already been fixed.  If
1577		 * the checksum is still wrong and this bit is a
1578		 * 1, we need to return bad checksum.  Otherwise,
1579		 * we need to set this bit to a 1 and update the
1580		 * checksum.
1581		 */
1582		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1583		if (ret_val)
1584			return ret_val;
1585
1586		if (!(data & 0x8000)) {
1587			data |= 0x8000;
1588			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1589			if (ret_val)
1590				return ret_val;
1591			ret_val = e1000e_update_nvm_checksum(hw);
1592		}
1593	}
1594
1595	return 0;
1596}
1597
1598/**
1599 *  e1000_read_mac_addr_82571 - Read device MAC address
1600 *  @hw: pointer to the HW structure
1601 **/
1602static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1603{
1604	s32 ret_val = 0;
1605
1606	if (hw->mac.type == e1000_82571) {
1607		/*
1608		 * If there's an alternate MAC address place it in RAR0
1609		 * so that it will override the Si installed default perm
1610		 * address.
1611		 */
1612		ret_val = e1000_check_alt_mac_addr_generic(hw);
1613		if (ret_val)
1614			goto out;
1615	}
1616
1617	ret_val = e1000_read_mac_addr_generic(hw);
1618
1619out:
1620	return ret_val;
1621}
1622
1623/**
1624 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1625 * @hw: pointer to the HW structure
1626 *
1627 * In the case of a PHY power down to save power, or to turn off link during a
1628 * driver unload, or wake on lan is not enabled, remove the link.
1629 **/
1630static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1631{
1632	struct e1000_phy_info *phy = &hw->phy;
1633	struct e1000_mac_info *mac = &hw->mac;
1634
1635	if (!(phy->ops.check_reset_block))
1636		return;
1637
1638	/* If the management interface is not enabled, then power down */
1639	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1640		e1000_power_down_phy_copper(hw);
1641}
1642
1643/**
1644 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1645 *  @hw: pointer to the HW structure
1646 *
1647 *  Clears the hardware counters by reading the counter registers.
1648 **/
1649static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1650{
1651	e1000e_clear_hw_cntrs_base(hw);
1652
1653	er32(PRC64);
1654	er32(PRC127);
1655	er32(PRC255);
1656	er32(PRC511);
1657	er32(PRC1023);
1658	er32(PRC1522);
1659	er32(PTC64);
1660	er32(PTC127);
1661	er32(PTC255);
1662	er32(PTC511);
1663	er32(PTC1023);
1664	er32(PTC1522);
1665
1666	er32(ALGNERRC);
1667	er32(RXERRC);
1668	er32(TNCRS);
1669	er32(CEXTERR);
1670	er32(TSCTC);
1671	er32(TSCTFC);
1672
1673	er32(MGTPRC);
1674	er32(MGTPDC);
1675	er32(MGTPTC);
1676
1677	er32(IAC);
1678	er32(ICRXOC);
1679
1680	er32(ICRXPTC);
1681	er32(ICRXATC);
1682	er32(ICTXPTC);
1683	er32(ICTXATC);
1684	er32(ICTXQEC);
1685	er32(ICTXQMTC);
1686	er32(ICRXDMTC);
1687}
1688
1689static struct e1000_mac_operations e82571_mac_ops = {
1690	/* .check_mng_mode: mac type dependent */
1691	/* .check_for_link: media type dependent */
1692	.id_led_init		= e1000e_id_led_init,
1693	.cleanup_led		= e1000e_cleanup_led_generic,
1694	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1695	.get_bus_info		= e1000e_get_bus_info_pcie,
1696	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1697	/* .get_link_up_info: media type dependent */
1698	/* .led_on: mac type dependent */
1699	.led_off		= e1000e_led_off_generic,
1700	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1701	.write_vfta		= e1000_write_vfta_generic,
1702	.clear_vfta		= e1000_clear_vfta_82571,
1703	.reset_hw		= e1000_reset_hw_82571,
1704	.init_hw		= e1000_init_hw_82571,
1705	.setup_link		= e1000_setup_link_82571,
1706	/* .setup_physical_interface: media type dependent */
1707	.setup_led		= e1000e_setup_led_generic,
1708	.read_mac_addr		= e1000_read_mac_addr_82571,
1709};
1710
1711static struct e1000_phy_operations e82_phy_ops_igp = {
1712	.acquire		= e1000_get_hw_semaphore_82571,
1713	.check_polarity		= e1000_check_polarity_igp,
1714	.check_reset_block	= e1000e_check_reset_block_generic,
1715	.commit			= NULL,
1716	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1717	.get_cfg_done		= e1000_get_cfg_done_82571,
1718	.get_cable_length	= e1000e_get_cable_length_igp_2,
1719	.get_info		= e1000e_get_phy_info_igp,
1720	.read_reg		= e1000e_read_phy_reg_igp,
1721	.release		= e1000_put_hw_semaphore_82571,
1722	.reset			= e1000e_phy_hw_reset_generic,
1723	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1724	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1725	.write_reg		= e1000e_write_phy_reg_igp,
1726	.cfg_on_link_up      	= NULL,
1727};
1728
1729static struct e1000_phy_operations e82_phy_ops_m88 = {
1730	.acquire		= e1000_get_hw_semaphore_82571,
1731	.check_polarity		= e1000_check_polarity_m88,
1732	.check_reset_block	= e1000e_check_reset_block_generic,
1733	.commit			= e1000e_phy_sw_reset,
1734	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1735	.get_cfg_done		= e1000e_get_cfg_done,
1736	.get_cable_length	= e1000e_get_cable_length_m88,
1737	.get_info		= e1000e_get_phy_info_m88,
1738	.read_reg		= e1000e_read_phy_reg_m88,
1739	.release		= e1000_put_hw_semaphore_82571,
1740	.reset			= e1000e_phy_hw_reset_generic,
1741	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1742	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1743	.write_reg		= e1000e_write_phy_reg_m88,
1744	.cfg_on_link_up      	= NULL,
1745};
1746
1747static struct e1000_phy_operations e82_phy_ops_bm = {
1748	.acquire		= e1000_get_hw_semaphore_82571,
1749	.check_polarity		= e1000_check_polarity_m88,
1750	.check_reset_block	= e1000e_check_reset_block_generic,
1751	.commit			= e1000e_phy_sw_reset,
1752	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1753	.get_cfg_done		= e1000e_get_cfg_done,
1754	.get_cable_length	= e1000e_get_cable_length_m88,
1755	.get_info		= e1000e_get_phy_info_m88,
1756	.read_reg		= e1000e_read_phy_reg_bm2,
1757	.release		= e1000_put_hw_semaphore_82571,
1758	.reset			= e1000e_phy_hw_reset_generic,
1759	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1760	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1761	.write_reg		= e1000e_write_phy_reg_bm2,
1762	.cfg_on_link_up      	= NULL,
1763};
1764
1765static struct e1000_nvm_operations e82571_nvm_ops = {
1766	.acquire		= e1000_acquire_nvm_82571,
1767	.read			= e1000e_read_nvm_eerd,
1768	.release		= e1000_release_nvm_82571,
1769	.update			= e1000_update_nvm_checksum_82571,
1770	.valid_led_default	= e1000_valid_led_default_82571,
1771	.validate		= e1000_validate_nvm_checksum_82571,
1772	.write			= e1000_write_nvm_82571,
1773};
1774
1775struct e1000_info e1000_82571_info = {
1776	.mac			= e1000_82571,
1777	.flags			= FLAG_HAS_HW_VLAN_FILTER
1778				  | FLAG_HAS_JUMBO_FRAMES
1779				  | FLAG_HAS_WOL
1780				  | FLAG_APME_IN_CTRL3
1781				  | FLAG_RX_CSUM_ENABLED
1782				  | FLAG_HAS_CTRLEXT_ON_LOAD
1783				  | FLAG_HAS_SMART_POWER_DOWN
1784				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1785				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1786				  | FLAG_APME_CHECK_PORT_B,
1787	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1788	.pba			= 38,
1789	.max_hw_frame_size	= DEFAULT_JUMBO,
1790	.get_variants		= e1000_get_variants_82571,
1791	.mac_ops		= &e82571_mac_ops,
1792	.phy_ops		= &e82_phy_ops_igp,
1793	.nvm_ops		= &e82571_nvm_ops,
1794};
1795
1796struct e1000_info e1000_82572_info = {
1797	.mac			= e1000_82572,
1798	.flags			= FLAG_HAS_HW_VLAN_FILTER
1799				  | FLAG_HAS_JUMBO_FRAMES
1800				  | FLAG_HAS_WOL
1801				  | FLAG_APME_IN_CTRL3
1802				  | FLAG_RX_CSUM_ENABLED
1803				  | FLAG_HAS_CTRLEXT_ON_LOAD
1804				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1805	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1806	.pba			= 38,
1807	.max_hw_frame_size	= DEFAULT_JUMBO,
1808	.get_variants		= e1000_get_variants_82571,
1809	.mac_ops		= &e82571_mac_ops,
1810	.phy_ops		= &e82_phy_ops_igp,
1811	.nvm_ops		= &e82571_nvm_ops,
1812};
1813
1814struct e1000_info e1000_82573_info = {
1815	.mac			= e1000_82573,
1816	.flags			= FLAG_HAS_HW_VLAN_FILTER
1817				  | FLAG_HAS_WOL
1818				  | FLAG_APME_IN_CTRL3
1819				  | FLAG_RX_CSUM_ENABLED
1820				  | FLAG_HAS_SMART_POWER_DOWN
1821				  | FLAG_HAS_AMT
1822				  | FLAG_HAS_SWSM_ON_LOAD,
1823	.flags2			= FLAG2_DISABLE_ASPM_L1,
1824	.pba			= 20,
1825	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
1826	.get_variants		= e1000_get_variants_82571,
1827	.mac_ops		= &e82571_mac_ops,
1828	.phy_ops		= &e82_phy_ops_m88,
1829	.nvm_ops		= &e82571_nvm_ops,
1830};
1831
1832struct e1000_info e1000_82574_info = {
1833	.mac			= e1000_82574,
1834	.flags			= FLAG_HAS_HW_VLAN_FILTER
1835				  | FLAG_HAS_MSIX
1836				  | FLAG_HAS_JUMBO_FRAMES
1837				  | FLAG_HAS_WOL
1838				  | FLAG_APME_IN_CTRL3
1839				  | FLAG_RX_CSUM_ENABLED
1840				  | FLAG_HAS_SMART_POWER_DOWN
1841				  | FLAG_HAS_AMT
1842				  | FLAG_HAS_CTRLEXT_ON_LOAD,
1843	.pba			= 36,
1844	.max_hw_frame_size	= DEFAULT_JUMBO,
1845	.get_variants		= e1000_get_variants_82571,
1846	.mac_ops		= &e82571_mac_ops,
1847	.phy_ops		= &e82_phy_ops_bm,
1848	.nvm_ops		= &e82571_nvm_ops,
1849};
1850
1851struct e1000_info e1000_82583_info = {
1852	.mac			= e1000_82583,
1853	.flags			= FLAG_HAS_HW_VLAN_FILTER
1854				  | FLAG_HAS_WOL
1855				  | FLAG_APME_IN_CTRL3
1856				  | FLAG_RX_CSUM_ENABLED
1857				  | FLAG_HAS_SMART_POWER_DOWN
1858				  | FLAG_HAS_AMT
1859				  | FLAG_HAS_CTRLEXT_ON_LOAD,
1860	.pba			= 36,
1861	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
1862	.get_variants		= e1000_get_variants_82571,
1863	.mac_ops		= &e82571_mac_ops,
1864	.phy_ops		= &e82_phy_ops_bm,
1865	.nvm_ops		= &e82571_nvm_ops,
1866};
1867