• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/net/bnx2x/
1/* bnx2x_init_ops.h: Broadcom Everest network driver.
2 *               Static functions needed during the initialization.
3 *               This file is "included" in bnx2x_main.c.
4 *
5 * Copyright (c) 2007-2010 Broadcom Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13 */
14
15#ifndef BNX2X_INIT_OPS_H
16#define BNX2X_INIT_OPS_H
17
18static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
19
20
21static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
22			      u32 len)
23{
24	u32 i;
25
26	for (i = 0; i < len; i++)
27		REG_WR(bp, addr + i*4, data[i]);
28}
29
30static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
31			      u32 len)
32{
33	u32 i;
34
35	for (i = 0; i < len; i++)
36		REG_WR_IND(bp, addr + i*4, data[i]);
37}
38
39static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
40{
41	if (bp->dmae_ready)
42		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
43	else
44		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
45}
46
47static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
48{
49	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
50	u32 buf_len32 = buf_len/4;
51	u32 i;
52
53	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
54
55	for (i = 0; i < len; i += buf_len32) {
56		u32 cur_len = min(buf_len32, len - i);
57
58		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
59	}
60}
61
62static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
63			     u32 len64)
64{
65	u32 buf_len32 = FW_BUF_SIZE/4;
66	u32 len = len64*2;
67	u64 data64 = 0;
68	u32 i;
69
70	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
71	data64 = HILO_U64((*(data + 1)), (*data));
72
73	len64 = min((u32)(FW_BUF_SIZE/8), len64);
74	for (i = 0; i < len64; i++) {
75		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
76
77		*pdata = data64;
78	}
79
80	for (i = 0; i < len; i += buf_len32) {
81		u32 cur_len = min(buf_len32, len - i);
82
83		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
84	}
85}
86
87/*********************************************************
88   There are different blobs for each PRAM section.
89   In addition, each blob write operation is divided into a few operations
90   in order to decrease the amount of phys. contiguous buffer needed.
91   Thus, when we select a blob the address may be with some offset
92   from the beginning of PRAM section.
93   The same holds for the INT_TABLE sections.
94**********************************************************/
95#define IF_IS_INT_TABLE_ADDR(base, addr) \
96			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
97
98#define IF_IS_PRAM_ADDR(base, addr) \
99			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
100
101static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
102{
103	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
104		data = INIT_TSEM_INT_TABLE_DATA(bp);
105	else
106		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
107			data = INIT_CSEM_INT_TABLE_DATA(bp);
108	else
109		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
110			data = INIT_USEM_INT_TABLE_DATA(bp);
111	else
112		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
113			data = INIT_XSEM_INT_TABLE_DATA(bp);
114	else
115		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
116			data = INIT_TSEM_PRAM_DATA(bp);
117	else
118		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
119			data = INIT_CSEM_PRAM_DATA(bp);
120	else
121		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
122			data = INIT_USEM_PRAM_DATA(bp);
123	else
124		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
125			data = INIT_XSEM_PRAM_DATA(bp);
126
127	return data;
128}
129
130static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
131{
132	if (bp->dmae_ready)
133		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
134	else
135		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
136}
137
138static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
139			     u32 len)
140{
141	const u32 *old_data = data;
142
143	data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
144
145	if (bp->dmae_ready) {
146		if (old_data != data)
147			VIRT_WR_DMAE_LEN(bp, data, addr, len, 1);
148		else
149			VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
150	} else
151		bnx2x_init_ind_wr(bp, addr, data, len);
152}
153
154static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
155{
156	const u8 *data = NULL;
157	int rc;
158	u32 i;
159
160	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
161
162	rc = bnx2x_gunzip(bp, data, len);
163	if (rc)
164		return;
165
166	/* gunzip_outlen is in dwords */
167	len = GUNZIP_OUTLEN(bp);
168	for (i = 0; i < len; i++)
169		((u32 *)GUNZIP_BUF(bp))[i] =
170				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
171
172	bnx2x_write_big_buf_wb(bp, addr, len);
173}
174
175static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
176{
177	u16 op_start =
178		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
179	u16 op_end =
180		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
181	union init_op *op;
182	int hw_wr;
183	u32 i, op_type, addr, len;
184	const u32 *data, *data_base;
185
186	/* If empty block */
187	if (op_start == op_end)
188		return;
189
190	if (CHIP_REV_IS_FPGA(bp))
191		hw_wr = OP_WR_FPGA;
192	else if (CHIP_REV_IS_EMUL(bp))
193		hw_wr = OP_WR_EMUL;
194	else
195		hw_wr = OP_WR_ASIC;
196
197	data_base = INIT_DATA(bp);
198
199	for (i = op_start; i < op_end; i++) {
200
201		op = (union init_op *)&(INIT_OPS(bp)[i]);
202
203		op_type = op->str_wr.op;
204		addr = op->str_wr.offset;
205		len = op->str_wr.data_len;
206		data = data_base + op->str_wr.data_off;
207
208		/* HW/EMUL specific */
209		if ((op_type > OP_WB) && (op_type == hw_wr))
210			op_type = OP_WR;
211
212		switch (op_type) {
213		case OP_RD:
214			REG_RD(bp, addr);
215			break;
216		case OP_WR:
217			REG_WR(bp, addr, op->write.val);
218			break;
219		case OP_SW:
220			bnx2x_init_str_wr(bp, addr, data, len);
221			break;
222		case OP_WB:
223			bnx2x_init_wr_wb(bp, addr, data, len);
224			break;
225		case OP_SI:
226			bnx2x_init_ind_wr(bp, addr, data, len);
227			break;
228		case OP_ZR:
229			bnx2x_init_fill(bp, addr, 0, op->zero.len);
230			break;
231		case OP_ZP:
232			bnx2x_init_wr_zp(bp, addr, len,
233					 op->str_wr.data_off);
234			break;
235		case OP_WR_64:
236			bnx2x_init_wr_64(bp, addr, data, len);
237			break;
238		default:
239			/* happens whenever an op is of a diff HW */
240			break;
241		}
242	}
243}
244
245
246/****************************************************************************
247* PXP Arbiter
248****************************************************************************/
249/*
250 * This code configures the PCI read/write arbiter
251 * which implements a weighted round robin
252 * between the virtual queues in the chip.
253 *
254 * The values were derived for each PCI max payload and max request size.
255 * since max payload and max request size are only known at run time,
256 * this is done as a separate init stage.
257 */
258
259#define NUM_WR_Q			13
260#define NUM_RD_Q			29
261#define MAX_RD_ORD			3
262#define MAX_WR_ORD			2
263
264/* configuration for one arbiter queue */
265struct arb_line {
266	int l;
267	int add;
268	int ubound;
269};
270
271/* derived configuration for each read queue for each max request size */
272static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
273/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
274	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
275	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
276	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
277	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
278	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
279	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
280	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
281	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
282/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
283	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
284	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
285	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
286	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
287	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
288	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
289	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
290	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
291	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
292/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
293	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
294	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
295	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
296	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
297	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
298	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
299	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
300	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
301	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
302};
303
304/* derived configuration for each write queue for each max request size */
305static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
306/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
307	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
308	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
309	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
310	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
311	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
312	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
313	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
314	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
315/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
316	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
317	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
318	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
319};
320
321/* register addresses for read queues */
322static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
323/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
324		PXP2_REG_RQ_BW_RD_UBOUND0},
325	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
326		PXP2_REG_PSWRQ_BW_UB1},
327	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
328		PXP2_REG_PSWRQ_BW_UB2},
329	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
330		PXP2_REG_PSWRQ_BW_UB3},
331	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
332		PXP2_REG_RQ_BW_RD_UBOUND4},
333	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
334		PXP2_REG_RQ_BW_RD_UBOUND5},
335	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
336		PXP2_REG_PSWRQ_BW_UB6},
337	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
338		PXP2_REG_PSWRQ_BW_UB7},
339	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
340		PXP2_REG_PSWRQ_BW_UB8},
341/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
342		PXP2_REG_PSWRQ_BW_UB9},
343	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
344		PXP2_REG_PSWRQ_BW_UB10},
345	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
346		PXP2_REG_PSWRQ_BW_UB11},
347	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
348		PXP2_REG_RQ_BW_RD_UBOUND12},
349	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
350		PXP2_REG_RQ_BW_RD_UBOUND13},
351	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
352		PXP2_REG_RQ_BW_RD_UBOUND14},
353	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
354		PXP2_REG_RQ_BW_RD_UBOUND15},
355	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
356		PXP2_REG_RQ_BW_RD_UBOUND16},
357	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
358		PXP2_REG_RQ_BW_RD_UBOUND17},
359	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
360		PXP2_REG_RQ_BW_RD_UBOUND18},
361/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
362		PXP2_REG_RQ_BW_RD_UBOUND19},
363	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
364		PXP2_REG_RQ_BW_RD_UBOUND20},
365	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
366		PXP2_REG_RQ_BW_RD_UBOUND22},
367	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
368		PXP2_REG_RQ_BW_RD_UBOUND23},
369	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
370		PXP2_REG_RQ_BW_RD_UBOUND24},
371	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
372		PXP2_REG_RQ_BW_RD_UBOUND25},
373	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
374		PXP2_REG_RQ_BW_RD_UBOUND26},
375	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
376		PXP2_REG_RQ_BW_RD_UBOUND27},
377	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
378		PXP2_REG_PSWRQ_BW_UB28}
379};
380
381/* register addresses for write queues */
382static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
383/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
384		PXP2_REG_PSWRQ_BW_UB1},
385	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
386		PXP2_REG_PSWRQ_BW_UB2},
387	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
388		PXP2_REG_PSWRQ_BW_UB3},
389	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
390		PXP2_REG_PSWRQ_BW_UB6},
391	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
392		PXP2_REG_PSWRQ_BW_UB7},
393	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
394		PXP2_REG_PSWRQ_BW_UB8},
395	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
396		PXP2_REG_PSWRQ_BW_UB9},
397	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
398		PXP2_REG_PSWRQ_BW_UB10},
399	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
400		PXP2_REG_PSWRQ_BW_UB11},
401/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
402		PXP2_REG_PSWRQ_BW_UB28},
403	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
404		PXP2_REG_RQ_BW_WR_UBOUND29},
405	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
406		PXP2_REG_RQ_BW_WR_UBOUND30}
407};
408
409static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
410{
411	u32 val, i;
412
413	if (r_order > MAX_RD_ORD) {
414		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
415		   r_order, MAX_RD_ORD);
416		r_order = MAX_RD_ORD;
417	}
418	if (w_order > MAX_WR_ORD) {
419		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
420		   w_order, MAX_WR_ORD);
421		w_order = MAX_WR_ORD;
422	}
423	if (CHIP_REV_IS_FPGA(bp)) {
424		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
425		w_order = 0;
426	}
427	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
428
429	for (i = 0; i < NUM_RD_Q-1; i++) {
430		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
431		REG_WR(bp, read_arb_addr[i].add,
432		       read_arb_data[i][r_order].add);
433		REG_WR(bp, read_arb_addr[i].ubound,
434		       read_arb_data[i][r_order].ubound);
435	}
436
437	for (i = 0; i < NUM_WR_Q-1; i++) {
438		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
439		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
440
441			REG_WR(bp, write_arb_addr[i].l,
442			       write_arb_data[i][w_order].l);
443
444			REG_WR(bp, write_arb_addr[i].add,
445			       write_arb_data[i][w_order].add);
446
447			REG_WR(bp, write_arb_addr[i].ubound,
448			       write_arb_data[i][w_order].ubound);
449		} else {
450
451			val = REG_RD(bp, write_arb_addr[i].l);
452			REG_WR(bp, write_arb_addr[i].l,
453			       val | (write_arb_data[i][w_order].l << 10));
454
455			val = REG_RD(bp, write_arb_addr[i].add);
456			REG_WR(bp, write_arb_addr[i].add,
457			       val | (write_arb_data[i][w_order].add << 10));
458
459			val = REG_RD(bp, write_arb_addr[i].ubound);
460			REG_WR(bp, write_arb_addr[i].ubound,
461			       val | (write_arb_data[i][w_order].ubound << 7));
462		}
463	}
464
465	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
466	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
467	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
468	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
469
470	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
471	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
472	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
473	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
474
475	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
476	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
477	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
478	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
479
480	if (r_order == MAX_RD_ORD)
481		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
482
483	REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
484
485	if (CHIP_IS_E1H(bp)) {
486		/*    MPS      w_order     optimal TH      presently TH
487		 *    128         0             0               2
488		 *    256         1             1               3
489		 *    >=512       2             2               3
490		 */
491		val = ((w_order == 0) ? 2 : 3);
492		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
493		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
494		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
495		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
496		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
497		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
498		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
499		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
500		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
501		REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
502		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
503	}
504}
505
506#endif /* BNX2X_INIT_OPS_H */
507