• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/i2c/busses/
1/*
2 * Copyright (C) 2009 ST-Ericsson
3 * Copyright (C) 2009 STMicroelectronics
4 *
5 * I2C master mode controller driver, used in Nomadik 8815
6 * and Ux500 platforms.
7 *
8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9 * Author: Sachin Verma <sachin.verma@st.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2, as
13 * published by the Free Software Foundation.
14 */
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/platform_device.h>
18#include <linux/delay.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/i2c.h>
22#include <linux/err.h>
23#include <linux/clk.h>
24#include <linux/io.h>
25
26#include <plat/i2c.h>
27
28#define DRIVER_NAME "nmk-i2c"
29
30/* I2C Controller register offsets */
31#define I2C_CR		(0x000)
32#define I2C_SCR		(0x004)
33#define I2C_HSMCR	(0x008)
34#define I2C_MCR		(0x00C)
35#define I2C_TFR		(0x010)
36#define I2C_SR		(0x014)
37#define I2C_RFR		(0x018)
38#define I2C_TFTR	(0x01C)
39#define I2C_RFTR	(0x020)
40#define I2C_DMAR	(0x024)
41#define I2C_BRCR	(0x028)
42#define I2C_IMSCR	(0x02C)
43#define I2C_RISR	(0x030)
44#define I2C_MISR	(0x034)
45#define I2C_ICR		(0x038)
46
47/* Control registers */
48#define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
49#define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
50#define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
51#define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
52#define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
53#define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
54#define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
55#define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
56#define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
57#define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
58#define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
59#define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
60#define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
61
62/* Master controller (MCR) register */
63#define I2C_MCR_OP		(0x1 << 0)	/* Operation */
64#define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
65#define I2C_MCR_EA10		(0x7 << 8) 	/* 10-bit Extended address */
66#define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
67#define I2C_MCR_AM		(0x3 << 12)	/* Address type */
68#define I2C_MCR_STOP		(0x1 << 14) 	/* Stop condition */
69#define I2C_MCR_LENGTH		(0x7ff << 15) 	/* Transaction length */
70
71/* Status register (SR) */
72#define I2C_SR_OP		(0x3 << 0)	/* Operation */
73#define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
74#define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
75#define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
76#define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
77
78/* Interrupt mask set/clear (IMSCR) bits */
79#define I2C_IT_TXFE 		(0x1 << 0)
80#define I2C_IT_TXFNE		(0x1 << 1)
81#define I2C_IT_TXFF		(0x1 << 2)
82#define I2C_IT_TXFOVR		(0x1 << 3)
83#define I2C_IT_RXFE		(0x1 << 4)
84#define I2C_IT_RXFNF		(0x1 << 5)
85#define I2C_IT_RXFF		(0x1 << 6)
86#define I2C_IT_RFSR		(0x1 << 16)
87#define I2C_IT_RFSE		(0x1 << 17)
88#define I2C_IT_WTSR		(0x1 << 18)
89#define I2C_IT_MTD		(0x1 << 19)
90#define I2C_IT_STD		(0x1 << 20)
91#define I2C_IT_MAL		(0x1 << 24)
92#define I2C_IT_BERR		(0x1 << 25)
93#define I2C_IT_MTDWS		(0x1 << 28)
94
95#define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
96
97/* some bits in ICR are reserved */
98#define I2C_CLEAR_ALL_INTS	0x131f007f
99
100/* first three msb bits are reserved */
101#define IRQ_MASK(mask)		(mask & 0x1fffffff)
102
103/* maximum threshold value */
104#define MAX_I2C_FIFO_THRESHOLD	15
105
106enum i2c_status {
107	I2C_NOP,
108	I2C_ON_GOING,
109	I2C_OK,
110	I2C_ABORT
111};
112
113/* operation */
114enum i2c_operation {
115	I2C_NO_OPERATION = 0xff,
116	I2C_WRITE = 0x00,
117	I2C_READ = 0x01
118};
119
120/* controller response timeout in ms */
121#define I2C_TIMEOUT_MS	500
122
123/**
124 * struct i2c_nmk_client - client specific data
125 * @slave_adr: 7-bit slave address
126 * @count: no. bytes to be transfered
127 * @buffer: client data buffer
128 * @xfer_bytes: bytes transfered till now
129 * @operation: current I2C operation
130 */
131struct i2c_nmk_client {
132	unsigned short		slave_adr;
133	unsigned long		count;
134	unsigned char		*buffer;
135	unsigned long		xfer_bytes;
136	enum i2c_operation	operation;
137};
138
139/**
140 * struct nmk_i2c_dev - private data structure of the controller
141 * @pdev: parent platform device
142 * @adap: corresponding I2C adapter
143 * @irq: interrupt line for the controller
144 * @virtbase: virtual io memory area
145 * @clk: hardware i2c block clock
146 * @cfg: machine provided controller configuration
147 * @cli: holder of client specific data
148 * @stop: stop condition
149 * @xfer_complete: acknowledge completion for a I2C message
150 * @result: controller propogated result
151 */
152struct nmk_i2c_dev {
153	struct platform_device		*pdev;
154	struct i2c_adapter 		adap;
155	int 				irq;
156	void __iomem			*virtbase;
157	struct clk			*clk;
158	struct nmk_i2c_controller	cfg;
159	struct i2c_nmk_client		cli;
160	int 				stop;
161	struct completion		xfer_complete;
162	int 				result;
163};
164
165/* controller's abort causes */
166static const char *abort_causes[] = {
167	"no ack received after address transmission",
168	"no ack received during data phase",
169	"ack received after xmission of master code",
170	"master lost arbitration",
171	"slave restarts",
172	"slave reset",
173	"overflow, maxsize is 2047 bytes",
174};
175
176static inline void i2c_set_bit(void __iomem *reg, u32 mask)
177{
178	writel(readl(reg) | mask, reg);
179}
180
181static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
182{
183	writel(readl(reg) & ~mask, reg);
184}
185
186/**
187 * flush_i2c_fifo() - This function flushes the I2C FIFO
188 * @dev: private data of I2C Driver
189 *
190 * This function flushes the I2C Tx and Rx FIFOs. It returns
191 * 0 on successful flushing of FIFO
192 */
193static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
194{
195#define LOOP_ATTEMPTS 10
196	int i;
197	unsigned long timeout;
198
199	/*
200	 * flush the transmit and receive FIFO. The flushing
201	 * operation takes several cycles before to be completed.
202	 * On the completion, the I2C internal logic clears these
203	 * bits, until then no one must access Tx, Rx FIFO and
204	 * should poll on these bits waiting for the completion.
205	 */
206	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
207
208	for (i = 0; i < LOOP_ATTEMPTS; i++) {
209		timeout = jiffies + msecs_to_jiffies(I2C_TIMEOUT_MS);
210
211		while (!time_after(jiffies, timeout)) {
212			if ((readl(dev->virtbase + I2C_CR) &
213				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
214					return 0;
215		}
216	}
217
218	dev_err(&dev->pdev->dev, "flushing operation timed out "
219		"giving up after %d attempts", LOOP_ATTEMPTS);
220
221	return -ETIMEDOUT;
222}
223
224/**
225 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
226 * @dev: private data of I2C Driver
227 */
228static void disable_all_interrupts(struct nmk_i2c_dev *dev)
229{
230	u32 mask = IRQ_MASK(0);
231	writel(mask, dev->virtbase + I2C_IMSCR);
232}
233
234/**
235 * clear_all_interrupts() - Clear all interrupts of I2C Controller
236 * @dev: private data of I2C Driver
237 */
238static void clear_all_interrupts(struct nmk_i2c_dev *dev)
239{
240	u32 mask;
241	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
242	writel(mask, dev->virtbase + I2C_ICR);
243}
244
245/**
246 * init_hw() - initialize the I2C hardware
247 * @dev: private data of I2C Driver
248 */
249static int init_hw(struct nmk_i2c_dev *dev)
250{
251	int stat;
252
253	stat = flush_i2c_fifo(dev);
254	if (stat)
255		return stat;
256
257	/* disable the controller */
258	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
259
260	disable_all_interrupts(dev);
261
262	clear_all_interrupts(dev);
263
264	dev->cli.operation = I2C_NO_OPERATION;
265
266	return 0;
267}
268
269/* enable peripheral, master mode operation */
270#define DEFAULT_I2C_REG_CR 	((1 << 1) | I2C_CR_PE)
271
272/**
273 * load_i2c_mcr_reg() - load the MCR register
274 * @dev: private data of controller
275 */
276static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev)
277{
278	u32 mcr = 0;
279
280	/* 7-bit address transaction */
281	mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
282	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
283
284	/* start byte procedure not applied */
285	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
286
287	/* check the operation, master read/write? */
288	if (dev->cli.operation == I2C_WRITE)
289		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
290	else
291		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
292
293	/* stop or repeated start? */
294	if (dev->stop)
295		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
296	else
297		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
298
299	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
300
301	return mcr;
302}
303
304/**
305 * setup_i2c_controller() - setup the controller
306 * @dev: private data of controller
307 */
308static void setup_i2c_controller(struct nmk_i2c_dev *dev)
309{
310	u32 brcr1, brcr2;
311	u32 i2c_clk, div;
312
313	writel(0x0, dev->virtbase + I2C_CR);
314	writel(0x0, dev->virtbase + I2C_HSMCR);
315	writel(0x0, dev->virtbase + I2C_TFTR);
316	writel(0x0, dev->virtbase + I2C_RFTR);
317	writel(0x0, dev->virtbase + I2C_DMAR);
318
319	/*
320	 * set the slsu:
321	 *
322	 * slsu defines the data setup time after SCL clock
323	 * stretching in terms of i2c clk cycles. The
324	 * needed setup time for the three modes are 250ns,
325	 * 100ns, 10ns repectively thus leading to the values
326	 * of 14, 6, 2 for a 48 MHz i2c clk.
327	 */
328	writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
329
330	i2c_clk = clk_get_rate(dev->clk);
331
332	/* fallback to std. mode if machine has not provided it */
333	if (dev->cfg.clk_freq == 0)
334		dev->cfg.clk_freq = 100000;
335
336	/*
337	 * The spec says, in case of std. mode the divider is
338	 * 2 whereas it is 3 for fast and fastplus mode of
339	 * operation. TODO - high speed support.
340	 */
341	div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
342
343	/*
344	 * generate the mask for baud rate counters. The controller
345	 * has two baud rate counters. One is used for High speed
346	 * operation, and the other is for std, fast mode, fast mode
347	 * plus operation. Currently we do not supprt high speed mode
348	 * so set brcr1 to 0.
349	 */
350	brcr1 = 0 << 16;
351	brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
352
353	/* set the baud rate counter register */
354	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
355
356	/*
357	 * set the speed mode. Currently we support
358	 * only standard and fast mode of operation
359	 * TODO - support for fast mode plus (upto 1Mb/s)
360	 * and high speed (up to 3.4 Mb/s)
361	 */
362	if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
363		dev_err(&dev->pdev->dev, "do not support this mode "
364			"defaulting to std. mode\n");
365		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
366		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
367		writel(I2C_FREQ_MODE_STANDARD << 4,
368				dev->virtbase + I2C_CR);
369	}
370	writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
371
372	/* set the Tx and Rx FIFO threshold */
373	writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
374	writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
375}
376
377/**
378 * read_i2c() - Read from I2C client device
379 * @dev: private data of I2C Driver
380 *
381 * This function reads from i2c client device when controller is in
382 * master mode. There is a completion timeout. If there is no transfer
383 * before timeout error is returned.
384 */
385static int read_i2c(struct nmk_i2c_dev *dev)
386{
387	u32 status = 0;
388	u32 mcr;
389	u32 irq_mask = 0;
390	int timeout;
391
392	mcr = load_i2c_mcr_reg(dev);
393	writel(mcr, dev->virtbase + I2C_MCR);
394
395	/* load the current CR value */
396	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
397			dev->virtbase + I2C_CR);
398
399	/* enable the controller */
400	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
401
402	init_completion(&dev->xfer_complete);
403
404	/* enable interrupts by setting the mask */
405	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
406			I2C_IT_MAL | I2C_IT_BERR);
407
408	if (dev->stop)
409		irq_mask |= I2C_IT_MTD;
410	else
411		irq_mask |= I2C_IT_MTDWS;
412
413	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
414
415	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
416			dev->virtbase + I2C_IMSCR);
417
418	timeout = wait_for_completion_interruptible_timeout(
419		&dev->xfer_complete, msecs_to_jiffies(I2C_TIMEOUT_MS));
420
421	if (timeout < 0) {
422		dev_err(&dev->pdev->dev,
423			"wait_for_completion_interruptible_timeout"
424			"returned %d waiting for event\n", timeout);
425		status = timeout;
426	}
427
428	if (timeout == 0) {
429		/* controler has timedout, re-init the h/w */
430		dev_err(&dev->pdev->dev, "controller timed out, re-init h/w\n");
431		(void) init_hw(dev);
432		status = -ETIMEDOUT;
433	}
434
435	return status;
436}
437
438/**
439 * write_i2c() - Write data to I2C client.
440 * @dev: private data of I2C Driver
441 *
442 * This function writes data to I2C client
443 */
444static int write_i2c(struct nmk_i2c_dev *dev)
445{
446	u32 status = 0;
447	u32 mcr;
448	u32 irq_mask = 0;
449	int timeout;
450
451	mcr = load_i2c_mcr_reg(dev);
452
453	writel(mcr, dev->virtbase + I2C_MCR);
454
455	/* load the current CR value */
456	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
457			dev->virtbase + I2C_CR);
458
459	/* enable the controller */
460	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
461
462	init_completion(&dev->xfer_complete);
463
464	/* enable interrupts by settings the masks */
465	irq_mask = (I2C_IT_TXFNE | I2C_IT_TXFOVR |
466			I2C_IT_MAL | I2C_IT_BERR);
467
468	/*
469	 * check if we want to transfer a single or multiple bytes, if so
470	 * set the MTDWS bit (Master Transaction Done Without Stop)
471	 * to start repeated start operation
472	 */
473	if (dev->stop)
474		irq_mask |= I2C_IT_MTD;
475	else
476		irq_mask |= I2C_IT_MTDWS;
477
478	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
479
480	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
481			dev->virtbase + I2C_IMSCR);
482
483	timeout = wait_for_completion_interruptible_timeout(
484		&dev->xfer_complete, msecs_to_jiffies(I2C_TIMEOUT_MS));
485
486	if (timeout < 0) {
487		dev_err(&dev->pdev->dev,
488			"wait_for_completion_interruptible_timeout"
489			"returned %d waiting for event\n", timeout);
490		status = timeout;
491	}
492
493	if (timeout == 0) {
494		/* controler has timedout, re-init the h/w */
495		dev_err(&dev->pdev->dev, "controller timed out, re-init h/w\n");
496		(void) init_hw(dev);
497		status = -ETIMEDOUT;
498	}
499
500	return status;
501}
502
503/**
504 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
505 * @i2c_adap 	- Adapter pointer to the controller
506 * @msgs[] - Pointer to data to be written.
507 * @num_msgs - Number of messages to be executed
508 *
509 * This is the function called by the generic kernel i2c_transfer()
510 * or i2c_smbus...() API calls. Note that this code is protected by the
511 * semaphore set in the kernel i2c_transfer() function.
512 *
513 * NOTE:
514 * READ TRANSFER : We impose a restriction of the first message to be the
515 * 		index message for any read transaction.
516 * 		- a no index is coded as '0',
517 * 		- 2byte big endian index is coded as '3'
518 * 		!!! msg[0].buf holds the actual index.
519 * 		This is compatible with generic messages of smbus emulator
520 * 		that send a one byte index.
521 * 		eg. a I2C transation to read 2 bytes from index 0
522 *			idx = 0;
523 *			msg[0].addr = client->addr;
524 *			msg[0].flags = 0x0;
525 *			msg[0].len = 1;
526 *			msg[0].buf = &idx;
527 *
528 *			msg[1].addr = client->addr;
529 *			msg[1].flags = I2C_M_RD;
530 *			msg[1].len = 2;
531 *			msg[1].buf = rd_buff
532 *			i2c_transfer(adap, msg, 2);
533 *
534 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
535 *		If you want to emulate an SMBUS write transaction put the
536 *		index as first byte(or first and second) in the payload.
537 *		eg. a I2C transation to write 2 bytes from index 1
538 *			wr_buff[0] = 0x1;
539 *			wr_buff[1] = 0x23;
540 *			wr_buff[2] = 0x46;
541 *			msg[0].flags = 0x0;
542 *			msg[0].len = 3;
543 *			msg[0].buf = wr_buff;
544 *			i2c_transfer(adap, msg, 1);
545 *
546 * To read or write a block of data (multiple bytes) using SMBUS emulation
547 * please use the i2c_smbus_read_i2c_block_data()
548 * or i2c_smbus_write_i2c_block_data() API
549 */
550static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
551		struct i2c_msg msgs[], int num_msgs)
552{
553	int status;
554	int i;
555	u32 cause;
556	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
557
558	status = init_hw(dev);
559	if (status)
560		return status;
561
562	/* setup the i2c controller */
563	setup_i2c_controller(dev);
564
565	for (i = 0; i < num_msgs; i++) {
566		if (unlikely(msgs[i].flags & I2C_M_TEN)) {
567			dev_err(&dev->pdev->dev, "10 bit addressing"
568					"not supported\n");
569			return -EINVAL;
570		}
571		dev->cli.slave_adr	= msgs[i].addr;
572		dev->cli.buffer		= msgs[i].buf;
573		dev->cli.count		= msgs[i].len;
574		dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
575		dev->result = 0;
576
577		if (msgs[i].flags & I2C_M_RD) {
578			/* it is a read operation */
579			dev->cli.operation = I2C_READ;
580			status = read_i2c(dev);
581		} else {
582			/* write operation */
583			dev->cli.operation = I2C_WRITE;
584			status = write_i2c(dev);
585		}
586		if (status || (dev->result)) {
587			/* get the abort cause */
588			cause =	(readl(dev->virtbase + I2C_SR) >> 4) & 0x7;
589			dev_err(&dev->pdev->dev, "error during I2C"
590					"message xfer: %d\n", cause);
591			dev_err(&dev->pdev->dev, "%s\n",
592				cause >= ARRAY_SIZE(abort_causes)
593				? "unknown reason" : abort_causes[cause]);
594			return status;
595		}
596		mdelay(1);
597	}
598	/* return the no. messages processed */
599	if (status)
600		return status;
601	else
602		return num_msgs;
603}
604
605/**
606 * disable_interrupts() - disable the interrupts
607 * @dev: private data of controller
608 */
609static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
610{
611	irq = IRQ_MASK(irq);
612	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
613			dev->virtbase + I2C_IMSCR);
614	return 0;
615}
616
617/**
618 * i2c_irq_handler() - interrupt routine
619 * @irq: interrupt number
620 * @arg: data passed to the handler
621 *
622 * This is the interrupt handler for the i2c driver. Currently
623 * it handles the major interrupts like Rx & Tx FIFO management
624 * interrupts, master transaction interrupts, arbitration and
625 * bus error interrupts. The rest of the interrupts are treated as
626 * unhandled.
627 */
628static irqreturn_t i2c_irq_handler(int irq, void *arg)
629{
630	struct nmk_i2c_dev *dev = arg;
631	u32 tft, rft;
632	u32 count;
633	u32 misr;
634	u32 src = 0;
635
636	/* load Tx FIFO and Rx FIFO threshold values */
637	tft = readl(dev->virtbase + I2C_TFTR);
638	rft = readl(dev->virtbase + I2C_RFTR);
639
640	/* read interrupt status register */
641	misr = readl(dev->virtbase + I2C_MISR);
642
643	src = __ffs(misr);
644	switch ((1 << src)) {
645
646	/* Transmit FIFO nearly empty interrupt */
647	case I2C_IT_TXFNE:
648	{
649		if (dev->cli.operation == I2C_READ) {
650			/*
651			 * in read operation why do we care for writing?
652			 * so disable the Transmit FIFO interrupt
653			 */
654			disable_interrupts(dev, I2C_IT_TXFNE);
655		} else {
656			for (count = (MAX_I2C_FIFO_THRESHOLD - tft - 2);
657					(count > 0) &&
658					(dev->cli.count != 0);
659					count--) {
660				/* write to the Tx FIFO */
661				writeb(*dev->cli.buffer,
662					dev->virtbase + I2C_TFR);
663				dev->cli.buffer++;
664				dev->cli.count--;
665				dev->cli.xfer_bytes++;
666			}
667			/*
668			 * if done, close the transfer by disabling the
669			 * corresponding TXFNE interrupt
670			 */
671			if (dev->cli.count == 0)
672				disable_interrupts(dev,	I2C_IT_TXFNE);
673		}
674	}
675	break;
676
677	/*
678	 * Rx FIFO nearly full interrupt.
679	 * This is set when the numer of entries in Rx FIFO is
680	 * greater or equal than the threshold value programmed
681	 * in RFT
682	 */
683	case I2C_IT_RXFNF:
684		for (count = rft; count > 0; count--) {
685			/* Read the Rx FIFO */
686			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
687			dev->cli.buffer++;
688		}
689		dev->cli.count -= rft;
690		dev->cli.xfer_bytes += rft;
691		break;
692
693	/* Rx FIFO full */
694	case I2C_IT_RXFF:
695		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
696			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
697			dev->cli.buffer++;
698		}
699		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
700		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
701		break;
702
703	/* Master Transaction Done with/without stop */
704	case I2C_IT_MTD:
705	case I2C_IT_MTDWS:
706		if (dev->cli.operation == I2C_READ) {
707			while (!(readl(dev->virtbase + I2C_RISR)
708				 & I2C_IT_RXFE)) {
709				if (dev->cli.count == 0)
710					break;
711				*dev->cli.buffer =
712					readb(dev->virtbase + I2C_RFR);
713				dev->cli.buffer++;
714				dev->cli.count--;
715				dev->cli.xfer_bytes++;
716			}
717		}
718
719		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MTD);
720		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MTDWS);
721
722		disable_interrupts(dev,
723				(I2C_IT_TXFNE | I2C_IT_TXFE | I2C_IT_TXFF
724					| I2C_IT_TXFOVR | I2C_IT_RXFNF
725					| I2C_IT_RXFF | I2C_IT_RXFE));
726
727		if (dev->cli.count) {
728			dev->result = -1;
729			dev_err(&dev->pdev->dev, "%lu bytes still remain to be"
730					"xfered\n", dev->cli.count);
731			(void) init_hw(dev);
732		}
733		complete(&dev->xfer_complete);
734
735		break;
736
737	/* Master Arbitration lost interrupt */
738	case I2C_IT_MAL:
739		dev->result = -1;
740		(void) init_hw(dev);
741
742		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
743		complete(&dev->xfer_complete);
744
745		break;
746
747	/*
748	 * Bus Error interrupt.
749	 * This happens when an unexpected start/stop condition occurs
750	 * during the transaction.
751	 */
752	case I2C_IT_BERR:
753		dev->result = -1;
754		/* get the status */
755		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
756			(void) init_hw(dev);
757
758		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
759		complete(&dev->xfer_complete);
760
761		break;
762
763	/*
764	 * Tx FIFO overrun interrupt.
765	 * This is set when a write operation in Tx FIFO is performed and
766	 * the Tx FIFO is full.
767	 */
768	case I2C_IT_TXFOVR:
769		dev->result = -1;
770		(void) init_hw(dev);
771
772		dev_err(&dev->pdev->dev, "Tx Fifo Over run\n");
773		complete(&dev->xfer_complete);
774
775		break;
776
777	/* unhandled interrupts by this driver - TODO*/
778	case I2C_IT_TXFE:
779	case I2C_IT_TXFF:
780	case I2C_IT_RXFE:
781	case I2C_IT_RFSR:
782	case I2C_IT_RFSE:
783	case I2C_IT_WTSR:
784	case I2C_IT_STD:
785		dev_err(&dev->pdev->dev, "unhandled Interrupt\n");
786		break;
787	default:
788		dev_err(&dev->pdev->dev, "spurious Interrupt..\n");
789		break;
790	}
791
792	return IRQ_HANDLED;
793}
794
795static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
796{
797	return I2C_FUNC_I2C
798		| I2C_FUNC_SMBUS_BYTE_DATA
799		| I2C_FUNC_SMBUS_WORD_DATA
800		| I2C_FUNC_SMBUS_I2C_BLOCK;
801}
802
803static const struct i2c_algorithm nmk_i2c_algo = {
804	.master_xfer	= nmk_i2c_xfer,
805	.functionality	= nmk_i2c_functionality
806};
807
808static int __devinit nmk_i2c_probe(struct platform_device *pdev)
809{
810	int ret = 0;
811	struct resource *res;
812	struct nmk_i2c_controller *pdata =
813			pdev->dev.platform_data;
814	struct nmk_i2c_dev	*dev;
815	struct i2c_adapter *adap;
816
817	dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
818	if (!dev) {
819		dev_err(&pdev->dev, "cannot allocate memory\n");
820		ret = -ENOMEM;
821		goto err_no_mem;
822	}
823
824	dev->pdev = pdev;
825	platform_set_drvdata(pdev, dev);
826
827	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
828	if (!res) {
829		ret = -ENOENT;
830		goto err_no_resource;
831	}
832
833	if (request_mem_region(res->start, resource_size(res),
834		DRIVER_NAME "I/O region") == 	NULL)	{
835		ret = -EBUSY;
836		goto err_no_region;
837	}
838
839	dev->virtbase = ioremap(res->start, resource_size(res));
840	if (!dev->virtbase) {
841		ret = -ENOMEM;
842		goto err_no_ioremap;
843	}
844
845	dev->irq = platform_get_irq(pdev, 0);
846	ret = request_irq(dev->irq, i2c_irq_handler, IRQF_DISABLED,
847				DRIVER_NAME, dev);
848	if (ret) {
849		dev_err(&pdev->dev, "cannot claim the irq %d\n", dev->irq);
850		goto err_irq;
851	}
852
853	dev->clk = clk_get(&pdev->dev, NULL);
854	if (IS_ERR(dev->clk)) {
855		dev_err(&pdev->dev, "could not get i2c clock\n");
856		ret = PTR_ERR(dev->clk);
857		goto err_no_clk;
858	}
859
860	clk_enable(dev->clk);
861
862	adap = &dev->adap;
863	adap->dev.parent = &pdev->dev;
864	adap->owner	= THIS_MODULE;
865	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
866	adap->algo	= &nmk_i2c_algo;
867
868	/* fetch the controller id */
869	adap->nr	= pdev->id;
870
871	/* fetch the controller configuration from machine */
872	dev->cfg.clk_freq = pdata->clk_freq;
873	dev->cfg.slsu	= pdata->slsu;
874	dev->cfg.tft	= pdata->tft;
875	dev->cfg.rft	= pdata->rft;
876	dev->cfg.sm	= pdata->sm;
877
878	i2c_set_adapdata(adap, dev);
879
880	ret = init_hw(dev);
881	if (ret != 0) {
882		dev_err(&pdev->dev, "error in initializing i2c hardware\n");
883		goto err_init_hw;
884	}
885
886	dev_dbg(&pdev->dev, "initialize I2C%d bus on virtual "
887		"base %p\n", pdev->id, dev->virtbase);
888
889	ret = i2c_add_numbered_adapter(adap);
890	if (ret) {
891		dev_err(&pdev->dev, "failed to add adapter\n");
892		goto err_add_adap;
893	}
894
895	return 0;
896
897 err_init_hw:
898	clk_disable(dev->clk);
899 err_add_adap:
900	clk_put(dev->clk);
901 err_no_clk:
902	free_irq(dev->irq, dev);
903 err_irq:
904	iounmap(dev->virtbase);
905 err_no_ioremap:
906	release_mem_region(res->start, resource_size(res));
907 err_no_region:
908	platform_set_drvdata(pdev, NULL);
909 err_no_resource:
910	kfree(dev);
911 err_no_mem:
912
913	return ret;
914}
915
916static int __devexit nmk_i2c_remove(struct platform_device *pdev)
917{
918	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
919	struct nmk_i2c_dev *dev = platform_get_drvdata(pdev);
920
921	i2c_del_adapter(&dev->adap);
922	flush_i2c_fifo(dev);
923	disable_all_interrupts(dev);
924	clear_all_interrupts(dev);
925	/* disable the controller */
926	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
927	free_irq(dev->irq, dev);
928	iounmap(dev->virtbase);
929	if (res)
930		release_mem_region(res->start, resource_size(res));
931	clk_disable(dev->clk);
932	clk_put(dev->clk);
933	platform_set_drvdata(pdev, NULL);
934	kfree(dev);
935
936	return 0;
937}
938
939static struct platform_driver nmk_i2c_driver = {
940	.driver = {
941		.owner = THIS_MODULE,
942		.name = DRIVER_NAME,
943	},
944	.probe = nmk_i2c_probe,
945	.remove = __devexit_p(nmk_i2c_remove),
946};
947
948static int __init nmk_i2c_init(void)
949{
950	return platform_driver_register(&nmk_i2c_driver);
951}
952
953static void __exit nmk_i2c_exit(void)
954{
955	platform_driver_unregister(&nmk_i2c_driver);
956}
957
958subsys_initcall(nmk_i2c_init);
959module_exit(nmk_i2c_exit);
960
961MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
962MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
963MODULE_LICENSE("GPL");
964MODULE_ALIAS("platform:" DRIVER_NAME);
965