• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/infiniband/hw/qib/
1/*
2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
3 * All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34/*
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
37 */
38
39#include <linux/pci.h>
40#include <linux/delay.h>
41#include <linux/firmware.h>
42
43#include "qib.h"
44#include "qib_7220.h"
45
46#define SD7220_FW_NAME "qlogic/sd7220.fw"
47MODULE_FIRMWARE(SD7220_FW_NAME);
48
49/*
50 * Same as in qib_iba7220.c, but just the registers needed here.
51 * Could move whole set to qib_7220.h, but decided better to keep
52 * local.
53 */
54#define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
55#define kr_hwerrclear KREG_IDX(HwErrClear)
56#define kr_hwerrmask KREG_IDX(HwErrMask)
57#define kr_hwerrstatus KREG_IDX(HwErrStatus)
58#define kr_ibcstatus KREG_IDX(IBCStatus)
59#define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
60#define kr_scratch KREG_IDX(Scratch)
61#define kr_xgxs_cfg KREG_IDX(XGXSCfg)
62/* these are used only here, not in qib_iba7220.c */
63#define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
64#define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
65#define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
66#define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
67#define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
68
69/*
70 * The IBSerDesMappTable is a memory that holds values to be stored in
71 * various SerDes registers by IBC.
72 */
73#define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
74
75/*
76 * Below used for sdnum parameter, selecting one of the two sections
77 * used for PCIe, or the single SerDes used for IB.
78 */
79#define PCIE_SERDES0 0
80#define PCIE_SERDES1 1
81
82/*
83 * The EPB requires addressing in a particular form. EPB_LOC() is intended
84 * to make #definitions a little more readable.
85 */
86#define EPB_ADDR_SHF 8
87#define EPB_LOC(chn, elt, reg) \
88	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
89	 EPB_ADDR_SHF)
90#define EPB_IB_QUAD0_CS_SHF (25)
91#define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
92#define EPB_IB_UC_CS_SHF (26)
93#define EPB_PCIE_UC_CS_SHF (27)
94#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
95
96/* Forward declarations. */
97static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
98			      u32 data, u32 mask);
99static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
100			     int mask);
101static int qib_sd_trimdone_poll(struct qib_devdata *dd);
102static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
103static int qib_sd_setvals(struct qib_devdata *dd);
104static int qib_sd_early(struct qib_devdata *dd);
105static int qib_sd_dactrim(struct qib_devdata *dd);
106static int qib_internal_presets(struct qib_devdata *dd);
107/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
108static int qib_sd_trimself(struct qib_devdata *dd, int val);
109static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
110static int qib_sd7220_ib_load(struct qib_devdata *dd,
111			      const struct firmware *fw);
112static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
113			     const struct firmware *fw);
114
115/*
116 * Below keeps track of whether the "once per power-on" initialization has
117 * been done, because uC code Version 1.32.17 or higher allows the uC to
118 * be reset at will, and Automatic Equalization may require it. So the
119 * state of the reset "pin", is no longer valid. Instead, we check for the
120 * actual uC code having been loaded.
121 */
122static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
123				 const struct firmware *fw)
124{
125	struct qib_devdata *dd = ppd->dd;
126
127	if (!dd->cspec->serdes_first_init_done &&
128	    qib_sd7220_ib_vfy(dd, fw) > 0)
129		dd->cspec->serdes_first_init_done = 1;
130	return dd->cspec->serdes_first_init_done;
131}
132
133/* repeat #define for local use. "Real" #define is in qib_iba7220.c */
134#define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
135#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
136#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
137#define UC_PAR_CLR_D 8
138#define UC_PAR_CLR_M 0xC
139#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
140#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
141
142void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
143{
144	int ret;
145
146	/* clear, then re-enable parity errs */
147	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
148		UC_PAR_CLR_D, UC_PAR_CLR_M);
149	if (ret < 0) {
150		qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
151		goto bail;
152	}
153	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
154		UC_PAR_CLR_M);
155
156	qib_read_kreg32(dd, kr_scratch);
157	udelay(4);
158	qib_write_kreg(dd, kr_hwerrclear,
159		QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
160	qib_read_kreg32(dd, kr_scratch);
161bail:
162	return;
163}
164
165/*
166 * After a reset or other unusual event, the epb interface may need
167 * to be re-synchronized, between the host and the uC.
168 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
169 */
170#define IBSD_RESYNC_TRIES 3
171#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
172#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
173
174static int qib_resync_ibepb(struct qib_devdata *dd)
175{
176	int ret, pat, tries, chn;
177	u32 loc;
178
179	ret = -1;
180	chn = 0;
181	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
182		loc = IB_PGUDP(chn);
183		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
184		if (ret < 0) {
185			qib_dev_err(dd, "Failed read in resync\n");
186			continue;
187		}
188		if (ret != 0xF0 && ret != 0x55 && tries == 0)
189			qib_dev_err(dd, "unexpected pattern in resync\n");
190		pat = ret ^ 0xA5; /* alternate F0 and 55 */
191		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
192		if (ret < 0) {
193			qib_dev_err(dd, "Failed write in resync\n");
194			continue;
195		}
196		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
197		if (ret < 0) {
198			qib_dev_err(dd, "Failed re-read in resync\n");
199			continue;
200		}
201		if (ret != pat) {
202			qib_dev_err(dd, "Failed compare1 in resync\n");
203			continue;
204		}
205		loc = IB_CMUDONE(chn);
206		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
207		if (ret < 0) {
208			qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
209			continue;
210		}
211		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
212			qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
213				    ret, chn);
214			continue;
215		}
216		if (++chn == 4)
217			break;  /* Success */
218	}
219	return (ret > 0) ? 0 : ret;
220}
221
222/*
223 * Localize the stuff that should be done to change IB uC reset
224 * returns <0 for errors.
225 */
226static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
227{
228	u64 rst_val;
229	int ret = 0;
230	unsigned long flags;
231
232	rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
233	if (assert_rst) {
234		/*
235		 * Vendor recommends "interrupting" uC before reset, to
236		 * minimize possible glitches.
237		 */
238		spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
239		epb_access(dd, IB_7220_SERDES, 1);
240		rst_val |= 1ULL;
241		/* Squelch possible parity error from _asserting_ reset */
242		qib_write_kreg(dd, kr_hwerrmask,
243			       dd->cspec->hwerrmask &
244			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
245		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
246		/* flush write, delay to ensure it took effect */
247		qib_read_kreg32(dd, kr_scratch);
248		udelay(2);
249		/* once it's reset, can remove interrupt */
250		epb_access(dd, IB_7220_SERDES, -1);
251		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
252	} else {
253		/*
254		 * Before we de-assert reset, we need to deal with
255		 * possible glitch on the Parity-error line.
256		 * Suppress it around the reset, both in chip-level
257		 * hwerrmask and in IB uC control reg. uC will allow
258		 * it again during startup.
259		 */
260		u64 val;
261		rst_val &= ~(1ULL);
262		qib_write_kreg(dd, kr_hwerrmask,
263			       dd->cspec->hwerrmask &
264			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
265
266		ret = qib_resync_ibepb(dd);
267		if (ret < 0)
268			qib_dev_err(dd, "unable to re-sync IB EPB\n");
269
270		/* set uC control regs to suppress parity errs */
271		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
272		if (ret < 0)
273			goto bail;
274		/* IB uC code past Version 1.32.17 allow suppression of wdog */
275		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
276			0x80);
277		if (ret < 0) {
278			qib_dev_err(dd, "Failed to set WDOG disable\n");
279			goto bail;
280		}
281		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
282		/* flush write, delay for startup */
283		qib_read_kreg32(dd, kr_scratch);
284		udelay(1);
285		/* clear, then re-enable parity errs */
286		qib_sd7220_clr_ibpar(dd);
287		val = qib_read_kreg64(dd, kr_hwerrstatus);
288		if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
289			qib_dev_err(dd, "IBUC Parity still set after RST\n");
290			dd->cspec->hwerrmask &=
291				~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
292		}
293		qib_write_kreg(dd, kr_hwerrmask,
294			dd->cspec->hwerrmask);
295	}
296
297bail:
298	return ret;
299}
300
301static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
302       const char *where)
303{
304	int ret, chn, baduns;
305	u64 val;
306
307	if (!where)
308		where = "?";
309
310	/* give time for reset to settle out in EPB */
311	udelay(2);
312
313	ret = qib_resync_ibepb(dd);
314	if (ret < 0)
315		qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
316
317	/* Do "sacrificial read" to get EPB in sane state after reset */
318	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
319	if (ret < 0)
320		qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
321
322	/* Check/show "summary" Trim-done bit in IBCStatus */
323	val = qib_read_kreg64(dd, kr_ibcstatus);
324	if (!(val & (1ULL << 11)))
325		qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
326	/*
327	 * Do "dummy read/mod/wr" to get EPB in sane state after reset
328	 * The default value for MPREG6 is 0.
329	 */
330	udelay(2);
331
332	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
333	if (ret < 0)
334		qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
335	udelay(10);
336
337	baduns = 0;
338
339	for (chn = 3; chn >= 0; --chn) {
340		/* Read CTRL reg for each channel to check TRIMDONE */
341		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
342			IB_CTRL2(chn), 0, 0);
343		if (ret < 0)
344			qib_dev_err(dd, "Failed checking TRIMDONE, chn %d"
345				    " (%s)\n", chn, where);
346
347		if (!(ret & 0x10)) {
348			int probe;
349
350			baduns |= (1 << chn);
351			qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
352				" (%s)\n", chn, ret, where);
353			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
354				IB_PGUDP(0), 0, 0);
355			qib_dev_err(dd, "probe is %d (%02X)\n",
356				probe, probe);
357			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358				IB_CTRL2(chn), 0, 0);
359			qib_dev_err(dd, "re-read: %d (%02X)\n",
360				probe, probe);
361			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362				IB_CTRL2(chn), 0x10, 0x10);
363			if (ret < 0)
364				qib_dev_err(dd,
365					"Err on TRIMDONE rewrite1\n");
366		}
367	}
368	for (chn = 3; chn >= 0; --chn) {
369		/* Read CTRL reg for each channel to check TRIMDONE */
370		if (baduns & (1 << chn)) {
371			qib_dev_err(dd,
372				"Reseting TRIMDONE on chn %d (%s)\n",
373				chn, where);
374			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
375				IB_CTRL2(chn), 0x10, 0x10);
376			if (ret < 0)
377				qib_dev_err(dd, "Failed re-setting "
378					"TRIMDONE, chn %d (%s)\n",
379					chn, where);
380		}
381	}
382}
383
384/*
385 * Below is portion of IBA7220-specific bringup_serdes() that actually
386 * deals with registers and memory within the SerDes itself.
387 * Post IB uC code version 1.32.17, was_reset being 1 is not really
388 * informative, so we double-check.
389 */
390int qib_sd7220_init(struct qib_devdata *dd)
391{
392	const struct firmware *fw;
393	int ret = 1; /* default to failure */
394	int first_reset, was_reset;
395
396	/* SERDES MPU reset recorded in D0 */
397	was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
398	if (!was_reset) {
399		/* entered with reset not asserted, we need to do it */
400		qib_ibsd_reset(dd, 1);
401		qib_sd_trimdone_monitor(dd, "Driver-reload");
402	}
403
404	ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
405	if (ret) {
406		qib_dev_err(dd, "Failed to load IB SERDES image\n");
407		goto done;
408	}
409
410	/* Substitute our deduced value for was_reset */
411	ret = qib_ibsd_ucode_loaded(dd->pport, fw);
412	if (ret < 0)
413		goto bail;
414
415	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
416	/*
417	 * Alter some regs per vendor latest doc, reset-defaults
418	 * are not right for IB.
419	 */
420	ret = qib_sd_early(dd);
421	if (ret < 0) {
422		qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
423		goto bail;
424	}
425	/*
426	 * Set DAC manual trim IB.
427	 * We only do this once after chip has been reset (usually
428	 * same as once per system boot).
429	 */
430	if (first_reset) {
431		ret = qib_sd_dactrim(dd);
432		if (ret < 0) {
433			qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
434			goto bail;
435		}
436	}
437	/*
438	 * Set various registers (DDS and RXEQ) that will be
439	 * controlled by IBC (in 1.2 mode) to reasonable preset values
440	 * Calling the "internal" version avoids the "check for needed"
441	 * and "trimdone monitor" that might be counter-productive.
442	 */
443	ret = qib_internal_presets(dd);
444	if (ret < 0) {
445		qib_dev_err(dd, "Failed to set IB SERDES presets\n");
446		goto bail;
447	}
448	ret = qib_sd_trimself(dd, 0x80);
449	if (ret < 0) {
450		qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
451		goto bail;
452	}
453
454	/* Load image, then try to verify */
455	ret = 0;        /* Assume success */
456	if (first_reset) {
457		int vfy;
458		int trim_done;
459
460		ret = qib_sd7220_ib_load(dd, fw);
461		if (ret < 0) {
462			qib_dev_err(dd, "Failed to load IB SERDES image\n");
463			goto bail;
464		} else {
465			/* Loaded image, try to verify */
466			vfy = qib_sd7220_ib_vfy(dd, fw);
467			if (vfy != ret) {
468				qib_dev_err(dd, "SERDES PRAM VFY failed\n");
469				goto bail;
470			} /* end if verified */
471		} /* end if loaded */
472
473		/*
474		 * Loaded and verified. Almost good...
475		 * hold "success" in ret
476		 */
477		ret = 0;
478		/*
479		 * Prev steps all worked, continue bringup
480		 * De-assert RESET to uC, only in first reset, to allow
481		 * trimming.
482		 *
483		 * Since our default setup sets START_EQ1 to
484		 * PRESET, we need to clear that for this very first run.
485		 */
486		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
487		if (ret < 0) {
488			qib_dev_err(dd, "Failed clearing START_EQ1\n");
489			goto bail;
490		}
491
492		qib_ibsd_reset(dd, 0);
493		/*
494		 * If this is not the first reset, trimdone should be set
495		 * already. We may need to check about this.
496		 */
497		trim_done = qib_sd_trimdone_poll(dd);
498		/*
499		 * Whether or not trimdone succeeded, we need to put the
500		 * uC back into reset to avoid a possible fight with the
501		 * IBC state-machine.
502		 */
503		qib_ibsd_reset(dd, 1);
504
505		if (!trim_done) {
506			qib_dev_err(dd, "No TRIMDONE seen\n");
507			goto bail;
508		}
509		/*
510		 * DEBUG: check each time we reset if trimdone bits have
511		 * gotten cleared, and re-set them.
512		 */
513		qib_sd_trimdone_monitor(dd, "First-reset");
514		/* Remember so we do not re-do the load, dactrim, etc. */
515		dd->cspec->serdes_first_init_done = 1;
516	}
517	/*
518	 * setup for channel training and load values for
519	 * RxEq and DDS in tables used by IBC in IB1.2 mode
520	 */
521	ret = 0;
522	if (qib_sd_setvals(dd) >= 0)
523		goto done;
524bail:
525	ret = 1;
526done:
527	/* start relock timer regardless, but start at 1 second */
528	set_7220_relock_poll(dd, -1);
529
530	release_firmware(fw);
531	return ret;
532}
533
534#define EPB_ACC_REQ 1
535#define EPB_ACC_GNT 0x100
536#define EPB_DATA_MASK 0xFF
537#define EPB_RD (1ULL << 24)
538#define EPB_TRANS_RDY (1ULL << 31)
539#define EPB_TRANS_ERR (1ULL << 30)
540#define EPB_TRANS_TRIES 5
541
542/*
543 * query, claim, release ownership of the EPB (External Parallel Bus)
544 * for a specified SERDES.
545 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
546 * Returns <0 for errors, >0 if we had ownership, else 0.
547 */
548static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
549{
550	u16 acc;
551	u64 accval;
552	int owned = 0;
553	u64 oct_sel = 0;
554
555	switch (sdnum) {
556	case IB_7220_SERDES:
557		/*
558		 * The IB SERDES "ownership" is fairly simple. A single each
559		 * request/grant.
560		 */
561		acc = kr_ibsd_epb_access_ctrl;
562		break;
563
564	case PCIE_SERDES0:
565	case PCIE_SERDES1:
566		/* PCIe SERDES has two "octants", need to select which */
567		acc = kr_pciesd_epb_access_ctrl;
568		oct_sel = (2 << (sdnum - PCIE_SERDES0));
569		break;
570
571	default:
572		return 0;
573	}
574
575	/* Make sure any outstanding transaction was seen */
576	qib_read_kreg32(dd, kr_scratch);
577	udelay(15);
578
579	accval = qib_read_kreg32(dd, acc);
580
581	owned = !!(accval & EPB_ACC_GNT);
582	if (claim < 0) {
583		/* Need to release */
584		u64 pollval;
585		/*
586		 * The only writeable bits are the request and CS.
587		 * Both should be clear
588		 */
589		u64 newval = 0;
590		qib_write_kreg(dd, acc, newval);
591		/* First read after write is not trustworthy */
592		pollval = qib_read_kreg32(dd, acc);
593		udelay(5);
594		pollval = qib_read_kreg32(dd, acc);
595		if (pollval & EPB_ACC_GNT)
596			owned = -1;
597	} else if (claim > 0) {
598		/* Need to claim */
599		u64 pollval;
600		u64 newval = EPB_ACC_REQ | oct_sel;
601		qib_write_kreg(dd, acc, newval);
602		/* First read after write is not trustworthy */
603		pollval = qib_read_kreg32(dd, acc);
604		udelay(5);
605		pollval = qib_read_kreg32(dd, acc);
606		if (!(pollval & EPB_ACC_GNT))
607			owned = -1;
608	}
609	return owned;
610}
611
612/*
613 * Lemma to deal with race condition of write..read to epb regs
614 */
615static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
616{
617	int tries;
618	u64 transval;
619
620	qib_write_kreg(dd, reg, i_val);
621	/* Throw away first read, as RDY bit may be stale */
622	transval = qib_read_kreg64(dd, reg);
623
624	for (tries = EPB_TRANS_TRIES; tries; --tries) {
625		transval = qib_read_kreg32(dd, reg);
626		if (transval & EPB_TRANS_RDY)
627			break;
628		udelay(5);
629	}
630	if (transval & EPB_TRANS_ERR)
631		return -1;
632	if (tries > 0 && o_vp)
633		*o_vp = transval;
634	return tries;
635}
636
637/**
638 * qib_sd7220_reg_mod - modify SERDES register
639 * @dd: the qlogic_ib device
640 * @sdnum: which SERDES to access
641 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
642 * @wd: Write Data - value to set in register
643 * @mask: ones where data should be spliced into reg.
644 *
645 * Basic register read/modify/write, with un-needed acesses elided. That is,
646 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
647 * returns current (presumed, if a write was done) contents of selected
648 * register, or <0 if errors.
649 */
650static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
651			      u32 wd, u32 mask)
652{
653	u16 trans;
654	u64 transval;
655	int owned;
656	int tries, ret;
657	unsigned long flags;
658
659	switch (sdnum) {
660	case IB_7220_SERDES:
661		trans = kr_ibsd_epb_transaction_reg;
662		break;
663
664	case PCIE_SERDES0:
665	case PCIE_SERDES1:
666		trans = kr_pciesd_epb_transaction_reg;
667		break;
668
669	default:
670		return -1;
671	}
672
673	/*
674	 * All access is locked in software (vs other host threads) and
675	 * hardware (vs uC access).
676	 */
677	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
678
679	owned = epb_access(dd, sdnum, 1);
680	if (owned < 0) {
681		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
682		return -1;
683	}
684	ret = 0;
685	for (tries = EPB_TRANS_TRIES; tries; --tries) {
686		transval = qib_read_kreg32(dd, trans);
687		if (transval & EPB_TRANS_RDY)
688			break;
689		udelay(5);
690	}
691
692	if (tries > 0) {
693		tries = 1;      /* to make read-skip work */
694		if (mask != 0xFF) {
695			/*
696			 * Not a pure write, so need to read.
697			 * loc encodes chip-select as well as address
698			 */
699			transval = loc | EPB_RD;
700			tries = epb_trans(dd, trans, transval, &transval);
701		}
702		if (tries > 0 && mask != 0) {
703			/*
704			 * Not a pure read, so need to write.
705			 */
706			wd = (wd & mask) | (transval & ~mask);
707			transval = loc | (wd & EPB_DATA_MASK);
708			tries = epb_trans(dd, trans, transval, &transval);
709		}
710	}
711	/* else, failed to see ready, what error-handling? */
712
713	/*
714	 * Release bus. Failure is an error.
715	 */
716	if (epb_access(dd, sdnum, -1) < 0)
717		ret = -1;
718	else
719		ret = transval & EPB_DATA_MASK;
720
721	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
722	if (tries <= 0)
723		ret = -1;
724	return ret;
725}
726
727#define EPB_ROM_R (2)
728#define EPB_ROM_W (1)
729/*
730 * Below, all uC-related, use appropriate UC_CS, depending
731 * on which SerDes is used.
732 */
733#define EPB_UC_CTL EPB_LOC(6, 0, 0)
734#define EPB_MADDRL EPB_LOC(6, 0, 2)
735#define EPB_MADDRH EPB_LOC(6, 0, 3)
736#define EPB_ROMDATA EPB_LOC(6, 0, 4)
737#define EPB_RAMDATA EPB_LOC(6, 0, 5)
738
739/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
740static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
741			       u8 *buf, int cnt, int rd_notwr)
742{
743	u16 trans;
744	u64 transval;
745	u64 csbit;
746	int owned;
747	int tries;
748	int sofar;
749	int addr;
750	int ret;
751	unsigned long flags;
752	const char *op;
753
754	/* Pick appropriate transaction reg and "Chip select" for this serdes */
755	switch (sdnum) {
756	case IB_7220_SERDES:
757		csbit = 1ULL << EPB_IB_UC_CS_SHF;
758		trans = kr_ibsd_epb_transaction_reg;
759		break;
760
761	case PCIE_SERDES0:
762	case PCIE_SERDES1:
763		/* PCIe SERDES has uC "chip select" in different bit, too */
764		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
765		trans = kr_pciesd_epb_transaction_reg;
766		break;
767
768	default:
769		return -1;
770	}
771
772	op = rd_notwr ? "Rd" : "Wr";
773	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
774
775	owned = epb_access(dd, sdnum, 1);
776	if (owned < 0) {
777		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
778		return -1;
779	}
780
781	/*
782	 * In future code, we may need to distinguish several address ranges,
783	 * and select various memories based on this. For now, just trim
784	 * "loc" (location including address and memory select) to
785	 * "addr" (address within memory). we will only support PRAM
786	 * The memory is 8KB.
787	 */
788	addr = loc & 0x1FFF;
789	for (tries = EPB_TRANS_TRIES; tries; --tries) {
790		transval = qib_read_kreg32(dd, trans);
791		if (transval & EPB_TRANS_RDY)
792			break;
793		udelay(5);
794	}
795
796	sofar = 0;
797	if (tries > 0) {
798		/*
799		 * Every "memory" access is doubly-indirect.
800		 * We set two bytes of address, then read/write
801		 * one or mores bytes of data.
802		 */
803
804		/* First, we set control to "Read" or "Write" */
805		transval = csbit | EPB_UC_CTL |
806			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
807		tries = epb_trans(dd, trans, transval, &transval);
808		while (tries > 0 && sofar < cnt) {
809			if (!sofar) {
810				/* Only set address at start of chunk */
811				int addrbyte = (addr + sofar) >> 8;
812				transval = csbit | EPB_MADDRH | addrbyte;
813				tries = epb_trans(dd, trans, transval,
814						  &transval);
815				if (tries <= 0)
816					break;
817				addrbyte = (addr + sofar) & 0xFF;
818				transval = csbit | EPB_MADDRL | addrbyte;
819				tries = epb_trans(dd, trans, transval,
820						 &transval);
821				if (tries <= 0)
822					break;
823			}
824
825			if (rd_notwr)
826				transval = csbit | EPB_ROMDATA | EPB_RD;
827			else
828				transval = csbit | EPB_ROMDATA | buf[sofar];
829			tries = epb_trans(dd, trans, transval, &transval);
830			if (tries <= 0)
831				break;
832			if (rd_notwr)
833				buf[sofar] = transval & EPB_DATA_MASK;
834			++sofar;
835		}
836		/* Finally, clear control-bit for Read or Write */
837		transval = csbit | EPB_UC_CTL;
838		tries = epb_trans(dd, trans, transval, &transval);
839	}
840
841	ret = sofar;
842	/* Release bus. Failure is an error */
843	if (epb_access(dd, sdnum, -1) < 0)
844		ret = -1;
845
846	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
847	if (tries <= 0)
848		ret = -1;
849	return ret;
850}
851
852#define PROG_CHUNK 64
853
854static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
855			      const u8 *img, int len, int offset)
856{
857	int cnt, sofar, req;
858
859	sofar = 0;
860	while (sofar < len) {
861		req = len - sofar;
862		if (req > PROG_CHUNK)
863			req = PROG_CHUNK;
864		cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
865					  (u8 *)img + sofar, req, 0);
866		if (cnt < req) {
867			sofar = -1;
868			break;
869		}
870		sofar += req;
871	}
872	return sofar;
873}
874
875#define VFY_CHUNK 64
876#define SD_PRAM_ERROR_LIMIT 42
877
878static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
879			       const u8 *img, int len, int offset)
880{
881	int cnt, sofar, req, idx, errors;
882	unsigned char readback[VFY_CHUNK];
883
884	errors = 0;
885	sofar = 0;
886	while (sofar < len) {
887		req = len - sofar;
888		if (req > VFY_CHUNK)
889			req = VFY_CHUNK;
890		cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
891					  readback, req, 1);
892		if (cnt < req) {
893			/* failed in read itself */
894			sofar = -1;
895			break;
896		}
897		for (idx = 0; idx < cnt; ++idx) {
898			if (readback[idx] != img[idx+sofar])
899				++errors;
900		}
901		sofar += cnt;
902	}
903	return errors ? -errors : sofar;
904}
905
906static int
907qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
908{
909	return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
910}
911
912static int
913qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
914{
915	return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
916}
917
918/*
919 * IRQ not set up at this point in init, so we poll.
920 */
921#define IB_SERDES_TRIM_DONE (1ULL << 11)
922#define TRIM_TMO (30)
923
924static int qib_sd_trimdone_poll(struct qib_devdata *dd)
925{
926	int trim_tmo, ret;
927	uint64_t val;
928
929	/*
930	 * Default to failure, so IBC will not start
931	 * without IB_SERDES_TRIM_DONE.
932	 */
933	ret = 0;
934	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
935		val = qib_read_kreg64(dd, kr_ibcstatus);
936		if (val & IB_SERDES_TRIM_DONE) {
937			ret = 1;
938			break;
939		}
940		msleep(10);
941	}
942	if (trim_tmo >= TRIM_TMO) {
943		qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
944		ret = 0;
945	}
946	return ret;
947}
948
949#define TX_FAST_ELT (9)
950
951/*
952 * Set the "negotiation" values for SERDES. These are used by the IB1.2
953 * link negotiation. Macros below are attempt to keep the values a
954 * little more human-editable.
955 * First, values related to Drive De-emphasis Settings.
956 */
957
958#define NUM_DDS_REGS 6
959#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
960
961#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
962	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
963	  (main_d << 3) | 4 | (ipre_d >> 2), \
964	  (main_s << 3) | 4 | (ipre_s >> 2), \
965	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
966	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
967
968static struct dds_init {
969	uint8_t reg_vals[NUM_DDS_REGS];
970} dds_init_vals[] = {
971	/*       DDR(FDR)       SDR(HDR)   */
972	/* Vendor recommends below for 3m cable */
973#define DDS_3M 0
974	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
975	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
976	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
977	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
978	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
979	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
980	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
981	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
982	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
983	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
984	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
985	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
986	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
987	/* Vendor recommends below for 1m cable */
988#define DDS_1M 13
989	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
990	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
991	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
992};
993
994/*
995 * Now the RXEQ section of the table.
996 */
997/* Hardware packs an element number and register address thus: */
998#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
999#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1000	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1001
1002#define RXEQ_VAL_ALL(elt, adr, val)  \
1003	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1004
1005#define RXEQ_SDR_DFELTH 0
1006#define RXEQ_SDR_TLTH 0
1007#define RXEQ_SDR_G1CNT_Z1CNT 0x11
1008#define RXEQ_SDR_ZCNT 23
1009
1010static struct rxeq_init {
1011	u16 rdesc;      /* in form used in SerDesDDSRXEQ */
1012	u8  rdata[4];
1013} rxeq_init_vals[] = {
1014	/* Set Rcv Eq. to Preset node */
1015	RXEQ_VAL_ALL(7, 0x27, 0x10),
1016	/* Set DFELTHFDR/HDR thresholds */
1017	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1018	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1019	/* Set TLTHFDR/HDR theshold */
1020	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1021	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */
1022	/* Set Preamp setting 2 (ZFR/ZCNT) */
1023	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1024	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1025	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1026	RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1027	RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1028	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1029	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1030	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1031};
1032
1033/* There are 17 values from vendor, but IBC only accesses the first 16 */
1034#define DDS_ROWS (16)
1035#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1036
1037static int qib_sd_setvals(struct qib_devdata *dd)
1038{
1039	int idx, midx;
1040	int min_idx;     /* Minimum index for this portion of table */
1041	uint32_t dds_reg_map;
1042	u64 __iomem *taddr, *iaddr;
1043	uint64_t data;
1044	uint64_t sdctl;
1045
1046	taddr = dd->kregbase + kr_serdes_maptable;
1047	iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1048
1049	/*
1050	 * Init the DDS section of the table.
1051	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1052	 * registers indicated in DDS_REG_MAP.
1053	 */
1054	sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1055	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1056	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1057	qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1058
1059	/*
1060	 * Iterate down table within loop for each register to store.
1061	 */
1062	dds_reg_map = DDS_REG_MAP;
1063	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1064		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1065		writeq(data, iaddr + idx);
1066		mmiowb();
1067		qib_read_kreg32(dd, kr_scratch);
1068		dds_reg_map >>= 4;
1069		for (midx = 0; midx < DDS_ROWS; ++midx) {
1070			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1071			data = dds_init_vals[midx].reg_vals[idx];
1072			writeq(data, daddr);
1073			mmiowb();
1074			qib_read_kreg32(dd, kr_scratch);
1075		} /* End inner for (vals for this reg, each row) */
1076	} /* end outer for (regs to be stored) */
1077
1078	/*
1079	 * Init the RXEQ section of the table.
1080	 * This runs in a different order, as the pattern of
1081	 * register references is more complex, but there are only
1082	 * four "data" values per register.
1083	 */
1084	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1085	taddr += 0x100; /* RXEQ data is in second half of table */
1086	/* Iterate through RXEQ register addresses */
1087	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1088		int didx; /* "destination" */
1089		int vidx;
1090
1091		/* didx is offset by min_idx to address RXEQ range of regs */
1092		didx = idx + min_idx;
1093		/* Store the next RXEQ register address */
1094		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1095		mmiowb();
1096		qib_read_kreg32(dd, kr_scratch);
1097		/* Iterate through RXEQ values */
1098		for (vidx = 0; vidx < 4; vidx++) {
1099			data = rxeq_init_vals[idx].rdata[vidx];
1100			writeq(data, taddr + (vidx << 6) + idx);
1101			mmiowb();
1102			qib_read_kreg32(dd, kr_scratch);
1103		}
1104	} /* end outer for (Reg-writes for RXEQ) */
1105	return 0;
1106}
1107
1108#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1109#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1110#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1111#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1112#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1113#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1114
1115/*
1116 * Repeat a "store" across all channels of the IB SerDes.
1117 * Although nominally it inherits the "read value" of the last
1118 * channel it modified, the only really useful return is <0 for
1119 * failure, >= 0 for success. The parameter 'loc' is assumed to
1120 * be the location in some channel of the register to be modified
1121 * The caller can specify use of the "gang write" option of EPB,
1122 * in which case we use the specified channel data for any fields
1123 * not explicitely written.
1124 */
1125static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1126			     int mask)
1127{
1128	int ret = -1;
1129	int chnl;
1130
1131	if (loc & EPB_GLOBAL_WR) {
1132		/*
1133		 * Our caller has assured us that we can set all four
1134		 * channels at once. Trust that. If mask is not 0xFF,
1135		 * we will read the _specified_ channel for our starting
1136		 * value.
1137		 */
1138		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1139		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1140		if (mask != 0xFF) {
1141			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1142						 loc & ~EPB_GLOBAL_WR, 0, 0);
1143			if (ret < 0) {
1144				int sloc = loc >> EPB_ADDR_SHF;
1145
1146				qib_dev_err(dd, "pre-read failed: elt %d,"
1147					    " addr 0x%X, chnl %d\n",
1148					    (sloc & 0xF),
1149					    (sloc >> 9) & 0x3f, chnl);
1150				return ret;
1151			}
1152			val = (ret & ~mask) | (val & mask);
1153		}
1154		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1155		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1156		if (ret < 0) {
1157			int sloc = loc >> EPB_ADDR_SHF;
1158
1159			qib_dev_err(dd, "Global WR failed: elt %d,"
1160				    " addr 0x%X, val %02X\n",
1161				    (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1162		}
1163		return ret;
1164	}
1165	/* Clear "channel" and set CS so we can simply iterate */
1166	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1167	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1168	for (chnl = 0; chnl < 4; ++chnl) {
1169		int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1170
1171		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1172		if (ret < 0) {
1173			int sloc = loc >> EPB_ADDR_SHF;
1174
1175			qib_dev_err(dd, "Write failed: elt %d,"
1176				    " addr 0x%X, chnl %d, val 0x%02X,"
1177				    " mask 0x%02X\n",
1178				    (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1179				    val & 0xFF, mask & 0xFF);
1180			break;
1181		}
1182	}
1183	return ret;
1184}
1185
1186/*
1187 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1188 * values, as gotten from first row of init table.
1189 */
1190static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1191{
1192	int ret;
1193	int idx, reg, data;
1194	uint32_t regmap;
1195
1196	regmap = DDS_REG_MAP;
1197	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1198		reg = (regmap & 0xF);
1199		regmap >>= 4;
1200		data = ddi->reg_vals[idx];
1201		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1202		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1203		if (ret < 0)
1204			break;
1205	}
1206	return ret;
1207}
1208
1209/*
1210 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1211 * values, as gotten from selected column of init table.
1212 */
1213static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1214{
1215	int ret;
1216	int ridx;
1217	int cnt = ARRAY_SIZE(rxeq_init_vals);
1218
1219	for (ridx = 0; ridx < cnt; ++ridx) {
1220		int elt, reg, val, loc;
1221
1222		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1223		reg = rxeq_init_vals[ridx].rdesc >> 4;
1224		loc = EPB_LOC(0, elt, reg);
1225		val = rxeq_init_vals[ridx].rdata[vsel];
1226		/* mask of 0xFF, because hardware does full-byte store. */
1227		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1228		if (ret < 0)
1229			break;
1230	}
1231	return ret;
1232}
1233
1234/*
1235 * Set the default values (row 0) for DDR Driver Demphasis.
1236 * we do this initially and whenever we turn off IB-1.2
1237 *
1238 * The "default" values for Rx equalization are also stored to
1239 * SerDes registers. Formerly (and still default), we used set 2.
1240 * For experimenting with cables and link-partners, we allow changing
1241 * that via a module parameter.
1242 */
1243static unsigned qib_rxeq_set = 2;
1244module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1245		   S_IWUSR | S_IRUGO);
1246MODULE_PARM_DESC(rxeq_default_set,
1247		 "Which set [0..3] of Rx Equalization values is default");
1248
1249static int qib_internal_presets(struct qib_devdata *dd)
1250{
1251	int ret = 0;
1252
1253	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1254
1255	if (ret < 0)
1256		qib_dev_err(dd, "Failed to set default DDS values\n");
1257	ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1258	if (ret < 0)
1259		qib_dev_err(dd, "Failed to set default RXEQ values\n");
1260	return ret;
1261}
1262
1263int qib_sd7220_presets(struct qib_devdata *dd)
1264{
1265	int ret = 0;
1266
1267	if (!dd->cspec->presets_needed)
1268		return ret;
1269	dd->cspec->presets_needed = 0;
1270	/* Assert uC reset, so we don't clash with it. */
1271	qib_ibsd_reset(dd, 1);
1272	udelay(2);
1273	qib_sd_trimdone_monitor(dd, "link-down");
1274
1275	ret = qib_internal_presets(dd);
1276	return ret;
1277}
1278
1279static int qib_sd_trimself(struct qib_devdata *dd, int val)
1280{
1281	int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1282
1283	return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1284}
1285
1286static int qib_sd_early(struct qib_devdata *dd)
1287{
1288	int ret;
1289
1290	ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1291	if (ret < 0)
1292		goto bail;
1293	ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1294	if (ret < 0)
1295		goto bail;
1296	ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1297bail:
1298	return ret;
1299}
1300
1301#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304
1305static int qib_sd_dactrim(struct qib_devdata *dd)
1306{
1307	int ret;
1308
1309	ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1310	if (ret < 0)
1311		goto bail;
1312
1313	/* more fine-tuning of what will be default */
1314	ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1315	if (ret < 0)
1316		goto bail;
1317
1318	ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1319	if (ret < 0)
1320		goto bail;
1321
1322	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1323	if (ret < 0)
1324		goto bail;
1325
1326	ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1327	if (ret < 0)
1328		goto bail;
1329
1330	/*
1331	 * Delay for max possible number of steps, with slop.
1332	 * Each step is about 4usec.
1333	 */
1334	udelay(415);
1335
1336	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1337
1338bail:
1339	return ret;
1340}
1341
1342#define RELOCK_FIRST_MS 3
1343#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1344void toggle_7220_rclkrls(struct qib_devdata *dd)
1345{
1346	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1347	int ret;
1348
1349	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1350	if (ret < 0)
1351		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1352	else {
1353		udelay(1);
1354		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1355	}
1356	/* And again for good measure */
1357	udelay(1);
1358	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1359	if (ret < 0)
1360		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1361	else {
1362		udelay(1);
1363		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1364	}
1365	/* Now reset xgxs and IBC to complete the recovery */
1366	dd->f_xgxs_reset(dd->pport);
1367}
1368
1369/*
1370 * Shut down the timer that polls for relock occasions, if needed
1371 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1372 * just before qib_shutdown_device() in qib_driver.c shuts down all
1373 * the other timers
1374 */
1375void shutdown_7220_relock_poll(struct qib_devdata *dd)
1376{
1377	if (dd->cspec->relock_timer_active)
1378		del_timer_sync(&dd->cspec->relock_timer);
1379}
1380
1381static unsigned qib_relock_by_timer = 1;
1382module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1383		   S_IWUSR | S_IRUGO);
1384MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385
1386static void qib_run_relock(unsigned long opaque)
1387{
1388	struct qib_devdata *dd = (struct qib_devdata *)opaque;
1389	struct qib_pportdata *ppd = dd->pport;
1390	struct qib_chip_specific *cs = dd->cspec;
1391	int timeoff;
1392
1393	/*
1394	 * Check link-training state for "stuck" state, when down.
1395	 * if found, try relock and schedule another try at
1396	 * exponentially growing delay, maxed at one second.
1397	 * if not stuck, our work is done.
1398	 */
1399	if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1400	    (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1401	     QIBL_LINKACTIVE))) {
1402		if (qib_relock_by_timer) {
1403			if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1404				toggle_7220_rclkrls(dd);
1405		}
1406		/* re-set timer for next check */
1407		timeoff = cs->relock_interval << 1;
1408		if (timeoff > HZ)
1409			timeoff = HZ;
1410		cs->relock_interval = timeoff;
1411	} else
1412		timeoff = HZ;
1413	mod_timer(&cs->relock_timer, jiffies + timeoff);
1414}
1415
1416void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1417{
1418	struct qib_chip_specific *cs = dd->cspec;
1419
1420	if (ibup) {
1421		/* We are now up, relax timer to 1 second interval */
1422		if (cs->relock_timer_active) {
1423			cs->relock_interval = HZ;
1424			mod_timer(&cs->relock_timer, jiffies + HZ);
1425		}
1426	} else {
1427		/* Transition to down, (re-)set timer to short interval. */
1428		unsigned int timeout;
1429
1430		timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1431		if (timeout == 0)
1432			timeout = 1;
1433		/* If timer has not yet been started, do so. */
1434		if (!cs->relock_timer_active) {
1435			cs->relock_timer_active = 1;
1436			init_timer(&cs->relock_timer);
1437			cs->relock_timer.function = qib_run_relock;
1438			cs->relock_timer.data = (unsigned long) dd;
1439			cs->relock_interval = timeout;
1440			cs->relock_timer.expires = jiffies + timeout;
1441			add_timer(&cs->relock_timer);
1442		} else {
1443			cs->relock_interval = timeout;
1444			mod_timer(&cs->relock_timer, jiffies + timeout);
1445		}
1446	}
1447}
1448